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Fig. 1. Concurrent error detection using a systematic code.

bits. Fig. 1 shows the general structure of a circuit checked with a

Logic Synthesis of Multilevel Circuits systematic code. There are three parts: function logic, check symbol

with Concurrent Error Detection generator, and checker. The function logic generates the normal
outputs, the check symbol generator generates the check bits, and the

Nur A. Touba and Edward J. McCluskey checker determines if they form a codeword. Two types of systematic

codes that are used for concurrent error detection are Berger codes

Abstract—Thi ‘ dure f thesizi Hilevel and parity-check codes [4].
stract—This paper presents a procedure for synthesizing multileve : : - , , :
circuits with concurrent error detection. Al errors caused by single stuck- /i€ methods exist for designing PLA’s and simple functional

at faults are detected using a parity-check code. The synthesis procedure UNits (e.g., adders, multipliers, etc.) with concurrent error detection
(implemented in Stanford CRC’s TOPS synthesis system) fully automates [4], the conventional approach for designing arbitrary multilevel
the design process, and reduces the cost of concurrent error detection circuits with concurrent error detection has been to use duplication.
compared with previous methods. An algorithm for selecting a good e iyt is simply duplicated, and the outputs are compared using
parity-check code for encoding the circuit outputs is described. Once . . . . . .

the code has been selected, a new procedure callstiucture-constrained & two-rail checker (eql_Ja“t_y chegker). While this provides very high
logic optimizationis used to minimize the area of the circuit as much as error-detection capability, it requires a large area overhead. Recently,
possible while still using a circuit structure that ensures that single stuck- research has been done on using automated logic synthesis techniques
at faults cannot produce undetected errors. It is proven that the resulting (such as those used in MIS [5]) to design multilevel circuits with con-

implementation is path fault secure, and when augmented by a checker, current error detection requiring less area overhead than duplication
forms a self-checking circuit. The actual layout areas required for self- q 9 p

checking implementations of benchmark circuits generated with the While still being able to detect all errors dueitdernal single stuck-
techniques described in this paper are compared with implementations at faults[6]-[8]. Internal single stuck-at faults are all single stuck-at

using Berger codes, single-bit parity, and duplicate-and-compare. Results faylts, except those at the primary inputs (PI's). Note that for any
indicate that the self-checking multilevel circuits generated with the .\ rrent error-detection scheme (including duplication), detection
procedure described here are significantly more economical.
of stuck-at faults at the PI's cannot be guaranteed unless encoded
inputs are used. However, if the inputs to the circuit are outputs of
I. INTRODUCTION another concurrently checked logic block, then the only undetectable
Concurrent error detection is an important technique in the desigh faults are break faults after the checker [9].
of systems in which dependability and data integrity are important.Jha and Wang [6] proposed a synthesis method in which the
Concurrent error detection circuitry has the ability to detect both trafunctional circuit is optimized using a MIS script with only algebraic
sient and permanent faults, as well as to enhance off-line testabiligerations such that the resulting circuit can be transformed so that
and reduce BIST overhead [1]-[3]. it is inverter freg i.e., it has inverters only at the PI's. The primary
One general approach for concurrent error detection is to encaglgputs (PO’s) are then encoded with a Berger code, which is a
the outputs of a circuit with an error-detecting code, and to hawaidirectional error-detecting code. Since the inverters are only at the
a checker that monitors the outputs and gives an error indicatiBhis, any error caused by an internal single stuck-at fault will produce
if a noncodeword occurs. Aystematic codés a code in which a unidirectional error at the PO’s, and therefore is guaranteed to be
codewords are constructed by appending check bits to the norrdatected.
output bits. Using a systematic code for concurrent error detectiorDe et al. [7] have proposed two schemes for generating multilevel
has the advantage that no decoding is needed to get the normal outpatits with concurrent error detection. The first scheme uses a
Berger code. It fully automates the synthesis method proposed in
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Fig. 2. H matrix for circuit with three outputs: (a) single-bit parity code .
and (b) duplication code. Fig. 3. Example of a Boolean network.

