
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997 783

[16] Layout synthesis benchmark set, Microelectronics Center of North
Carolina, Research Triangle Park, NC, May 1990.

[17] ACEO, Inc., ACEO Migration and Partitioning Reference Manual.
ACEO, 1995.

[18] Aptix, Inc., The Aptix FPID Data Book. Aptix, Feb. 1993.
[19] Xilinx, Inc., The Programmable Logic Data Book. San Jose, CA:

Xilinx, 1994.

Logic Synthesis of Multilevel Circuits
with Concurrent Error Detection

Nur A. Touba and Edward J. McCluskey

Abstract—This paper presents a procedure for synthesizing multilevel
circuits with concurrent error detection. All errors caused by single stuck-
at faults are detected using a parity-check code. The synthesis procedure
(implemented in Stanford CRC’s TOPS synthesis system) fully automates
the design process, and reduces the cost of concurrent error detection
compared with previous methods. An algorithm for selecting a good
parity-check code for encoding the circuit outputs is described. Once
the code has been selected, a new procedure calledstructure-constrained
logic optimization is used to minimize the area of the circuit as much as
possible while still using a circuit structure that ensures that single stuck-
at faults cannot produce undetected errors. It is proven that the resulting
implementation is path fault secure, and when augmented by a checker,
forms a self-checking circuit. The actual layout areas required for self-
checking implementations of benchmark circuits generated with the
techniques described in this paper are compared with implementations
using Berger codes, single-bit parity, and duplicate-and-compare. Results
indicate that the self-checking multilevel circuits generated with the
procedure described here are significantly more economical.

I. INTRODUCTION

Concurrent error detection is an important technique in the design
of systems in which dependability and data integrity are important.
Concurrent error detection circuitry has the ability to detect both tran-
sient and permanent faults, as well as to enhance off-line testability
and reduce BIST overhead [1]–[3].

One general approach for concurrent error detection is to encode
the outputs of a circuit with an error-detecting code, and to have
a checker that monitors the outputs and gives an error indication
if a noncodeword occurs. Asystematic codeis a code in which
codewords are constructed by appending check bits to the normal
output bits. Using a systematic code for concurrent error detection
has the advantage that no decoding is needed to get the normal output

Manuscript received December 19, 1995; revised August 12, 1996 and
November 22, 1997. This work was supported in part by the Ballistic Missile
Defense Organization, Innovative Science and Technology (BMDO/IST)
Directorate, and administered through the Department of the Navy, Office
of Naval Research under Grant N00014-92-J-1782, by the National Sci-
ence Foundation under Grant MIP-9107760, and by the Advanced Research
Projects Agency under Prime Contract DABT63-94-C-0045. This paper was
recommended by Associate Editor A. Saldanha.

N. A. Touba was with the Departments of Electrical Engineering and
Computer Science, Stanford University, Stanford, CA 94305 USA. He is now
with the Computer Engineering Research Center, Department of Electrical and
Computer Engineering, University of Texas, Austin, TX 78712-1084 USA.

E. J. McCluskey is with the Center for Reliable Computing, Departments of
Electrical Engineering and Computer Science, Stanford University, Stanford,
CA 94305 USA.

Publisher Item Identifier S 0278-0070(97)07563-5.

Fig. 1. Concurrent error detection using a systematic code.

bits. Fig. 1 shows the general structure of a circuit checked with a
systematic code. There are three parts: function logic, check symbol
generator, and checker. The function logic generates the normal
outputs, the check symbol generator generates the check bits, and the
checker determines if they form a codeword. Two types of systematic
codes that are used for concurrent error detection are Berger codes
and parity-check codes [4].

While methods exist for designing PLA’s and simple functional
units (e.g., adders, multipliers, etc.) with concurrent error detection
[4], the conventional approach for designing arbitrary multilevel
circuits with concurrent error detection has been to use duplication.
The circuit is simply duplicated, and the outputs are compared using
a two-rail checker (equality checker). While this provides very high
error-detection capability, it requires a large area overhead. Recently,
research has been done on using automated logic synthesis techniques
(such as those used in MIS [5]) to design multilevel circuits with con-
current error detection requiring less area overhead than duplication
while still being able to detect all errors due tointernal single stuck-
at faults [6]–[8]. Internal single stuck-at faults are all single stuck-at
faults, except those at the primary inputs (PI’s). Note that for any
concurrent error-detection scheme (including duplication), detection
of stuck-at faults at the PI’s cannot be guaranteed unless encoded
inputs are used. However, if the inputs to the circuit are outputs of
another concurrently checked logic block, then the only undetectable
PI faults are break faults after the checker [9].

