
1202 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 8, AUGUST 1999

RP-SYN: Synthesis of Random Pattern Testable
Circuits with Test Point Insertion

Nur A. Touba,Member, IEEE, and Edward J. McCluskey,Life Fellow, IEEE

Abstract—An automated logic synthesis procedure, called RP-
SYN, is described for synthesizing random pattern testable cir-
cuits. RP-SYN takes as an input a two-level description of a
circuit and a constraint on the minimum fault detection prob-
ability (threshold below which faults are considered random-
pattern-resistant), and generates a multilevel implementation
which satisfies the constraint while minimizing the literal count.
RP-SYN identifies random-pattern-resistant faults and eliminates
them through testability-driven factoring combined with test
point insertion. By moving the task of test point insertion from the
back-end into the synthesis process, RP-SYN reduces design time
and enables better optimization of the resulting implementation.
Results are shown for benchmark circuits which indicate that
RP-SYN can generally reduce the random pattern test length by
at least an order of magnitude with only a small area overhead.

Index Terms—Built-in self-test (BIST), computer-aided design,
design for testability, fault coverage, integrated circuit testing,
logic optimization, logic synthesis, logic transformations, pseudo-
random testing, random pattern testability, test points.

I. INTRODUCTION

CONSIDERING testability requirements during synthesis
(as opposed to the traditional approach of making back-

end modifications after an implementation has already been
generated), can reduce design time, design mistakes, and test
overhead. This paper describes an automated logic synthesis
procedure, called RP-SYN, that considers random pattern
testability requirements during the synthesis process and gen-
erates optimized random pattern testable implementations.
RP-SYN moves the task of test point insertion from the back-
end into the synthesis process to enable better optimization
of the resulting implementation. RP-SYN is implemented in
TOPS, Stanford CRC’s synthesis-for-test tool.

Random pattern testing has a number of well-known advan-
tages: no deterministic test set generation cost, no test pattern
storage requirement, higher coverage of nontargeted faults, and
suitability for built-in self test (BIST). The obvious drawback
of random pattern testing is that longer test lengths are needed.
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For some circuits, the test length required to achieve high fault
coverage with random patterns is unacceptably long. What is
considered an acceptable test length depends on the particular
test environment.

The random pattern test length needed to achieve a par-
ticular fault coverage for a circuit depends on the detection
probability of the faults in the circuit. Thedetection probability
of a fault is equal to the number of input patterns that detect
the fault divided by the total number of input patterns,,
where is the number of primary inputs. Faults with very low
detection probabilities are said to berandom pattern resistant
(r.p.r.) because they are hard to detect with random patterns
[14]. A circuit that does not have any r.p.r. faults israndom
pattern testable.

Given a circuit structure that has r.p.r. faults, there are two
possible solutions. One is to modify the test pattern generator
so that it generates patterns that detect the r.p.r. faults, and
the other is to modify the circuit structure to increase the
detection probability of the r.p.r. faults so that they are no
longer r.p.r. (i.e., “eliminate” the r.p.r. faults). The test pattern
generator can be modified by adding logic to weight the
patterns [27], [30], [37]; correlate the patterns [26]; map the
patterns [7], [33], [34], [36]; or reseed the generator [18],
[19], [38]. For on-chip generation, these approaches generally
require significantly more overhead than modifying the circuit
structure itself. This paper focuses on techniques for modifying
the circuit structure to make it random pattern testable.

Two general techniques have been proposed for modifying
the circuit structure to eliminate r.p.r. faults. The first is “post-
synthesis” test point insertion. The circuit is synthesized and
then test points are inserted afterwards to eliminate the r.p.r.
faults. Since test points add area and performance overhead, it
is important to carefully select the location of each test point in
order to use as few test points as possible. Test point placement
has been an active area of research [6], [9], [20], [25], [29],
[31], [35]. The second technique that has been proposed is to
consider random pattern testability during logic synthesis [8],
[10], [32]. Logic transformations are performed to improve the
random pattern testability of the resulting circuit.

Chiang and Gupta [10] presented a logic synthesis method
that starts from a two-level circuit and performs algebraic
factoring to generate a multilevel implementation. Instead of
selecting the algebraic factors based on literal count reduction
(as in [3]), they use a special cost function that estimates the
impact of each factor on the detection probabilities of the
faults. This cost function guides the factoring process such that
the resulting implementation is more random pattern testable
than literal count-based factoring.
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Chatterjeeet al., [8] presented multilevel logic transforma-
tions which improve random pattern testability by introducing
XOR gates. They use statistical estimation of the fault de-
tection probabilities as used in STAFAN [21] to form a
cost function that estimates the impact of each candidate
transformation on the sum of the detection probabilities of the
r.p.r. faults. The cost function guides the synthesis procedure
to perform transformations that improve the random pattern
testability.