logic blocks in such a way that logic sharing within each block is The paper Is organized as follows. Ir! Section I some definitions
maximized, but no logic sharing between blocks is allowed: I and terminology are explained. In Section Ill, the parity-check code

the number of outputs in the logic block with the most outputs ,ihenselection algorithm is presented, and its cost function, heuristics, and

parity groups are used. Outputs are assigned té tharity groups in Flme complexﬂy are.explalned. I.n Sect|9n IV, thg SCLO technlqug
such a way that each parity group contains no more than one out| tdescnbed, apd implementation of its factorlng_ procedures is
from each logic block. The parity check functions for each of the Iscussed. S_ectlo_n V shows hQW o use these techniques to gengrate
parity groups are computed and form another logic block. Each %fself-checklng circuit. In Section VI, results are presented showing

these logic blocks is then synthesized separately using MIS. Sir&%w mut;h area ofvier:heacé:ll\lscr%quwid fork sglf-c_?ec_lf_lrr]lg Impllttam;en-
no logic sharing exists between the logic blocks, an error caus jons of some of the enchmark circuts. the results for

by an internal stuck-at fault can only affect the outputs of a singF € §ynthesis procedure Qescribeq in this paper are compareq with
logic block. Since each of the outputs in a single logic block is in previous techniques. Section VII gives a summary and conclusions.

different parity group, and therefore checked by a different parity bit,

the error cannot be masked, and therefore will be detected. In [7], the Il. DEFINITIONS AND TERMINOLOGY

actual layout areas using the Berger code scheme, the parity-check multilevel circuit can be represented byBaolean network10]

code scheme, and duplication are given for some benchmark circuwithich is a directed acyclic graph where each node corresponds to

For almost all of the circuits, the parity-check code scheme requir@sBoolean function. Inward edges to the node indicate the inputs

the least area overhead. of the function, and outward edges from a node indicate the fan-
This paper describes a new approach for generating multile\elts of the function. Each Pl and PO of the circuit is represented

circuits with concurrent error detection based on parity-check codés. a special node in the graph that does not have a corresponding

A logic synthesis procedure is introduced which provides a significaBbolean function. In this paper, the special Pl nodes will not be shown

improvement in the quality of the result. The two basic steps in Boolean network diagrams in order to increase readability. Fig. 3

generating a circuit that uses a parity-check code for concurrent erioan example of a Boolean network. The PI's are, and the PO’s

detection are: 1) determining which parity check code to use, and&k Z, 7. y,—ys are intermediate nodes. In a Boolean network, if a

performing logic optimization under the constraint that the structutrected path exists from nodeo nodej, then node is atransitive

of the circuit is such that errors are not masked. Major improvemerign-in of node j, and nodej is a transitive fan-outof node:. For

are presented in this paper for both of these steps. In [7], the selectéxample, in Fig. 3ys.v4, andys are transitive fan-in's ofZ;, and

of the parity-check code is not fully automated. The number of outpdt is a transitive fan-out of, andys, but not ofy,.

partitions is a user-supplied parameter. Results are shown in [7] thaDefinition 1: A circuit is fault secureif and only if, for every

indicate that the final circuit area strongly depends on the numberfalilt in a specified fault class, the circuit never produces an incorrect

output partitions used. Outputs are assigned to each partition usgngleword output for any codeword input.

a cost function that is based only on logic sharing in an optimized Definition 2: A circuit is self-testingf and only if, for every fault

multilevel implementation. In this paper, a fully automated parityin a specified fault class, the circuit produces a noncodeword output

check code selection algorithm is presented. It is a greedy algoritlion at least one codeword input.

that tries to find the optimal code for minimizing the overall area of Definition 3: A circuit is path-fault secure (PFSif and only if,

the circuit. It uses a cost function that considers the area of the paffity every fault in a specified fault class, error propagation down any

check functions and area of the checker in addition to logic sharirgpt of structural paths from the fault site to the outputs will never
Once the code is selected, the next step is to perform logicoduce an incorrect codeword output [11].

optimization under structural constraints. In [7], circuit structure is The totally self-checking (TSC) go# to detect the first error that

constrained by optimizing each logic block separately. This constramtcurs due to any fault in a specified fault class [11]. One way to

is overly restrictive. For example, if outpX is in logic block 1 and achieve the TSC goal is if the functional circuit is both fault secure

output Y is in logic block 2, then even thoug' andY are in and self-testing and its output is checked by a TSC checker; such

different logic blocks, they may be in different parity groups, and circuit is said to beself-checking[12]. Smith and Metze [11]

hence can still share logic without compromising the detectabilitptroduced the concept of PFS circuits, and showed it to be a subclass

of faults in the circuit. In this paper, a new logic optimizatiorof fault-secure circuits. Whereas the fault-secure property depends

technique, calledstructure-constrained logic optimizatio(SCLO), on the functional paths in the circuit that are sensitized by codeword

is presented. By considering structural constraints when factoringputs, the PFS property depends on the structural paths, and therefore