Jha and Wang [6] proposed a synthesis method in which the
functional circuit is optimized using a MIS script with only algebraic
operations such that the resulting circuit can be transformed so that
it is inverter free, i.e., it has inverters only at the PI’s. The primary
outputs (PO’s) are then encoded with a Berger code, which is a
unidirectional error-detecting code. Since the inverters are only at the
PI’s, any error caused by an internal single stuck-at fault will produce
a unidirectional error at the PO’s, and therefore is guaranteed to be
detected.

De et al. [7] have proposed two schemes for generating multilevel
circuits with concurrent error detection. The first scheme uses a
Berger code. It fully automates the synthesis method proposed in
[6] by automatically adding the logic equations for the Berger check
bits and checker, and then using a constrained technology mapping
procedure that maintains the inverter-free property during technology
mapping. The second scheme uses a parity-check code. Aparity-
check codeis a code in which each check bit is a parity check for
a group of output bits. Each group of outputs that is checked by a
check bit is called aparity group, and corresponds to a row in the
parity check matrixHHH [4]. Fig. 2 shows the parity check matricesHHH
for a circuit with three outputsZ1; Z2; Z3; encoded with single-bit
parity and with duplication. In single-bit parity, there is one parity
group which contains all the outputs. In duplication of a circuit withn

outputs, there aren parity groups, each containing one of the outputs.
The synthesis method proposed in [7] partitions the outputs to form

0278–0070/97$10.00 1997 IEEE

784 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997

(a)

(b)

Fig. 2. HHH matrix for circuit with three outputs: (a) single-bit parity code
and (b) duplication code.

logic blocks in such a way that logic sharing within each block is
maximized, but no logic sharing between blocks is allowed. Ifk is
the number of outputs in the logic block with the most outputs, thenk

parity groups are used. Outputs are assigned to thek parity groups in
such a way that each parity group contains no more than one output
from each logic block. The parity check functions for each of thek

parity groups are computed and form another logic block. Each of
these logic blocks is then synthesized separately using MIS. Since
no logic sharing exists between the logic blocks, an error caused
by an internal stuck-at fault can only affect the outputs of a single
logic block. Since each of the outputs in a single logic block is in a
different parity group, and therefore checked by a different parity bit,
the error cannot be masked, and therefore will be detected. In [7], the
actual layout areas using the Berger code scheme, the parity-check
code scheme, and duplication are given for some benchmark circuits.
For almost all of the circuits, the parity-check code scheme requires
the least area overhead.

This paper describes a new approach for generating multilevel
circuits with concurrent error detection based on parity-check codes.
A logic synthesis procedure is introduced which provides a significant
improvement in the quality of the result. The two basic steps in
generating a circuit that uses a parity-check code for concurrent error
detection are: 1) determining which parity check code to use, and 2)
performing logic optimization under the constraint that the structure
of the circuit is such that errors are not masked. Major improvements
are presented in this paper for both of these steps. In [7], the selection
of the parity-check code is not fully automated. The number of output
partitions is a user-supplied parameter. Results are shown in [7] that
indicate that the final circuit area strongly depends on the number of
output partitions used. Outputs are assigned to each partition using
a cost function that is based only on logic sharing in an optimized
multilevel implementation. In this paper, a fully automated parity-
check code selection algorithm is presented. It is a greedy algorithm
that tries to find the optimal code for minimizing the overall area of
the circuit. It uses a cost function that considers the area of the parity
check functions and area of the checker in addition to logic sharing.

Once the code is selected, the next step is to perform logic
optimization under structural constraints. In [7], circuit structure is
constrained by optimizing each logic block separately. This constraint
is overly restrictive. For example, if outputX is in logic block 1 and
output Y is in logic block 2, then even thoughX and Y are in
different logic blocks, they may be in different parity groups, and
hence can still share logic without compromising the detectability
of faults in the circuit. In this paper, a new logic optimization
technique, calledstructure-constrained logic optimization(SCLO),
is presented. By considering structural constraints when factoring,
SCLO optimizes the area of the circuit as much as possible under
the structural constraints. Using SCLO, the whole circuit can be
synthesized together, allowing additional logic-sharing opportunities
to be explored, thereby producing a better result. Some preliminary
results have been published in [8].