The synthesis methods in [8] and [10] use only testability-
driven factoring without test point insertion. As a result,
they are not always able to sufficiently reduce the random
pattern test length. This is borne out both in practice and
in theory. There are many cases where r.p.r. faults cannot
be eliminating by factoring alone. In fact, it can be proven
that many logic functions do not have random pattern testable
implementations. A simple example is a decoder where for any
implementation the probability of detecting a stuck-at-zero (s-
a-0) fault on an output is , where is the number of inputs.
In the case where a logic function does not have a random pat-
tern testable implementation, it is necessary to add test points.
The synthesis procedure described in this paper, RP-SYN,
combines both random pattern testability-driven factoring and
test point insertion to solve this problem (preliminary results
were presented in [32]). Instead of synthesizing the circuit and
then adding test points afterwards to sufficiently reduce the
random pattern test length, RP-SYN inserts test points during
the synthesis process in a way that enhances testability-driven
factoring and minimizes overhead.

RP-SYN takes as an input a two-level representation of
a circuit and a constraint on the minimum fault detection
probability and generates a multilevel implementation that
satisfies the constraint while minimizing the literal count
and the number of test points. The minimum fault detection
probability constraint essentially defines a threshold below
which a fault is considered r.p.r. The central strategy is to
identify any r.p.r. faults in the two-level starting point, and
then find algebraic factors that eliminate these faults. If it is
not possible to eliminate all of the r.p.r. faults by factoring
alone, then test points are inserted during the synthesis process
in a way that minimizes the number of test points that are
required. Once the r.p.r. faults have been eliminated, normal
logic optimization using random pattern testability preserving
logic transformations (defined in Section IV) can then proceed
since such transformations will not introduce new r.p.r. faults.
Thus, the initial selection of algebraic factors has as its primary
goal the elimination of r.p.r. faults, and then once all the r.p.r.
faults have been eliminated, subsequent factors are chosen on
the basis of reducing the literal count or optimizing for other
synthesis criteria (e.g., delay or power).

Whereas the procedures in [8] and [10] estimate fault detec-
tion probabilities when making decisions during the synthesis
process, RP-SYN uses an efficient technique (described in
Section III) that exploits properties of algebraic factoring to
compute the exact fault detection probabilities. An important
advantage of this approach is that the amount of testability-
driven factoring (as opposed to area-driven or delay-driven
factoring) is reduced to only that which is required to eliminate

the r.p.r. faults. Once the r.p.r. faults have been eliminated,
subsequent factoring can focus exclusively on other synthesis
criteria such as area or delay. Moreover, when test points
are required, they are inserted during the synthesis process
and, thus, accounted for during the testability driven-factoring.
This is a very important feature for reducing the amount
of testability-driven factoring. If “post-synthesis” test point
insertion is used, as in the other techniques, then a lot of
unnecessary testability-driven factoring may be performed
during synthesis in an attempt to improve the random pat-
tern testability when afterwards a test point ends up being
used anyway thereby obviating the need for the inefficient
testability-driven factoring.

Results are shown which indicate that the minimum fault
detection probability can be significantly increased by adding
just a few test points during synthesis. Thus, RP-SYN can be
used to synthesize circuits which require much shorter random
pattern test lengths without substantial overhead.

This work is organized as follows: Section II explains
some basic definitions and terminology used in this paper. In
Section III, a technique that utilizes properties of algebraic fac-
torization to efficiently compute fault detection probabilities is
described. In Section IV, random pattern testability preserving
transformations are defined and their relationship to testability
preserving and test-set preserving transformations is shown.
In Section V, the RP-SYN procedure is outlined step by step.
In Section VI, the task of inserting test points during the
synthesis process in described in detail. In Section VII, results
for benchmark circuits are shown and discussed. Section VIII
is a summary and conclusion.

II. BASIC DEFINITIONS AND TERMINOLOGY

The following terminology is used in this paper: Aliteral
is a Boolean variable or its complement. Acube is a set of
literals interpreted here as a product of literals. Acoveris a set
of cubes interpreted here as a sum-of-products expression. An
algebraic expressionis a cover in which no one cube contains
another (e.g., is not an algebraic expression). is an
algebraic product, if and are algebraic expressions with
no input variables in common; otherwise, is a Boolean
product. For example, is
an algebraic product, but
and are Boolean products
[4]. If , where and are algebraic
expressions and is an algebraic product, then and
are algebraic factorsof [4]. Boolean factors are much
more computationally expensive to identify than algebraic
factors and, thus, algebraic factorization is commonly used
in multilevel synthesis.

III. COMPUTING FAULT DETECTION PROBABILITIES

The operations in RP-SYN involve identifying r.p.r. faults
and finding factors that eliminate these faults. This requires
computing fault detection probabilities which is an NP-hard
problem [24]. Many methods exist for trading off accuracy to
reduce computation time. However, during logic synthesis, the
structure of the circuit is constantly changing which presents
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additional difficulty. To cope with this problem, RP-SYN relies
on the following property of algebraic factorization.

Definition 1: Thedetecting setfor a fault is the set of input
patterns that detect the fault.

Definition 2: Two faults areequivalent if they have the
same detecting set.

Property 1: Each stuck-at fault in a multilevel circuit de-
rived through algebraic factorization of a two-level circuit
is equivalent to some set of stuck-at faults in the original
two-level circuit [17].