SCLO optimizes the area of the circuit as much as possible undemdependent of the input set that is applied. It was shown in [11] that

the structural constraints. Using SCLO, the whole circuit can B&FS circuits that are checked by a TSC checker achieve the TSC goal

synthesized together, allowing additional logic-sharing opportunitiesgardless of which input patterns are applied to the circuit during

to be explored, thereby producing a better result. Some preliminargrmal operation. This property is important because it eliminates the

results have been published in [8]. need to consider the operating input patterns in the design process.
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It will be proven in Section V that the techniques described in thgroup. Finding the area required by the parity predict logic for each

paper generate self-checking circuits that are PFS. code involves generating the check-bit equations and doing multilevel
logic optimization; this is far too time consuming to do for each code.
IIl. SELECTING A PARITY-CHECK CODE It is difficult to even estimate this area. A more tractable task is to

. . o o . compare the relative area requirements for two similar codes. If one
Given an arbitrary combinational circuit for which concurrent errof d " b nerated from another code by merging tw it
detection circuitry is to be added, the first step is to select a paritg-’ € can be generaled from anofher code by merging two party

check code for encoding the outputs of the circuit. If a requireme {oupsc,j then ths d|fferenpe n Jhe .parltylpredélct Ioglp area for the
is that the circuit be PFS for all internal single stuck-at faults, thent\ﬁ'0 co _e_s gan_ e approximate usmg only noce mlnlmlzatlor_1 (two-
géel minimization of a node). Consider the case where cBdis

tradeoff exists between the number of parity groups (i.e., check bi{ . i . .
and the constraints on logic sharing between outputs. Logic cannot erated by merging two parity groups, corresponding to check bits

shared between two outputs in the same parity group because tiférNd¢2. in codeA. The change in area of the parity predict logic

if a fault occurred in the shared logic, the effects of the fault coufgN P& approximated by comparing the factored form literal count of

propagate to both outputs, causing a 2-bit error which would n6t PIUS ¢z With that of (¢, © ¢2) after node minimization

be detected by the parity checker. So, the more parity groups there

are, the more logic sharing is possible; however, more parity groups Parity predict logic areaA) — parity predict logic are4B)

require more parity predict logic to generate the check bits. Consider = lits(c1) + lits(c2) — lits(c1 P c2).

the two extreme cases: duplication and single-bit parity prediction.

In duplication, each output is in its own parity group, so there arghis approximation neglects the effect of global restructuring opera-

no constraints on logic sharing; however, the parity predict logic ifons that would be performed in multilevel logic optimization.

large. In single-bit parity prediction, there is only one parity group, so |_ast, consider the area required by the checker for a particular

only one check bit needs to be generated; however, no logic shariifle. The literal count for the checker can be easily calculated

is possible. because it depends only on the number of inputs to the checker.
The goal is to select the code that will require the least amount gy, parity checker trees and two-rail checker trees [4] require

area to implement. The area of the circuit is equal to the sum of ttlﬁnumber of checker inputs 2)] literals. For example, a four-input

areas of the function logic, parity predict logic, and checker. The ar¢&c parity checker consists of two two-input exclusive-or gates,

required by the function logic depends on how much logic sharing,y thys requires eight literals. A four-input two-rail checker also

is possible. The area required by the parity predict logic depends i ires eight literals. Although the checker structure for each parity-
the size of the parity functions that must be implemented for eagheq code will be composed of differing numbers of parity checker

che_ck bit. The area required by the checker depends on how m%%anonents and two-rail checker components, the total humber of
parity groups there are. All of these factors should be con&der@%raIS required is always equal to

when selecting the parity-check code. The cost function propose
here incorporates all three factors, whereas the cost function used in

. . . . 4(numbe * function output:
[7] considers only the area required by the function logic. [4(number of function outputs

+ number of parity groups — 2)].