Fig. 3. Example of a Boolean network.

The paper is organized as follows. In Section II, some definitions
and terminology are explained. In Section III, the parity-check code
selection algorithm is presented, and its cost function, heuristics, and
time complexity are explained. In Section IV, the SCLO technique
is described, and implementation of its factoring procedures is
discussed. Section V shows how to use these techniques to generate
a self-checking circuit. In Section VI, results are presented showing
how much area overhead is required for self-checking implemen-
tations of some of the MCNC benchmark circuits. The results for
the synthesis procedure described in this paper are compared with
previous techniques. Section VII gives a summary and conclusions.

II. DEFINITIONS AND TERMINOLOGY

A multilevel circuit can be represented by aBoolean network[10]
which is a directed acyclic graph where each node corresponds to
a Boolean function. Inward edges to the node indicate the inputs
of the function, and outward edges from a node indicate the fan-
outs of the function. Each PI and PO of the circuit is represented
by a special node in the graph that does not have a corresponding
Boolean function. In this paper, the special PI nodes will not be shown
on Boolean network diagrams in order to increase readability. Fig. 3
is an example of a Boolean network. The PI’s area–e; and the PO’s
areZ1–Z3: y1–y5 are intermediate nodes. In a Boolean network, if a
directed path exists from nodei to nodej; then nodei is a transitive
fan-in of nodej; and nodej is a transitive fan-outof node i: For
example, in Fig. 3,y3; y4; andy5 are transitive fan-in’s ofZ3; and
Z1 is a transitive fan-out ofy1 andy5, but not ofy4:

Definition 1: A circuit is fault secureif and only if, for every
fault in a specified fault class, the circuit never produces an incorrect
codeword output for any codeword input.

Definition 2: A circuit is self-testingif and only if, for every fault
in a specified fault class, the circuit produces a noncodeword output
for at least one codeword input.

Definition 3: A circuit is path-fault secure (PFS)if and only if,
for every fault in a specified fault class, error propagation down any
set of structural paths from the fault site to the outputs will never
produce an incorrect codeword output [11].

The totally self-checking (TSC) goalis to detect the first error that
occurs due to any fault in a specified fault class [11]. One way to
achieve the TSC goal is if the functional circuit is both fault secure
and self-testing and its output is checked by a TSC checker; such
a circuit is said to beself-checking[12]. Smith and Metze [11]
introduced the concept of PFS circuits, and showed it to be a subclass
of fault-secure circuits. Whereas the fault-secure property depends
on the functional paths in the circuit that are sensitized by codeword
inputs, the PFS property depends on the structural paths, and therefore
is independent of the input set that is applied. It was shown in [11] that
PFS circuits that are checked by a TSC checker achieve the TSC goal
regardless of which input patterns are applied to the circuit during
normal operation. This property is important because it eliminates the
need to consider the operating input patterns in the design process.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997 785

It will be proven in Section V that the techniques described in this
paper generate self-checking circuits that are PFS.

III. SELECTING A PARITY-CHECK CODE

Given an arbitrary combinational circuit for which concurrent error
detection circuitry is to be added, the first step is to select a parity-
check code for encoding the outputs of the circuit. If a requirement
is that the circuit be PFS for all internal single stuck-at faults, then a
tradeoff exists between the number of parity groups (i.e., check bits)
and the constraints on logic sharing between outputs. Logic cannot be
shared between two outputs in the same parity group because then,
if a fault occurred in the shared logic, the effects of the fault could
propagate to both outputs, causing a 2-bit error which would not
be detected by the parity checker. So, the more parity groups there
are, the more logic sharing is possible; however, more parity groups
require more parity predict logic to generate the check bits. Consider
the two extreme cases: duplication and single-bit parity prediction.
In duplication, each output is in its own parity group, so there are
no constraints on logic sharing; however, the parity predict logic is
large. In single-bit parity prediction, there is only one parity group, so
only one check bit needs to be generated; however, no logic sharing
is possible.

The goal is to select the code that will require the least amount of
area to implement. The area of the circuit is equal to the sum of the
areas of the function logic, parity predict logic, and checker. The area
required by the function logic depends on how much logic sharing
is possible. The area required by the parity predict logic depends on
the size of the parity functions that must be implemented for each
check bit. The area required by the checker depends on how many
parity groups there are. All of these factors should be considered
when selecting the parity-check code. The cost function proposed
here incorporates all three factors, whereas the cost function used in
[7] considers only the area required by the function logic.

