
Achieving High Encoding Efficiency With
Partial Dynamic LFSR Reseeding

C. V. KRISHNA, ABHIJIT JAS, and NUR A. TOUBA
University of Texas, Austin

Previous forms of LFSR reseeding have been static (i.e., test application is stopped while each
seed is loaded) and have required full reseeding (i.e., the length of the seed is equal to the length
of the LFSR). A new form of LFSR reseeding is described here that is dynamic (i.e., the seed is
incrementally modified while test application proceeds) and allows partial reseeding (i.e. length of
the seed is less than that of the LFSR). In addition to providing better encoding efficiency, partial
dynamic LFSR reseeding has a simpler hardware implementation than previous schemes based
on multiple-polynomial LFSRs.

Categories and Subject Descriptors: B.8.1 [Performance and Reliability]: Reliability, Testing,
and Fault-Tolerance

General Terms: Design, Reliability

Additional Key Words and Phrases: Built-in self-test, compression, linear finite shift register,
reseeding

1. INTRODUCTION

As integration density scales with technology, manufacturing test cost is con-
tributing a larger share to the total cost of manufacturing a chip [ITRS 2001].
One of the key contributing factors to test cost is test time and test data vol-
ume. The limitations in the ability of external ATE (automatic test equipment)
to scale for increasingly complex integrated circuit (IC) designs are well known.
As more and more logic is placed on a single chip, both the test data storage
requirements on the tester and the test data bandwidth requirements between
the tester and chip are growing rapidly [Khoche and Rivoir 2000]. Buying new
testers with more memory, channels, and higher speed of operation is not a
good solution to this problem because such testers are prohibitively expensive.
Test resource partitioning (TRP) provides a low-cost alternative solution to this
problem. In TRP, some hardware is added on the chip to ease the burden on the

Authors’ address: Computer Engineering Research Center, Department of Electrical and Com-
puter Engineering, University of Texas, Austin, TX 78712-1084; email: {krishna,jas,touba}@ece.
utexas.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 1084-4309/04/1000-0500 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004, Pages 500–516.

Achieving High Encoding Efficiency With LFSR Reseeding • 501

Fig. 1. Static LFSR reseeding (using an r-bit LFSR).

external tester. Such hardware often works in conjunction with the tester and
helps reduce the test data and/or the test application time.

One attractive approach that has been used for compressing the amount of
test data that needs to be stored on the tester and transferred to the chip is
to use linear feedback shift register (LFSR) reseeding [Könemann 1991]. This
approach is illustrated in Figure 1. An LFSR seed is the starting state of an
LFSR when the LFSR is run in autonomous mode to fill a set of scan chains
with a test vector (if there are m bits in each scan chain, then the LFSR is run
for m cycles to fill the scan chains). Different LFSR seeds will produce different
test vectors. Given a set of deterministic test cubes (test vectors in which bits
unassigned by ATPG are left as don’t cares and denoted by X’s), the idea in
LFSR reseeding is to compute a set of seeds that when expanded by the LFSR
will produce the deterministic test cubes. A seed can be computed for each test
cube by solving a system of linear equations based on the feedback polynomial
of the LFSR [Könemann 1991]. So instead of storing each full test vector on
the tester, a much smaller LFSR seed is stored instead (in Figure 1, a set of
L test cubes are stored on the tester as a set of L seeds). The set of seeds
stored on the tester are transferred to the LFSR one at a time and expanded
into the corresponding full test vector in the scan chains. Since the seeds are
much smaller than the full test vectors, the test data storage and bandwidth
requirements for the external tester can be reduced by an order of magnitude
or more. Another nice property of LFSR reseeding is that it can be seamlessly
combined with pseudorandom built-in self-test (BIST) to form a mixed-mode
testing approach. The LFSR can first be run in autonomous mode to generate
some number of pseudorandom patterns to detect the random pattern testable
faults, and then reseeding can be used to generate deterministic test cubes to
detect the random pattern resistant faults. The encoding efficiency (µ) for a set

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

502 • C. V. Krishna et al.

of test cubes is defined as the total number of specified bits in the test cubes
(ST) divided by the total number of bits required to encode it (SE) [Hellebrand
et al. 1995a].