A. Cost Function The proposed algorithm uses these area estimation techniques to
The cost function is used to compare the area required by tweedict which parity-check code will require the least amount of
different codes. The exact cost function would require actualBrea to implement. The area requirements for two codes are quickly
synthesizing the circuit for each code and measuring the areampared by estimating the literals saved by using one code instead

the computation time required for this is obviously not practicabf another.

Therefore, some estimation techniques are required. First, considdret area_reducé A, B) be the estimated number of literals saved

the area required by the function logic. The least area required candyeusing codeB instead of coded where codeB is formed by

found by performing normal logic optimization with no restrictionsmerging two parity groups, corresponding to check bitandc., in

on logic sharing to produce an unconstrained implementation. L&ide A. area reduceé 4, B) is computed as follows:

lits_sharedx,y) be the factored form literal count of the logic

shared between outputsandy in the unconstrained implementation.  gyeq_reduce(A, B)

lits_sharedx,y) can easily be computed by summing the literal

counts for each node that is a transitive fan-in of betland y,

i.e., that has a structural path to bothandy. If a code has both: — shared_logic_reduce(A, B)

andy in the same pa.rity group,_then no Iogig can b_e shared between parity-reduce(A, B) = lits(cr) + lits(ca) — lits(

these outputs when implementing the function logic. The extra area

required by the function logic because of this constraint on logic checker_reduce(A, B) = 4

sharing between: andy can be approximated bijts_shared, y) shared_logic_reduce(A, B)

This value is only an approximation of the area complexity because it

may be possible to restructure the circuit to exploit other opportunities

for logic sharing that would compensate for some of the loss. Using wherexr is checked by:; andy is checked by:.

this approximation, the total extra area required by the function logic

for a code can be estimated by summiitg_sharedz, y) for each All three components of the circuit implementation are considered in

pair of outputsz andy that are members of the same parity groughe value ofcost reducé A, B). parity_reducé A, B) estimates how

in the code. many literals will be saved by combining check hitsandc, in the
Next, consider the area required by the parity predict logic fgarity predict logic.checkerreducé A, B) is the number of literals

a particular code. Each check bit is a parity function equal to thibat will be saved since the checker required for cétlés smaller

modulo-2 sum of the logic equations for the outputs in its paritthan the checker for cod¢é because cod® has one less parity group.

= parity_reduce( A, B) + checker_reduce(A, B)

c1 D ca )

= literals shared between all pairs of outputandy
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TABLE |
ALGORITHM FOR SELECTING PARITY-CHECK CODE Yy, =ayq
Yy =Yg tYs
SELECT_PARITY_CHECK_CODE (function_logic): ,
opt_funct_logic = unconstrained logic optimization of function_logic y3=2 b+ Yq
best_code = duplication code yy=a+ c’'de

/* one parity group for each output */

for i = 1 to NUM_PO(function_logic) Ys = de
parity_group; = { i }

repeat {

Fig. 4. Resubstitution example.
for each code; j formed by combining parity groups i and j in best_code 9 P

Compute AREA_REDUCKE(best_code, code; ;)
codep, 4= code that maximizes AREA_REDUCE
if ( AREA_REDUCE(best_code, codey 4)>0) { operation requires computing the exclusive OR of two nodes and
best_code = codep, g SImpllfylng it.
/* combine parity groups p and g */
parity_group, = parify_groupp \J parity_groupg

delete parity_groupq IV. STRUCTURECONSTRAINED LOGIC OPTIMIZATION (SCLO)

improvemeni = true Once the parity-check code has been selected, the next step is to

optimize the circuit under the constraints on logic sharing that are
needed to ensure that no internal single stuck-at fault will cause an
undetectable error. A new synthesis procedure that does this, called
SCLO, is described here. Multilevel logic optimization improves
circuit area by using operations that restructure and minimize the

}
else
improvement = false
} until (! improvement || best_code == single-bit parity code )
return ( best_code )

AREA_REDUCE (best_code, code; ; ): logic represented by a Boolean network. In SCLO, restrictions are
shared; ;= LITS_SHARED(opt_funct _logic, parity_group;, parity_group)) placed on the restructuring operations to ensure that the resulting
¢ ;= SIMPLIFY( XOR(c;, ¢;) ) circuit will satisfy the structural constraints.
parity_reduce; ; = LITS(c;) + LITS(cj) - LITS(c; ) Given the initial multilevel logic equations and the parity-check
check_reduce; ;=4 code, SCLO optimizes the logic under the constraint that a non-