A. Cost Function

The cost function is used to compare the area required by two
different codes. The exact cost function would require actually
synthesizing the circuit for each code and measuring the area;
the computation time required for this is obviously not practical.
Therefore, some estimation techniques are required. First, consider
the area required by the function logic. The least area required can be
found by performing normal logic optimization with no restrictions
on logic sharing to produce an unconstrained implementation. Let
lits shared(x; y) be the factored form literal count of the logic
shared between outputsx andy in the unconstrained implementation.
lits shared(x; y) can easily be computed by summing the literal
counts for each node that is a transitive fan-in of bothx and y;

i.e., that has a structural path to bothx andy: If a code has bothx
andy in the same parity group, then no logic can be shared between
these outputs when implementing the function logic. The extra area
required by the function logic because of this constraint on logic
sharing betweenx and y can be approximated bylits shared(x; y)
This value is only an approximation of the area complexity because it
may be possible to restructure the circuit to exploit other opportunities
for logic sharing that would compensate for some of the loss. Using
this approximation, the total extra area required by the function logic
for a code can be estimated by summinglits shared(x; y) for each
pair of outputsx and y that are members of the same parity group
in the code.

Next, consider the area required by the parity predict logic for
a particular code. Each check bit is a parity function equal to the
modulo-2 sum of the logic equations for the outputs in its parity

group. Finding the area required by the parity predict logic for each
code involves generating the check-bit equations and doing multilevel
logic optimization; this is far too time consuming to do for each code.
It is difficult to even estimate this area. A more tractable task is to
compare the relative area requirements for two similar codes. If one
code can be generated from another code by merging two parity
groups, then the difference in the parity predict logic area for the
two codes can be approximated using only node minimization (two-
level minimization of a node). Consider the case where codeB is
generated by merging two parity groups, corresponding to check bits
c1 andc2; in codeA: The change in area of the parity predict logic
can be approximated by comparing the factored form literal count of
c1 plus c2 with that of (c1 � c2) after node minimization

parity predict logic area(A)� parity predict logic area(B)

� lits(c1) + lits(c2)� lits(c1 � c2):

This approximation neglects the effect of global restructuring opera-
tions that would be performed in multilevel logic optimization.

Last, consider the area required by the checker for a particular
code. The literal count for the checker can be easily calculated
because it depends only on the number of inputs to the checker.
Both parity checker trees and two-rail checker trees [4] require
[4(number of checker inputs� 2)] literals. For example, a four-input
TSC parity checker consists of two two-input exclusive-or gates,
and thus requires eight literals. A four-input two-rail checker also
requires eight literals. Although the checker structure for each parity-
check code will be composed of differing numbers of parity checker
components and two-rail checker components, the total number of
literals required is always equal to

[4(number of function outputs

+ number of parity groups � 2)]:

The proposed algorithm uses these area estimation techniques to
predict which parity-check code will require the least amount of
area to implement. The area requirements for two codes are quickly
compared by estimating the literals saved by using one code instead
of another.

Let area reduce(A;B) be the estimated number of literals saved
by using codeB instead of codeA where codeB is formed by
merging two parity groups, corresponding to check bitsc1 andc2; in
codeA: area reduce(A;B) is computed as follows:

area reduce(A;B)

= parity reduce(A;B) + checker reduce(A;B)

� shared logic reduce(A;B)

parity-reduce(A;B) = lits(c1) + lits(c2)� lits(c1 � c2)

checker reduce(A;B) = 4

shared logic reduce(A;B)

= literals shared between all pairs of outputsx andy

wherex is checked byc1 andy is checked byc2:

All three components of the circuit implementation are considered in
the value ofcost reduce(A;B). parity reduce(A;B) estimates how
many literals will be saved by combining check bitsc1 andc2 in the
parity predict logic.checker reduce(A;B) is the number of literals
that will be saved since the checker required for codeB is smaller
than the checker for codeA because codeB has one less parity group.