This property provides some important advantages in com-
puting fault detection probabilities. Cube calculus operations
can be used to find the detecting set (represented as a cover)
of each fault in the initial two-level circuit. These detecting
sets can then be used to compute the detection probability of
any fault in any multilevel circuit derived through algebraic
factorization. Thus, the key feature is that the detecting sets for
the initial two-level circuit need only be computedonce, and
then they can be used to compute fault detection probabilities
during any stage of the factoring process. This technique will
be explained in detail.

A. Computing Detecting Sets in a Two-Level Circuit

The detecting set for a fault is computed by finding thefaulty
logic function(logic function of the circuit in the presence of
the fault) and comparing it to thefault-free logic function(logic
function of the circuit without any faults). The detecting set
is equal to the set of input vectors for which the faulty logic
function differs from the fault-free logic function.

Given the cover corresponding to a single-output two-
level circuit (i.e., each cube in corresponds to an AND gate
in the circuit), a cover for the detecting set of each fault in
the circuit can be computed using cube calculus operations.
Each fault in a two-level circuit, with the exception of the
faults at the primary inputs (PI’s) and primary output (PO), is
equivalent to an input of an AND gate being stuck-at-one (s-a-
1) or the output of an AND gate being s-a-0 and, hence, causes
a faulty logic function in which a cube in either expands
or is removed. The faulty logic function for a s-a-1 fault at
the input of an AND gate can be found by expanding the
corresponding cube in by removing the literal that is s-a-1.
The detecting set is given by the intersection of the expanded
cube with the complement of the cover since this gives the
input vectors for which the faulty logic function differs from
the fault-free logic function. The faulty logic function for a
s-a-0 fault at the output of an AND gate can be computed
by removing the corresponding cubein the cover . Let

denote the complement of the cover formed by
minus the removed cube, then the detecting set is given by
the intersection of the removed cubewith For
a s-a-1 (s-a-0) fault at primary input, the detecting set is
given by the intersection of with (where
denotes the Boolean difference of the coverwith respect to
input ). For the s-a-1 (s-a-0) fault at the PO, the detecting
set is simply

For a multioutput two-level circuit where no AND gate fans
out to more than one PO, the detecting set for each fault is

Fig. 1. Example of multilevel circuit represented in ENF.

computed by treating each PO as a single-output, two-level
circuit and performing the calculations described above. Then
for each fault at a PI that can be detected at more than one PO,
its complete detecting set is formed by taking the union of its
detecting sets at each PO. The detecting sets are represented
as covers, so the union is formed by simply logically ORing
the covers together.

B. Mapping Faults in Multilevel Circuit
to Faults in Two-Level Circuit

As was stated in Property 1, given a stuck-at fault in a
multilevel circuit derived through algebraic factorization of a
two-level circuit, there exists a set of stuck-at faults in the
two-level circuit that is equivalent. One way to determine
this “mapping” of faults in the multilevel circuit (“multilevel
faults”) to faults in the two-level circuit (“two-level faults”) is
to use a multilevel circuit representation called theequivalent
normal form (ENF)which is described in [1] (see also [13]).
The ENF of a circuit is a two-level representation in which
each literal in the sum-of-products (SOP) expressions for each
PO is annotated by its path through the circuit. It is best
explained by looking at an example. In Fig. 1, a multilevel
circuit is shown along with its ENF representation. The gates
are numbered in topological order, and the ENF is constructed
by visiting each gate in ascending order and replacing the
gate with a SOP expression for the gate output in terms of
the SOP expressions that exist for each of its inputs. When
forming the SOP expression for each gate output, De Morgan’s
laws and distributivity are used without making any Boolean
reductions such as , or

, and the gate number is appended to the annotation
list for each literal. For example, in the circuit in Fig. 1, the
SOP expression at the output of gate 8 is and
at the output of gate 11 it is
When all of the gates have been visited, a SOP expression
with annotated literals will exist for each primary output; this
constitutes the ENF of the multilevel circuit. In this paper,
two syntactical additions are made to the ENF notation to
simplify later definitions: PI’s are numbered (using numbers
lower than any gate number) and inserted at the beginning of
the annotation list for each ENF literal, and a prime sign is
placed on a gate number if a logic inversion occurs in the
gate.

Each ENF literal has the form where the annotated list
specifies a path through the multilevel circuit. If a stuck-at fault
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occurs at some node in the multilevel circuit, the logic value
at that node is fixed to either zero or one. This changes the
logic function of the circuit by fixing the logic value of each
ENF literal whose path goes through that node to either zero
or one depending on the inversion parity of the path from the
fault site to the primary output. Because it provides a simple
relationship between a multilevel fault and the resulting faulty
logic function, the ENF representation can be used to map a
multilevel fault to an equivalent set of two-level faults. Before
looking at an example, inversion parity needs to be defined.

Definition 3: The inversion parity of a path through a
circuit is even (odd) if the number of logic inversions along
the path is even (odd).

The inversion parity for the path specified by an ENF
literal’s annotated list starting at PI or gate output ,
which will be denoted , is even (odd) if the number
of primed gate numbers greater thanin is even (odd).
For example, if is the annotated list for the ENF literal

then is even, is odd,
is odd, is even, and is even.