Pl node cannot be a transitive fan-in of more than one PO in
a parity group. SCLO is accomplished by starting with an initial
Boolean network that satisfies the constraints, and then constraining
the restructuring operations so that they never cause nodes to violate
the constraints. The two restructuring operations that can cause

shared logic_reducé 4, B) estimates how many additional literalsa node to violate the constraints are resubstitution and extraction
will be required in the function logic due to the added constraints gmo].

logic sharing imposed by using cod& By considering all of these

factors,area reduce A, B) predicts how much better (or worse if it

is a negative value) the overall circuit area will be using cd¥le 5 constraints on Resubstitution
instead of coded for concurrent error detection.

return ( parity_reduce; j + check_reduce; ;- shared; ;)

Resubstitutionis an operation where some node which is
) divisible by another nodé, is rewritten as a function of nodg
B. Algorithm thus creating an arc from nodeto nodea. Since resubstitution adds
The number of possible parity-check codes for a circuit with an arc to the graph, it may create a path such that ho@e some
outputs is equal to the number of partitions of a set @bjects. This node that is a transitive fan-in of nodeif Boolean resubstitution
number is exponential in, so heuristics are needed in searching fof10] is considered) becomes a transitive fan-in of more than one
the minimal area code. A greedy algorithm is given in Table | whicRO in a parity group, thus violating the constraints. Therefore, in
uses the heuristic of pairwise combining of parity groups in searchigLO, resubstitution can be performed between two nodes only if
for a minimal area code. It begins with the duplication code in whictine resulting arc does not violate the constraints.
each output is in its own parity group. It then computes the reductionFig. 4 shows a Boolean network in which noge is divisible
in the cost function for all codes that can be formed by combiningy nodeys. The dashed arrow indicates the new arc that will be
two of the parity groups, and chooses the code that offers the largadted if resubstitution ofi; into y. is performed. To check if this
cost reduction. This process continues until no further reduction iiesubstitution will violate the constraints, the new set of PO’s that
the cost function is possible through combining parity groups.  will become transitive fan-outs afs needs to be determined. If the
If n is the number of outputs in the function logic, then the initiadrc is added, any PO that is a transitive fan-ouy.ofnill become a
duplication code has parity groups. The algorithm will consider all transitive fan-out ofys, so the new set of PO’s that will be transitive
possible codes with — 1 parity groups, so if the optimal code has fan-outs ofys is {71, Z2, Zs}. If each PO in this new set is in a
orn—1 parity groups, it is guaranteed to be found. The algorithm onfifferent parity group, then the resubstitution can be done; otherwise,
considers a subset of the codes with fewer than 1 parity groups. it cannot be done.
This subset is determined by the heuristic of greedily combiningimplementing constrained resubstitution is easy. Various filters
parity groups in a pairwise manner. In the worst case, the algorittare generally used to reduce the number of node pairs for which
will execute the COSIREDUCE functionX?_, C3 times. Thus, a resubstitution is attempted [5]. So, this constraint can simply be
solution is obtained using onk(n2log, n) operations, where each added as an additional filter. Note that some procedures for node
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_» Group Z1 Zy Z3 74 75 Zg ¢ ¢ c3

y, =ays 4 7/ 101000100
2 010011010

Y, =¥5+¥g 3 000100001

e
y3 = a’b +¥¢ /// —> Zy Fig. 6. Example:H matrix for parity-check code.

O S
yg=d+e'fgh N _ _ _

e Zy extracted from due to the constraints, and subtracting out the literal
yg=egh+fgh S reduction for those nodes. Subexpressions are then selected based
y. =gh S on the adjusted values, and are extracted from the maximal set of

! Zy nodes that the constraints allow. Details of one particular procedure
for extraction in SCLO using rectangle covering can be found in
Fig. 5. Extraction example. [15].