786 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997

TABLE I
ALGORITHM FOR SELECTING PARITY-CHECK CODE

shared logic reduce(A;B) estimates how many additional literals
will be required in the function logic due to the added constraints on
logic sharing imposed by using codeB: By considering all of these
factors,area reduce(A;B) predicts how much better (or worse if it
is a negative value) the overall circuit area will be using codeB

instead of codeA for concurrent error detection.

B. Algorithm

The number of possible parity-check codes for a circuit withn

outputs is equal to the number of partitions of a set ofn objects. This
number is exponential inn; so heuristics are needed in searching for
the minimal area code. A greedy algorithm is given in Table I which
uses the heuristic of pairwise combining of parity groups in searching
for a minimal area code. It begins with the duplication code in which
each output is in its own parity group. It then computes the reduction
in the cost function for all codes that can be formed by combining
two of the parity groups, and chooses the code that offers the largest
cost reduction. This process continues until no further reduction in
the cost function is possible through combining parity groups.

If n is the number of outputs in the function logic, then the initial
duplication code hasn parity groups. The algorithm will consider all
possible codes withn�1 parity groups, so if the optimal code hasn
orn�1 parity groups, it is guaranteed to be found. The algorithm only
considers a subset of the codes with fewer thann� 1 parity groups.
This subset is determined by the heuristic of greedily combining
parity groups in a pairwise manner. In the worst case, the algorithm
will execute the COSTREDUCE function�n

i=2 Ci

2 times. Thus, a
solution is obtained using onlyO(n2 log

2
n) operations, where each

Fig. 4. Resubstitution example.

operation requires computing the exclusive OR of two nodes and
simplifying it.

IV. STRUCTURE-CONSTRAINED LOGIC OPTIMIZATION (SCLO)

Once the parity-check code has been selected, the next step is to
optimize the circuit under the constraints on logic sharing that are
needed to ensure that no internal single stuck-at fault will cause an
undetectable error. A new synthesis procedure that does this, called
SCLO, is described here. Multilevel logic optimization improves
circuit area by using operations that restructure and minimize the
logic represented by a Boolean network. In SCLO, restrictions are
placed on the restructuring operations to ensure that the resulting
circuit will satisfy the structural constraints.

Given the initial multilevel logic equations and the parity-check
code, SCLO optimizes the logic under the constraint that a non-
PI node cannot be a transitive fan-in of more than one PO in
a parity group. SCLO is accomplished by starting with an initial
Boolean network that satisfies the constraints, and then constraining
the restructuring operations so that they never cause nodes to violate
the constraints. The two restructuring operations that can cause
a node to violate the constraints are resubstitution and extraction
[10].

A. Constraints on Resubstitution

Resubstitutionis an operation where some nodea; which is
divisible by another nodeb; is rewritten as a function of nodeb;
thus creating an arc from nodeb to nodea: Since resubstitution adds
an arc to the graph, it may create a path such that nodeb (or some
node that is a transitive fan-in of nodeb if Boolean resubstitution
[10] is considered) becomes a transitive fan-in of more than one
PO in a parity group, thus violating the constraints. Therefore, in
SCLO, resubstitution can be performed between two nodes only if
the resulting arc does not violate the constraints.

Fig. 4 shows a Boolean network in which nodey4 is divisible
by nodey5: The dashed arrow indicates the new arc that will be
added if resubstitution ofy5 into y4 is performed. To check if this
resubstitution will violate the constraints, the new set of PO’s that
will become transitive fan-outs ofy5 needs to be determined. If the
arc is added, any PO that is a transitive fan-out ofy4 will become a
transitive fan-out ofy5; so the new set of PO’s that will be transitive
fan-outs ofy5 is fZ1; Z2; Z3g: If each PO in this new set is in a
different parity group, then the resubstitution can be done; otherwise,
it cannot be done.

Implementing constrained resubstitution is easy. Various filters
are generally used to reduce the number of node pairs for which
resubstitution is attempted [5]. So, this constraint can simply be
added as an additional filter. Note that some procedures for node

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997 787

Fig. 5. Extraction example.

minimization may implicitly perform resubstitution, so the additional
filter must be used in those node minimization procedures as well.

B. Constraints on Extraction

Extractionis an operation in which an intermediate node is created
by factoring out a common subexpression from a set of nodesS:

The intermediate node is then used as an input to each node inS,
thereby reducing the overall literal count. The intermediate node will
have an arc to each node inS; and hence will be a transitive fan-in
of every PO that is a transitive fan-out of any nodeS: Therefore,
common subexpressions can only be extracted from a set of nodes
if all of the PO’s that are transitive fan-outs of the set of nodes are
in different parity groups.