Now consider the circuit in Fig. 1. If the output of gate 8
is s-a-1, then the faulty logic function can be constructed by
setting each ENF literal whose annotated list includes gate 8
to logic value one since the inversion parity along each path
from gate 8 to a PO is even. Thus, and
are effectively removed from the sum-of-products expression
for , and and are removed from the sum-
of-products expression for This faulty logic function is
identical to the one that occurs if there were four s-a-1
faults in the two-level circuit at the inputs to the AND gates
corresponding to the four literals that were removed. If the
output of gate 8 is s-a-0, then the faulty logic function is
constructed by setting those same four literals to logic value
zero . This is equivalent to s-a-0 faults in the two-level circuit
at the inputs to the AND gates corresponding to the four
literals. If a s-a-1 fault occurs at the input of gate 6 that
comes from PI then each ENF literal whose annotated
list includes both PI 2 and gate 6 is affected; the only such
literal is Notice that in this case, the inversion
parity along the path from the fault site to the PO is odd,
therefore the literal is s-a-0 which is the opposite
polarity from the fault which was s-a-1.

Now, the mapping process will be formally defined. The
operation maps a stuck-at fault in a multilevel
circuit, , to an equivalent set of faults in the two-level
circuit, Each two-level fault,

is a s-a-1 or s-a-0 fault at the input of an AND gate in
the two-level circuit described by the ENF SOP expressions.
For each PO, let each cube in its ENF SOP expression be
ordered and each ENF literal in each cube be ordered, then
- -0 - -1 and will denote the s-a-0

fault, s-a-1 fault, and annotated list, respectively, for theth
ENF literal in the th cube of the ENF SOP expression for PO

Using this notation, the mapping is derived
as follows.

If is a s-a-1 (s-a-0) fault at PI or at the output of
gate , then

- -

and is even (odd)

- -

and is odd (even)

If is a s-a-1 (s-a-0) fault at the input of gatethat
comes directly from PI or gate , then

- -

and is even (odd)

- -

and is odd (even)

C. Computing Fault Detection Probabilities
for Multilevel Circuit

Given a fault in a multilevel circuit that is derived through
algebraic factorization of a two-level circuit, the ENF can
be used, as was shown, to map the multilevel fault to an
equivalent set of faults in the two-level circuit,
Assuming that the detecting set for each fault in the initial two-
level circuit has been computed, the next step is to compose
the detecting set for the multilevel fault from the detecting sets
for the two-level faults. If the multilevel fault is at a PI or PO,
then the detecting set is just the same as the two-level detecting
set for the same fault. For all other faults, the detecting set for
the multilevel fault is composed by simply taking the union of
the detecting sets for each two-level fault in , however,
there are two cases where this is not true.

Case 1: If two or more faults in are in the same PO
function and cause literals in two nondisjoint cubes to be s-a-0.
This case involves two overlapping cubes in the coverfor
some PO, which are both removed by the multilevel fault.
The two-level detecting sets assumed only one cube would be
removed at a time, so their union may understate the actual
detecting set. A simple example is a primary output function
with two cubes, The detecting set for a literal in cube

being s-a-0 is and the detecting set for a literal in cube
being s-a-0 is . If literals in both cubes are s-a-0, then

the union of the detecting sets suggests , however,
the full detecting set is Not computing the
full detecting set for this case always provides a lower bound
on the fault detection probability. The full detecting set can be
computed by adding in the missing tests. The missing tests can
be found by forming the cover consisting of the overlapping
cubes, and then taking the intersection ofwith .
Note that if a check is being made to see if is r.p.r.,
then if the lower bound is above the r.p.r. threshold, it is not
necessary to compute the full detecting set.

Case 2: If there is reconvergent fan-out with different in-
version parity, then it is possible for two or more faults in

to be in the same PO function and have opposite polarity,
i.e., one or more is s-a-1 (causing cubes to expand) and one
or more is s-a-0 (causing cubes to be removed). Then if an
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expanded cube is nondisjoint from a removed cube, part of the
two-level detecting set for the removed cube may not detect
the multilevel fault. This case involves a cube that expands
such that it partially covers a cube that is removed, thereby,
eliminating some of the tests for the removed cube. In this
case, the union of the two-level detecting sets may overstate
the detecting set for the multilevel fault. Since tests for the
expanded cubes will always detect the multilevel fault, the
union of the two-level detecting sets for the s-a-1 faults in

are a subset of the detecting set for the multilevel fault
and hence form a lower bound. The full detecting set can be
computed by adding in the missing tests. The missing tests can
be found by forming the cover consisting of the expanded
cubes, and then taking the intersection of with the union
of the detecting sets for the s-a-0 faults in ; this gives the
tests for the portion of the removed cubes that is not covered
by the expanded cubes. As with case 1, if a check is being
made to see if is r.p.r., then if the lower bound is above
the r.p.r. threshold, it is not necessary to compute the full
detecting set.