minimization may implicitly perform resubstitution, so the additionaf®- T€chnology Mapping

filter must be used in those node minimization procedures as well. ) o )
After the Boolean network is optimized, it must be mapped to a

set of library elements; this process is caltedhnology mappingn
B. Constraints on Extraction order to ensure that the resulting mapped circuit satisfies the structural
constraints, a technology mapping procedure that follows the structure
Extractionis an operation in which an intermediate node is Creath the Boolean network, such as tree mapping [16], [17], must be used

by factoring out a common subexpression from a set of ndfles to map the Boolean network to single-output library cells.
The intermediate node is then used as an input to each nofe in

thereby reducing the overall literal count. The intermediate node will
have an arc to each node i and hence will be a transitive fan-in V. GENERATING A SELF-CHECKING CIRCUIT
of every PO that is a transitive fan-out of any nafle Therefore,
common subexpressions can only be extracted from a set of nodeFhis section proves that the SCLO procedure guarantees the PFS
if all of the PO’s that are transitive fan-outs of the set of nodes afgoperty, and describes how to augment the circuit with a TSC
in different parity groups. checker to make it self-checking.
Fig. 5 shows a Boolean network in which noglecan be extracted  Theorem 1: After SCLO has been performed, the resulting circuit
from the set of node$y., ys,ys}. The dashed arrows indicate thewill be PFS for all internal single stuck-at faults.
new arcs that will be added. To check if this extraction will violate  Proof: In order for an incorrect codeword output to occur in a
the constraints, the new set of PO’s that will become transitive faparity-check code, some parity group must have an even number of
outs ofy; needs to be determined.yf is extracted from the full set errors on its outputs. SCLO constrains restructuring operations so that
of nodes, then its set of transitive fan-outs will p&,, Z2, Z3, Z4+}.  non-Pl nodes in the resulting Boolean network have a path to no more
If Z> and Z, are in the same parity group, then this extraction willhan one output in any parity group. Any internal single stuck-at fault
violate the constraints becauge will fan out to bothZ, and Z;.  can change the logic function of only one cell. Since the technology
However, note that ify is extracted only from the set of nodesmapping procedure follows the structure of the Boolean network and
{ys,ys}, then its set of transitive fan-outs will beZ1, Z>, Z3}, and  each library cell has a single output, the effects of a fault in a cell can
thus it will not fan out to bothZ, and Z,, and therefore will not propagate to no more than one output in any parity group using any
violate the constraints. set of possible structural paths. Therefore, no internal single stuck-at
In order to implement constrained extraction, the process of sault can cause the circuit to produce an incorrect codeword output.
lecting common subexpressions to extract needs to be modified. Twegor a self-checking circuit, a TSC checker needs to be added to
methods that are used for selecting common subexpressions to extaetPFS circuit generated by SCLO. TSC parity checkers [18] can be
are rectangle covering [13] and the concurrent decomposition progged to check each parity group, and then a TSC two-rail checker [19]
dure in [14]. In both cases, subexpressions are identified betwegih be used to combine the error indication signals. If too few output
nodes, and are assigned a value based on the number of litegalgewords occur during normal operation to satisfy the self-testing
that will be reduced if it is extracted. In SCLO, subexpressiongquirement of the checkers, modifications such as those suggested
cannot always be extracted from the full set of possible nod&s[20] can be used. An example of a parity-check code is given in