Fig. 5 shows a Boolean network in which nodey7 can be extracted
from the set of nodesfy4; y5; y6g: The dashed arrows indicate the
new arcs that will be added. To check if this extraction will violate
the constraints, the new set of PO’s that will become transitive fan-
outs ofy7 needs to be determined. Ify7 is extracted from the full set
of nodes, then its set of transitive fan-outs will befZ1; Z2; Z3; Z4g:
If Z2 andZ4 are in the same parity group, then this extraction will
violate the constraints becausey7 will fan out to bothZ2 andZ4:

However, note that ify7 is extracted only from the set of nodes
fy5; y6g, then its set of transitive fan-outs will befZ1; Z2; Z3g; and
thus it will not fan out to bothZ2 and Z4, and therefore will not
violate the constraints.

In order to implement constrained extraction, the process of se-
lecting common subexpressions to extract needs to be modified. Two
methods that are used for selecting common subexpressions to extract
are rectangle covering [13] and the concurrent decomposition proce-
dure in [14]. In both cases, subexpressions are identified between
nodes, and are assigned a value based on the number of literals
that will be reduced if it is extracted. In SCLO, subexpressions
cannot always be extracted from the full set of possible nodes
due to the structure constraints. Thus, the value assigned to each
subexpression must be adjusted according to the maximum number
of literals that can be reduced without violating the constraints. For
example, in Fig. 5, ifZ2 and Z4 are in the same parity group,
then the subexpressiongh cannot be extracted from the full set
of possible nodesfy4; y5; y6g; but it can be extracted from the
set of nodesfy5; y6g: So the value assigned to the subexpression
gh must be adjusted to reflect the true number of literals that will
be reduced if it is extracted under the structural constraints. In
SCLO, after the subexpressions are identified, an additional step
is required in which the value assigned to each subexpression is
adjusted based on the constraints. The adjusted value is computed
by identifying the subset of nodes that the subexpression cannot be

Fig. 6. Example:HHH matrix for parity-check code.

extracted from due to the constraints, and subtracting out the literal
reduction for those nodes. Subexpressions are then selected based
on the adjusted values, and are extracted from the maximal set of
nodes that the constraints allow. Details of one particular procedure
for extraction in SCLO using rectangle covering can be found in
[15].

C. Technology Mapping

After the Boolean network is optimized, it must be mapped to a
set of library elements; this process is calledtechnology mapping. In
order to ensure that the resulting mapped circuit satisfies the structural
constraints, a technology mapping procedure that follows the structure
of the Boolean network, such as tree mapping [16], [17], must be used
to map the Boolean network to single-output library cells.

V. GENERATING A SELF-CHECKING CIRCUIT

This section proves that the SCLO procedure guarantees the PFS
property, and describes how to augment the circuit with a TSC
checker to make it self-checking.

Theorem 1: After SCLO has been performed, the resulting circuit
will be PFS for all internal single stuck-at faults.

Proof: In order for an incorrect codeword output to occur in a
parity-check code, some parity group must have an even number of
errors on its outputs. SCLO constrains restructuring operations so that
non-PI nodes in the resulting Boolean network have a path to no more
than one output in any parity group. Any internal single stuck-at fault
can change the logic function of only one cell. Since the technology
mapping procedure follows the structure of the Boolean network and
each library cell has a single output, the effects of a fault in a cell can
propagate to no more than one output in any parity group using any
set of possible structural paths. Therefore, no internal single stuck-at
fault can cause the circuit to produce an incorrect codeword output.

For a self-checking circuit, a TSC checker needs to be added to
the PFS circuit generated by SCLO. TSC parity checkers [18] can be
used to check each parity group, and then a TSC two-rail checker [19]
can be used to combine the error indication signals. If too few output
codewords occur during normal operation to satisfy the self-testing
requirement of the checkers, modifications such as those suggested
in [20] can be used. An example of a parity-check code is given in
Fig. 6, and the block diagram for a self-checking circuit using this
code is shown in Fig. 7. The check bits arec1; c2; c3; and the normal
circuit outputs are theZi’s.