Note that case 2 will not occur for algebraic factoring
without the use of the complement or where the complement
is used only if a factor and its complement fan out to different
PO’s. This type of factoring will avoid reconvergent fan-out
with different inversion parity except for the faults at the
PI’s. However, the detecting sets for faults at the PI’s are
computed in the two-level circuit as shown in Section II-
A, i.e., they are not computed by composing detecting sets.
Therefore, for this type of algebraic factoring, case 2 need not
be considered.

So, the detecting set for the multilevel fault is com-
posed by taking the union of the two-level detecting sets for
each fault in . If case 1 or 2 occurs, then some additional
calculation may be required to get the full detecting set for

. After the detecting set for the multilevel fault has
been composed, the last step is to determine the fault detection
probability. Since the detecting set is represented as a cover,
it is necessary to determine how many input combinations
satisfy the cover (i.e., how many minterms are elements of
some cube in the cover). This can be computed exactly by
using an algorithm such as the one in [15] to make the cover
disjoint and then summing up the sizes of each cube, or it can
be estimated using the Karp–Luby algorithm [22] which is
a Monte Carlo algorithm for Boolean functions in disjunctive
normal form that runs in polynomial time. The number of input
combinations that detect the fault is then divided by the total
number of input combinations, , where is the number of
primary inputs, to give the fault detection probability.

IV. RANDOM PATTERN TESTABILITY

PRESERVING TRANSFORMATIONS

Before describing the RP-SYN procedure, random pattern
testability preserving transformations need to be defined. Logic
transformations can be classified based on their effect on
the testability properties of the resulting circuit. This section
defines three classes of transformations (testability preserving,
random pattern testability preserving, and test-set preserving)

and shows that they are related in the following way:

testability preserving

random pattern testability preserving

test-set preserving.

Definition 4: Let be a transformation which transforms
circuit into circuit If is testable for fault class
provided is testable for fault class then the transforma-
tion is testability preserving for fault class

In the case of single stuck-at faults, any transformation that
does not introduce redundancy into the circuit is testability
preserving.

Definition 5: Let be a transformation which transforms
circuit into circuit . If the minimum fault detection
probability in is greater than or equal to the minimum
fault detection probability in , for some fault class , then
the transformation is random pattern testability preserving
for fault class .

While testability preserving transformations ensure that no
redundant faults are introduced into the circuit, random pattern
testability preserving transformations ensure that no r.p.r.
faults are introduced into the circuit. Applying random pattern
testability preserving transformations to a circuit that does not
have any r.p.r. faults will never produce a circuit that has
r.p.r. faults. The strategy in RP-SYN is to first factor the
initial two-level circuit so that it is random pattern testable, and
then use random pattern testability preserving transformations
to optimize the circuit without introducing r.p.r. faults. Note
that a redundant fault has a detection probability of zero
and, therefore, can be thought of as a special type of r.p.r.
fault. It is easy to show that random pattern testability pre-
serving transformations are a subset of testability preserving
transformations.

Now consider test-set preserving transformations which are
defined as follows.

Definition 6: If a test set includes a test for each fault in
a circuit for some fault class , then it is acomplete test set
with respect to fault class

Definition 7: Let be a transformation which transforms
circuit into circuit If any complete test set for
is also a complete test set for with respect to fault class

then the transformation is test-set preservingfor fault
class

The following theorem states that random pattern testability
preserving transformations are a superset of test-set preserving
transformations.

Theorem 1: If a transformation is test-set preserving for
fault class then it is also random pattern testability pre-
serving for fault class

Proof: Consider faults in fault class : If a test-set
preserving transformation is used to transform circuit into
circuit , then any complete test set for is also a complete
test set for . The detecting set of each fault in must
contain the detecting set of at least one fault in. If this
were not the case, then it would be possible to construct a
complete test set for that did not detect some fault in

. Therefore, the detection probability for each fault in
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Fig. 2. Example of extracting a common cube.

is greater than or equal to the detection probability of at least
one fault in . Thus, the minimum fault detection probability
in is greater than or equal to the minimum fault detection
probability in .

A number of test-set preserving transformations for single
stuck-at faults have been identified in [2] and [28]. Tree-
covering technology mapping procedures [12], [23], are test-
set preserving for both single and multiple stuck-at faults
[17]. Based on Theorem 1, all of these transformations are
random pattern testability preserving as well. Note that adding
an observation point is random pattern testability preserving,
however, adding a control point is not. It is possible for a
control point to reduce the detection probability for some
faults. This will be explained further in Section VI.

V. LOGIC SYNTHESIS PROCEDURE

This section describes the RP-SYN procedure step by step.
The procedure generates a multilevel implementation under
the constraint that the detection probability for each fault is
above a given threshold.

Input: Two-level representation of circuit and minimum
fault detection probability threshold.

Output: Multilevel circuit with no r.p.r. faults.
Step 1: Use a two-level minimizer to form a prime and

irredundant cover for circuit.
Since algebraic factoring is used, this will ensure that no

redundant single or multiple faults will occur in the multilevel
implementation [5].

Step 2: Identify r.p.r. faults.
This is done by computing the fault detection probabilities

(using the method described in Section III) and comparing
them to the given threshold. If the detection probability for a
fault is below the threshold, then the fault is marked as r.p.r.