due to the structure constraints. Thus, the value assigned to eB@ 6, and the block diagram for a self-checking circuit using this
subexpression must be adjusted according to the maximum numéedle is shown in Fig. 7. The check bits @i c2, c3, and the normal
of literals that can be reduced without violating the constraints. Feircuit outputs are theZ;’s.
example, in Fig. 5, ifZ; and Z, are in the same parity group,
then the subexpressiogh cannot be extracted from the full set
of possible noded{y..ys,ys}, but it can be extracted from the VI. RESULTS
set of nodes{ys, ys}. So the value assigned to the subexpression
gh must be adjusted to reflect the true number of literals that will The synthesis method proposed in this paper has been implemented
be reduced if it is extracted under the structural constraints. lry making modifications to SIS 1.1 (an updated version of MIS). The
SCLO, after the subexpressions are identified, an additional stge selection algorithm was added, and the restructuring algorithms
is required in which the value assigned to each subexpressiorwisre extended to handle structural constraints so that SCLO could
adjusted based on the constraints. The adjusted value is computegerformed. Using this implementation, self-checking circuits were
by identifying the subset of nodes that the subexpression cannotdemerated for some of the MCNC combinational benchmark circuits.
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Z
Z1 ? TSC [
P le .
Cy Parity —
. Z2
mputs L 4 L
P PES Zs tsc || TSC error
Circuit 7z * " 2-Rail |__ indication
5 Parity | —
C2
Zg
C3
outputs
Fig. 7. Block diagram of self-checking circuit using code in Fig. 6.
TABLE 1l TABLE 11l
LiITERAL COUNT COMPARISON FOR CODES LITERAL COUNT COMPARISON FOR DUPLICATION
WITH DIFFERENT NUMBERS OF PARITY BITS VERSUS CODE SELECTED BY PROPOSEDPROCEDURE
bi2 misex1 Circuit Duplication Proposed Procedure
Parity Literal Parity Literal Opt. | Par. |Circuit| Chkr| Total | Par. | Circuit| Chkr| Total
Bits Count Bits Count Name | PI |PO| Lits || Bits| Lits | Lits | Lits | Bits| Lits | Lits [ Lits
9 (dup) 238 7 (dup) 156 apla 1012|312 12| 624 | 88 | 712 | 3 316 | 52 | 368
6 205 5 149 brl 12181196 8 | 392 | 56 | 448 || 2 | 243 | 32 | 275
4 (sel) 194 3 (sel) 128 bw 5128|178 28 | 356 (216 572 || 8 302 {136 438
2 219 2 123 chkn |29 7 (398 7 796 | 48 | 844 | 3 706 | 32 | 738
1 206 1 134 dcl 417145 7 90 48 | 138 || 3 62 321 94
dc2 87162 7 | 324 |48 [372] 2| 188 | 28 | 216
- : exp 8 [18[435] 18 | 870 {136 |1006] 5 | 526 | 84 | 610
__misex2 ___pce luc 8 |27|211 )27 | 422 [208]| 630 | 6 | 335 | 24 | 359
Parity Literal Parity Literal p82 | 5114|127 14| 254 [104]| 258 | 3 | 162 | 60 | 222
Bits Count Bits Count signet |39 8 (335 8 [ 670 | 56 | 726 | 5 | 310 | 44 | 354
18 (dup) 344 9 (dup) 202 wim |4 |7]60f 7 | 120 |48 | 168 2 | 61 | 28| 89
11 325 6 199 sxpl {7 |10]134| 10| 268 | 72 {340 | 3 | 217 | 44 | 261
4 325 3 (sel) 196 alu4 |14/ 8 {800 8 |1600 | 56 | 1656 8 | 1600 | 56 | 1656
2 (sel) 278 2 209 b12 1509 |87 ] 9 | 174 64 | 238 | 4 | 150 | 44 | 194
1 291 1 219 emb |16 4|52 4 | 104 | 24| 128 2| 64 [16] 80
cu 14|11 53 11 106 | 80 [ 186 || 1 83 | 40 | 123
fSiml [ 8 | 8 (130 8 | 260 | 56 | 314 || 2 | 218 | 32 | 250
) ) misex1| 8 | 7| 54 || 7 | 108 | 48 [ 156 3 | 96 | 32 | 128
Table Il shows results comparing the factored form literal countSmisex2 |25 (18| 104 || 18 | 208 1136|344 {| 2 | 202 | 72 | 278
for self-checking circuits based on codes with different numbers ofpcle |19 9 | 69 | 9 | 138 | 64 | 202 | 3 | 156 | 40 | 196
parity bits. The literal counts include the function logic, parity predict termi |34 (10| 179 10 | 358 | 72 | 430 § 7 [ 326 | 60 | 386
logic, and the checker. The first row for each circuit corresponds t 24121191 ) 21 | 382 1160 542 4 9 | 374 | 112 486
o o X 100|751 7110248150 2| 79 | 28| 107
the duplication code (the number of parity bits is equal to the numbet