VI. RESULTS

The synthesis method proposed in this paper has been implemented
by making modifications to SIS 1.1 (an updated version of MIS). The
code selection algorithm was added, and the restructuring algorithms
were extended to handle structural constraints so that SCLO could
be performed. Using this implementation, self-checking circuits were
generated for some of the MCNC combinational benchmark circuits.

788 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997

Fig. 7. Block diagram of self-checking circuit using code in Fig. 6.

TABLE II
LITERAL COUNT COMPARISON FOR CODES

WITH DIFFERENT NUMBERS OF PARITY BITS

Table II shows results comparing the factored form literal counts
for self-checking circuits based on codes with different numbers of
parity bits. The literal counts include the function logic, parity predict
logic, and the checker. The first row for each circuit corresponds to
the duplication code (the number of parity bits is equal to the number
of outputs in the circuit). The last row for each circuit corresponds
to the single-bit parity code (there is only one parity bit). The code
that was selected by the code selection algorithm described in this
paper is shown in bold. As can be seen, the code selection algorithm
selected the best code for all of the circuits exceptmisex1.

Table III shows factored form literal count data for three imple-
mentations: the circuit with no concurrent error detection, the circuit
with duplication, and the circuit generated by the synthesis procedure
described in this paper. Under the first major heading, information
about each circuit is given: number of primary inputs, number of
primary outputs, and literal count after normal unconstrained logic
optimization. Under the second and third major headings, results
for duplication and for the synthesis procedure described in this
paper are given: number of parity bits, literal count for the circuit,
literal count for the checker, and total literal count for the self-
checking circuit. For duplication, the number of parity bits is equal
to the number of outputs and the literal count for the circuit is
twice the normal literal count since there are two copies of the
circuit. For the synthesis procedure described in this paper, the
number of parity bits in the selected code ranged from single-
bit parity (e.g.,cu) up to duplication (e.g.,alu4): In most cases,

TABLE III
LITERAL COUNT COMPARISON FORDUPLICATION

VERSUS CODE SELECTED BY PROPOSEDPROCEDURE

something between single-bit parity and duplication turned out to be
best.

The circuits were placed and routed using the TimberwolfSC 4.2c
standard cell package [21], [22]. Results are shown in Table IV,
comparing the resulting layout areas with those reported in [7]. The
layout areas are given in units of 1000�2; where� is the minimum
size in a technology. The percentage of area overhead required is
computed as shown below:

% area overhead

=
(self-checking layout area)� (normal layout area)

(normal layout area)

� 100:

In [7], results are given for using a Berger code (as proposed in
[6]) and for using a single-bit parity code. As can be seen, in most
cases, the procedure described in this paper provides a significant

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997 789

TABLE IV
LAYOUT AREA COMPARISON FORDIFFERENT METHODS

reduction in area overhead compared with the previous techniques.
There are only a few cases(chkn and 5xpl) where the heuristics
in the proposed code selection algorithm did not find the best code.
Note that for the circuits where results are not available in [7], an
“NA” is placed in the corresponding entry.

VII. SUMMARY AND CONCLUSIONS

New techniques for the automated synthesis of multilevel circuits
with concurrent error detection using a parity-check code were
presented. Given the circuit description, the procedure is as follows.

1) Determine a parity-check code for encoding outputs of the
circuit using a greedy algorithm.

2) Compute the parity functions for each check bit, and add them
to the circuit description.

3) Use structure-constrained logic optimization to generate a PFS
implementation.

4) Add a TSC checker to form a self-checking circuit implemen-
tation.

This procedure reduces area overhead compared with previously
proposed synthesis methods because the parity-code selection algo-
rithm uses a cost function that considers the area requirements for the
function logic, parity predict logic, and checker, and the new SCLO
technique considers the structural constraints during each step of the
logic optimization. Results were presented that show that this method
can significantly reduce the area overhead required for concurrent
error detection in multilevel circuits while still detecting all internal
single stuck-at faults. A possibility for future research is to apply
these techniques to the synthesis of fault-tolerant finite-state machines
where the states are encoded with a parity-check code [23]. Also, the
SCLO procedure described here can easily be generalized for any

types of structural constraints during logic synthesis, and may have
other applications.

REFERENCES

[1] R. M. Sedmak, “Design for self-verification: An approach for dealing
with testability problems in VLSI-based designs,” inProc. IEEE Int.
Test Conf., 1979, pp. 112–120.

[2] S. K. Gupta and D. K. Pradhan, “Can concurrent checkers help BIST?,”
in Proc. IEEE Int. Test Conf., 1992, pp. 140–150.