Step 3: Identify algebraic factors that eliminate r.p.r. faults.
The two types of algebraic factors are kernels and common

cubes [3]. Factoring out a common cube affects the detection
probability of faults associated with each instance of the
cube. Consider the example of extracting a common cube
shown in Fig. 2. The detecting sets for each fault associated
with the common cube are listed. In the original network,
some of the faults associated with the common cube had a
detection probability of 1/16. For example, the s-a-1 fault on

Fig. 3. Example of extracting a kernel.

the input of gate 2 coming from primary input B can only
be detected by one input combination, However,
after the common cube is extracted, all of the faults associated
with the common cube have a detection probability of at least
2/16. The technique described in Section III can be used to
quickly check what the resulting detection probabilities for
faults associated with a common cube would be if the cube
were factored out; by so doing, cube factors that eliminate
r.p.r. faults can be identified.

A kernel of an algebraic expression is the quotient of
and a cube which is called the co-kernel;

or Factoring out a kernel affects the detection
probability for faults associated with each instance of co-kernel

, and if the kernel is common to multiple expressions, then
the detection probability of faults associated with each instance
of the kernel are also affected. Consider the example in
Fig. 3. In the original network, all of the faults associated with
the co-kernel have a detection probability of 1/16, however,
after the kernel is extracted, all the faults associated with
the co-kernel have a detection probability of 2/16. If the
kernel is common to other expressions, then it may fan
out which would increase the observability of faults associated
with it thereby affecting their detection probabilities. Again,
the technique in Section III can be used to quickly check how
the affected detection probabilities would change if a kernel
were extracted and therefore kernel factors that eliminate r.p.r.
faults can be identified.

During the normal kernel and cube extraction procedures
in MIS [3], kernels and common cubes are enumerated and
chosen on the basis of literal count reduction. This same
enumeration process can be used to find kernels and common
cubes so that each can be checked to see which, if any, r.p.r.
faults would be eliminated if it were extracted.

Step 4: Extract a set of factors that eliminate all r.p.r. faults
and reduce literal count as much as possible.

Given the list of factors and the r.p.r. faults that each
eliminates, a set of these factors is selected such that all
r.p.r. faults are eliminated, and as a secondary goal, the literal
count is reduced as much as possible. This is essentially a
weighted covering problem where the constraint is the r.p.r.
faults and the cost is the literal count. One of the many
heuristic procedures for solving covering problem can be used
(e.g., [11]). Note that some factors that actually increase the
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Fig. 4. Example of kernel extraction with an observation point.

Fig. 5. Example of cube extraction with a control point (same form applies ifY is a kernel).

literal count may in fact be chosen to satisfy the primary
criteria of eliminating all r.p.r. faults. Of course, in some cases
it may not be possible to eliminate all r.p.r. faults by algebraic
factoring alone. In those cases, test points need to be inserted.
This is discussed in Section VI where an automated procedure
for inserting test points is presented as an extension to the
techniques used in this step. When test points are required,
the factoring described in Section VI is done first before the
factoring described in this step.

Step 5: Optimize with random pattern testability preserving
logic transformations.

As was shown in Section IV, random pattern testability
preserving logic transformations may be performed without
concern of introducing new r.p.r. faults.

VI. TEST POINT INSERTION DURING SYNTHESIS

When the minimum fault detection probability threshold
is such that some r.p.r. faults cannot be eliminated through
algebraic factoring, then test points need to be inserted in
order to generate an implementation that satisfies the minimum
detection probability constraint. Test inputs (for control points)
and/or test outputs (for observation points) are added in such
a way that they can be used during testing to increase fault
detection probabilities, but during normal operation the test
inputs can be set to a specific logic value that allows the circuit
to operate as intended. The advantage of adding test points
during synthesis is that factors can be specially chosen so that
a single test point can eliminate a number of r.p.r. faults. In
post-synthesis test point insertion, factoring has already been

completed so it is fortuitous if a test point can be placed so
as to eliminate multiple r.p.r. faults.

Test point insertion is performed during step 4 of the RP-
SYN procedure in Section V. During that step, an attempt is
made to find a set of factors that eliminate all r.p.r. faults.
If it is found that some r.p.r. faults cannot be eliminated with
factoring alone then one or more test points must be inserted to
eliminate these faults. One cause of r.p.r. faults are cubes with
large fan-in which result in poor observability at their inputs
and poor controllability at their outputs, so test points are
needed to “break up” these cubes. By finding common factors
among large fan-in cubes, a single test point can be inserted
to break up several large fan-in cubes, thus, eliminating a
number of r.p.r. faults. Examples of factors that enable this are
shown in Figs. 4–6. In Fig. 4, the general form can be seen
for extracting a kernel and adding an observation point at the
output of the kernel. Since a kernel breaks up multiple cubes,
this type of factoring increases the effectiveness of a single
observation point. Extracting a common cubeand adding an
observation point at its output does not help, however, because
the controllability at the output of is not improved so the fault
detection probabilities associated with the cubes for which
is a fan-in are not improved. In Fig. 5, the general form can
be seen for extracting either a cube or a kernel factorand
adding a control point at its output. The control point improves
the controllability at the output of and, thus, improves the
observability of the inputs of each cube for whichis a fan-
in. In Fig. 6, the general form can be seen for extracting either
a cube or a kernel factor and adding both a control point and
an observation point. In the example in Fig. 4, a small fan-in
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Fig. 6. Example of cube extraction with control and observation point (same form applies ifY is a kernel).

cube provided good controllability at the output of the kernel,
and in the example in Fig. 5, a small fan-in cube provided good
observability at the output of the extracted cube, however,
in the example of Fig. 6, all of the cubes have large fan-in, so
both a control point and an observation point are required.