of outputs in the circuit). The last row for each circuit corresponds
to the single-bit parity code (there is only one parity bit). The code
that was selected by the code selection algorithm described in this
paper is shown in bold. As can be seen, the code selection algoritrcﬁl’rﬁn

selected the best code for all of the circuits examptex1 L . )
Table Il shows factored form literal count data for three imple- 1he circuits were placed and routed using the TimberwolfSC 4.2c

mentations: the circuit with no concurrent error detection, the circiifandard cell package [21], [22]. Results are shown in Table IV,
with duplication, and the circuit generated by the synthesis proced@@mparing the resulting layout areas with those reported in [7]. The
described in this paper. Under the first major heading, informatid@yout areas are given in units of 1008, where) is the minimum
about each circuit is given: number of primary inputs, number &ize in a technology. The percentage of area overhead required is
primary outputs, and literal count after normal unconstrained logg®@mputed as shown below:

optimization. Under the second and third major headings, results

for duplication and for the synthesis procedure described in this% area overhead

paper are given: number of parity bits, literal count for the circuit,

literal count for the checker, and total literal count for the self- =
checking circuit. For duplication, the number of parity bits is equal

to the number of outputs and the literal count for the circuit is

twice the normal literal count since there are two copies of the
circuit. For the synthesis procedure described in this paper, tife[7], results are given for using a Berger code (as proposed in
number of parity bits in the selected code ranged from singlf6]) and for using a single-bit parity code. As can be seen, in most
bit parity (e.g.,cu) up to duplication (e.g.zlu4). In most cases, cases, the procedure described in this paper provides a significant

ething between single-bit parity and duplication turned out to be

(self-checking layout arga- (normal layout aream
(normal layout area

x 100.
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TABLE IV
LAyouT AREA COMPARISON FORDIFFERENT METHODS

Circuit Duplication || Berger Code || Sgl-Bit Parity | Proposed

71 [7] Procedure
Layout | Layout [ Ovh | Layout | Ovh | Layout | Ovh | Layout | Ovh

Name Area || Area | % [ Area | % || Area | % | Area | %
apla 1039 |[ 2391 [ 173 1422 | 37 || 1485 | 43 || 1247 | 20
brl 648 1481 | 128 1076 | 66 | 1117 | 72 875 35
bw 742 2790 | 276 2520 | 240) 1344 | 81 1066 | 44
chkn 1553 | 3650 | 135|| 2888 | 86 || 2485 | 60 | 3280 | 111
dcl 130 423 | 224 346 |165| 257 97 252 94
dc2 562 1316 [ 134 1035 | 84 | 668 19 624 11
exp 1730 || 3862 | 123 2303 | 34 || 2137 | 24 || 2123 | 24
luc 756 2761 |265| 2260 | 199 1946 | 157 1523 | 101
p82 437 1286 | 194} 1145 [162| 718 64 672 54
signet | 1378 || 3342 | 143} 2736 | 99 || 2730 | 98 || 1755 | 27
wim 184 513 | 179 480 |[161| 274 49 224 | 22
Sxpl 459 1060 | 131 1443 |215] 688 50 797 72
alud 3298 || 6796 | 106 NA [NA{| NA | NA| 679 [ 106
b12 284 727 (156 NA | NA|| NA |NA| 613 |116
cmb 153 414 | 171 NA [NAJ| NA [NA| 206 35
cu 181 537 [197)) NA | NA| NA | NA| 356 97
f51ml 385 923 | 140 NA |NA| NA | NA| 677 76
misex1| 154 403 |162] NA [NA| NA [ NA| 355 |131
misex2 | 372 1166 |213§f NA |NAJ NA |NA| 935 |[151
pcle 229 659 | 188f NA |NAJ]| NA | NA| 523 |128
term1 617 1542 | 150§ NA | NA{ NA | NA| 1211 | 96
2 630 1977 [220ff NA | NAJ| NA [ NA | 1707 | 171
x2 144 433 |201| NA |NA| NA |[NA| 279 94
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types of structural constraints during logic synthesis, and may have
other applications.

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

reduction in area overhead compared with the previous techniques. ) )
11] J. E. Smith and G. Metze, “Strongly fault secure logic networkSEE

There are only a few casdshkn and 5xpl) where the heuristics

in the proposed code selection algorithm did not find the best coqi:z]
Note that for the circuits where results are not available in [7], an

“NA” is placed in the corresponding entry.

VIl. SUMMARY AND CONCLUSIONS

[13]

. . . . [14

New techniques for the automated synthesis of multilevel cwcw{s ]
with concurrent error detection using a parity-check code were

presented. Given the circuit description, the procedure is as follow5]

1) Determine a parity-check code for encoding outputs of the

circuit using a greedy algorithm.
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