[3] , “Utilization of on-line (cocurrent) checkers during built-in self-
test and vice-versa,”IEEE Trans. Comput., vol. 45, pp. 63–73, Jan.
1996.

[4] D. K. Pradham,Fault Tolerant Computing: Theory and Techniques, Vol.
1. Englewood Cliffs, NJ: Prentice-Hall, 1986, ch. 5.

[5] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R.
Wang, “MIS: A multiple-level logic optimization system,”IEEE Trans.
Computer-Aided Design, vol. CAD-6, pp. 1062–1081, Nov. 1987.

[6] N. K. Jha and S. Wang, “Design and synthesis of self-checking VLSI
circuits,” IEEE Trans. Computer-Aided Design, vol. 12, pp. 878–887,
June 1993.

[7] K. De, C. Natarajan, D. Nair, and P. Banerjee, “RSYN: A system for
automated synthesis of reliable multilevel circuits,”IEEE Trans. VLSI
Syst., vol. 2, pp. 186–195, June 1994.

[8] N. A. Touba and E. J. McCluskey, “Logic synthesis techniques for
reduced area implementation of multilevel circuits with concurrent
error detection,” inProc. IEEE/ACM Int. Conf. Computer-Aided Design
(ICCAD), 1994, pp. 651–654.

[9] B. Khodadad-Mostashiry, “Break faults in circuits with parity predic-
tion,” Tech. Note 183, Center for Reliable Computing, Stanford Univ.,
Stanford, CA, Dec. 1980.

[10] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli,
“Multilevel logic synthesis,”Proc. IEEE, vol. 78, pp. 264–300, Feb.
1990.

[11] J. E. Smith and G. Metze, “Strongly fault secure logic networks,”IEEE
Trans. Comput., vol. C-27, pp. 491–499, June 1978.

[12] D. A. Anderson, “Design of self-checking digital networks using coding
techniques,” Tech. Rep. R-527, Coordinated Sci. Lab., Univ. Illinois,
Urbana, 1971.

[13] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang,
“Multi-level logic optimization and the rectangular covering problem,”
in Proc. IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD), 1987,
pp. 66–69.

[14] J. Rajski and J. Vasudevamurthy, “The testability-preserving concurrent
decomposition and factorization of Boolean expressions,”IEEE Trans.
Computer-Aided Design, vol. 11, pp. 778–793, June 1992.

[15] N. A. Touba and E. J. McCluskey, “Logic synthesis for concurrent error
detection,” Tech. Rep. 93-6, Center for Reliable Computing, Stanford
Univ., Stanford, CA, Nov. 1993.

[16] K. Keutzer, “Dagon: Technology binding and local optimization by
DAG matching,” in Proc. IEEE/ACM 24th Design Automation Conf.,
1987, pp. 341–347.

[17] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli, and A.
Wang, “Technology mapping in MIS,” inProc. IEEE/ACM Int. Conf.
Computer-Aided Design (ICCAD), 1987, pp. 116–119.

[18] J. Khakbaz and E. J. McCluskey, “Self-testing embedded parity trees,”
IEEE Trans. Comput., vol. C-33, pp. 753–756, Aug. 1984.

[19] J. L. A. Hughes, E. J. McCluskey, and D. J. Lu, “Design of totally self-
checking comparators with an arbitrary number of inputs,”IEEE Trans.
Comput., vol. C-33, pp. 546–550, June 1984.

[20] E. Fujiwara and K. Matsuoka, “A self-checking generalized prediction
checker and its use for built-in testing,”IEEE Trans. Comput., vol. C-36,
pp. 86–93, Jan. 1987.

[21] C. Sechen and A. Sangiovanni-Vincentelli, “TimberWolf3.2: A new
standard cell placement and global routing package,” inProc.
IEEE/ACM 23rd Design Automation Conf., 1986, pp. 432–439.

[22] C. Sechen, K. Lee, B. Swartz, D. Chen, and M. Lee, “The Timber-
WolfSC standard cell placement and global routing package, user’s guide
for version 4.2c,” Yale Univ., New Haven, CT, Oct. 1987.

[23] R. Leveugle, “Optimized state assignment of single fault tolerant FSM’s
based on SEC codes,” inProc. IEEE/ACM 30th Design Automation
Conf., 1993, pp. 14–18.