Extracting a common cube and adding a control point and
observation point is an effective technique for eliminating all
of the r.p.r. faults with few test points. The reason for this
is that it is often possible to find a common cube among
many large fan-in cubes, thus, enabling a single control and
observation point to break up several large fan-in cubes. In
some circuits, only a few common cubes need to be factored
out and augmented with test points to break up all the large
fan-in cubes and eliminate all r.p.r. faults. In other circuits,
good kernels exist such that only observation points are needed
to eliminate all r.p.r. faults. So, it is advantageous to consider
all of the options when inserting test points during synthesis.

In RP-SYN, test point insertion is performed by first identi-
fying factors that allow a single test point to eliminate several
r.p.r. faults that require test points (i.e., that cannot be elimi-
nated by factoring alone). These factors can be found by again
enumerating the kernels and common cubes and computing the
relevant fault detection probabilities to determine which r.p.r.
faults each factor plus a control point or observation point
or both will eliminate. Once all of these factors have been
identified, a set of them are chosen and augmented by the
appropriate test points such that all r.p.r. faults requiring test
points are eliminated using as few test points as possible.

Computing the fault detection probabilities when identifying
which r.p.r. faults each factor plus test point eliminates is
complicated by the fact that test points change the two-level
detecting sets. An observation point adds a new PO, so its
ENF and two-level detection sets must be computed in order
to use the technique described in Section III. Control points
pose a more difficult challenge because the ENF and two-level
detecting sets change for each PO that the control point has
a path to. This presents two problems: 1) adding a control
point can lower the detection probability for any fault that has
a path to some primary output that the control point has a
path to, and 2) recomputing the two-level detecting sets each
time a control point is considered can be computationally
expensive. The first problem need not be a major concern

during the factor selection process. In most cases, adding
control points will not significantly lower any fault detection
probabilities. At one logic value, the control point has no
effect on the circuit so the detection probabilities remain the
same. At the other logic value, the control point can raise
or lower the detection probabilities for some faults. Thus,
adding a control point can reduce the detection probability
for a fault by no more than a factor of two, but it can
increase the detection probability many times over.After a
control point is added, fault detection probabilities can be
verified to make sure that none of them have slipped below
the minimum detection probability threshold. In the rare event
that this has occurred, the procedure can backtrack and find
an alternative. Regarding the second problem of recomputing
two-level detecting sets, only the two-level detecting sets that
are needed to check if any r.p.r. faults are eliminated by the
control point need to be recomputed during the factor-selection
process.

Another important issue is minimizing the number of test
inputs and test outputs that are needed to support the test
points. Each test input and test output has some overhead
associated with it. Each test input requires larger input patterns
to be generated, and each test output requires more output
response analysis. Observation points can be “condensed”
using techniques such as those in [16], to reduce the number of
test outputs. If at-speed testing is to be used, care must be taken
in designing the condensation network so that the delay is not
longer than a clock period. When the logic synthesis procedure
adds an observation point, a check can be made to see if
it can be condensed without significantly reducing any fault
detection probabilities. Multiple control points can be derived
from the same test input. When the logic synthesis procedure
adds a new control point, a check can be made to see if it can
be derived from one of the previously added primary inputs
without significantly reducing any fault detection probabilities.

VII. EXPERIMENTAL RESULTS

RP-SYN has been built on top of SIS 1.1 (an updated
version of MIS [3]) and used to generate multilevel implemen-
tations for several benchmark circuits that have long random
pattern test lengths. Results are shown in Tables I and II.
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TABLE I
COMPARISON OF TEST LENGTH RESULTS FOR BENCHMARK CIRCUITS

In Table I, under the first major heading, information is
given about each benchmark circuit: name, number of pri-
mary inputs, and number of primary outputs. Under the
next three major headings, results are given for the multi-
level circuits generated using two scripts that are distributed
with SIS, script.algebraic, which uses only algebraic trans-
formations, andscript.rugged, which uses both Boolean and
algebraic transformations, and the multilevel circuits generated
by RP-SYN with different minimum fault detection proba-
bility constraints. Three things are shown under each of the
following major headings.

Lowest fault detection probability for any fault
in the circuit. It is computed exactly and expressed as a log
base two.

Test Length:Test length which was obtained by averaging
the number of random patterns needed to reach 100% fault
coverage for 50 simulation experiments using LFSR’s with
five different characteristic polynomials and 10 different seeds.
The number of stages in the LFSR was equal to the number
of PI’s.

lits: Factored form literal count for the circuit.
For the multilevel circuits generated by RP-SYN, the num-

ber of test inputs and test outputs that were added to the
circuit (necessitated by test points) are listed under the columns
labeledTest PIandTest PO. Control points were derived from
the same test input when possible, and observation points
were condensed when possible. The area for the condensation
network is included in the literal count. Under the last two

major headings, the random pattern test length of the multilevel
circuit implementations generated by RP-SYN are compared
to those generated by the algebraic and rugged scripts. The test
length reduction factor is shown and is computed as follows:

Test Length Reduction Factor

(script test length)/(RP-SYN test length).

The minimum fault detection probability constraints were
chosen for the proposed procedure to show a range of area
versus test length reduction tradeoffs. For almost all the
circuits, implementations were found which reduced the test
length by at least a factor of ten with only one test output and
in some cases one test input. In comparing the implementations
generated by the algebraic script versus the rugged script, the
rugged script produced smaller implementations, however, in
some cases the test length is longer. This is due to the fact
that the rugged script uses Boolean transformations which may
generate circuit structures that have faults with lower detection
probabilities than the original starting point.

The minimum fault detection probability constraint that
could be satisfied with using only testability-driven factoring,
i.e., without inserting test points (no test inputs or test outputs)
was found for each circuit. For most circuits, no appreciable
improvement was obtained compared with the algebraic script
(because there were some r.p.r. faults could not be eliminated
by factoring alone), hence, results for this case are shown only
for duke2, in2, misg, and vg2.
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TABLE II
COMPARISON OF AREA AND DELAY RESULTS FOR BENCHMARK CIRCUITS

In Table II, results are shown comparing the area and
delay of the multilevel circuits synthesized by RP-SYN versus
those synthesized usingscript.rugged (area optimized) and
script.delay(delay optimized). The CPU time required for each
synthesis procedure running on an UltraSPARC 2 is shown.
The circuits were mapped usinglib2.genlib, and the resulting
area and delay are shown. Under the last two major headings,
the ratio of the area and delay of the circuits generated by
RP-SYN with those generated by the rugged and delay scripts
are shown.

As can be seen in Table II, the execution time for RP-SYN
is roughly comparable with the other synthesis procedures.
It is surprising to see that in a few cases, the area of the
random pattern testable circuits generated by RP-SYN is
actually less than those generated by the rugged script. It is
also interesting to see that in many cases the delay of the
random pattern testable circuits generated by RP-SYN is less
than those generated by the rugged script. This implies that
while the testability-driven factoring increases the literal count,
it tends to reduce delay. However, the main purpose of the
rugged script is to minimize area, so perhaps it is not fair to
compare the delay. Thus, a comparison is also made with the
delay script. It is surprising to see that in a few cases, the
circuits generated by RP-SYN have even less delay then those
generated by the delay script. In most cases the delay is larger,
but note that the area is generally much less.

In Table III, a comparison is made between RP-SYN
and post-synthesis test point insertion. The results for

TABLE III
COMPARISON WITH POST-SYNTHESIS TEST POINT INSERTION

post-synthesis test point insertion were obtained by first
synthesizing the circuit and then inserting a sufficient number
of test points to achieve the desired minimum detection
probability. As can be seen from the results, by combining
factoring with test point insertion, RP-SYN is able to
significantly reduce the number of test points required.

VIII. C ONCLUSIONS

There are two new and important features in RP-SYN
that distinguish it from other methods for obtaining random
pattern testable implementations. The first is that properties
of algebraic factoring are used to simply fault detection
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probability calculations. This enables faster and more accurate
identification of r.p.r. faults, thereby, avoiding unnecessary
testability-driven factoring and test point insertion. The
second feature is that, when necessary, test points are inserted
during the synthesis process. All previous techniques use
post-synthesis test point insertion. Inserting test points during
synthesis increases the effectiveness of testability-driven
factoring; factors can be chosen to minimize the number of test
points that are required. Moreover, the impact of the test points
on area, delay, power, etc., is known during the synthesis
process thereby permitting better optimization to ensure that
the resulting circuit will satisfy design requirements. Inserting
test points at the back-end runs the risk of causing a circuit
to not meet specifications and require redesign.

RP-SYN requires a two-level representation as a starting
point thereby limiting its application to control circuits and
other circuits that can be flattened (i.e., two-level represen-
tation is not exponential). However, control circuits are an
important application because they can contain large fan-in
cubes that cause r.p.r. faults. Note that RP-SYN can be used
for nonflattenable circuits by partitioning the circuit into flat-
tenable logic blocks which are logically isolated during testing.

Another limitation of RP-SYN is that it uses only algebraic
transformations. However, in a large system design, RP-SYN
need only be used to generate the logic blocks for which other
synthesis methods do not produce random pattern testable
implementations. Thus, any area overhead associated with
algebraic transformations is incurred for only a portion of the
overall design.

One way to improve the results is to combine the transfor-
mations described in [8] with those in RP-SYN. RP-SYN can
be used to insert the necessary test points and factor the circuit
and then the multilevel transformations described in [8] can
be used to further optimize the circuit.
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