Several techniques for improving the encoding efficiency of the basic LFSR
reseeding methodology (originally described in [Könemann 1991]) have been
proposed in Hellebrand et al. [1992, 1995a, 1995b], Venkataraman et al.
[1993], Zacharia [1995], Zacharia et al. [1996], and Rajski et al. [1998a]. These
techniques will be described in detail in Section 2 and compared with the
new technique proposed in this article (preliminary results were published in
Krishna et al. [2001]). This article describes a new form of LFSR reseeding that
provides higher encoding efficiency and hence greater reduction in test data
storage and bandwidth requirements. Previous forms of LFSR reseeding have
been static (i.e., test application is stopped and the seed is loaded at one time)
and have required full reseeding (i.e., n = r bits are used for an r-bit LFSR).
The new form of LFSR reseeding proposed here is dynamic (i.e., the seed is
incrementally modified while test application proceeds) and allows partial re-
seeding (i.e., n < r bits can be used). Full static forms of LFSR reseeding can be
shown to be a special case of the new partial dynamic form of LFSR reseeding.
In addition to providing better encoding efficiency, the partial dynamic form of
LFSR reseeding proposed here has a simpler hardware implementation than
existing methods based on multiple-polynomial LFSRs, and can generate each
test vector in fewer clock cycles. A complete methodology based on partial LFSR
reseeding is described in this article for compressing a set of deterministic test
cubes.

Note that, since the preliminary version of this work was published
[Krishna et al. 2001], more recent work [Könemann et al. 2001; Rajski et al.
2002] has appeared which also utilizes a form of partial dynamic LFSR re-
seeding. However, the hardware schemes and methodology are different. The
SmartBIST technique described in Könemann et al. [2001] uses a variable num-
ber of bits to encode each test cube. This is accomplished by having an extra
channel from the tester that occasionally disables the scan clock. Encoding
with a variable number of bits allows for greater encoding efficiency, but this
is somewhat offset by the need for an extra tester channel and its associated
test storage requirements. The proposed approach uses a fixed number of bits
to encode each test cube thereby eliminating the need for the additional clock
disable signal required in Könemann et al. [2001]. The Embedded Determinis-
tic Test method described in Rajski et al. [2002] uses a ring generator which is
an alternative linear finite state machine that offers some advantages over an
LFSR. A major difference between the method in Rajski et al. [2002] and the
proposed method is that in Rajski et al. [2002], the contents of the ring gener-
ator are reset between test cubes. This decouples the linear equations across
different test cubes which reduces computation time, but this comes at the cost
of less encoding efficiency. In the proposed method, partitioning strategies are
described for trading off computation time with encoding efficiency as desired.
This article also describes how “scan windows” can be used to reduce the size
of the LFSR (note that this was not included in the preliminary version of this
work in Krishna et al. [2001]).

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Achieving High Encoding Efficiency With LFSR Reseeding • 503

The article is organized as follows: Section 2 discusses previous work done
in this area. Section 3 gives an overview of the proposed method. Section 4
explains in details how the linear equations are formed and solved for dynamic
partial reseeding. Section 5 discusses the concept of “scan windows” that can
be used to reduce the hardware overhead as well as to allow the system of
linear equations to be solved efficiently. Section 6 gives experimental results
and Section 7 is a conclusion.

2. PREVIOUS WORK

The original idea of encoding scan patterns as LFSR seeds was proposed in
Könemann [1991]. An encoding efficiency of 1 corresponds to the case where
the set of test cubes was encoded with the same number of bits as the total
number specified bits in all the test cubes. For the basic LFSR reseeding ap-
proach described in Könemann [1991], the encoding efficiency is limited by two
factors:

(1) Linear Dependencies in the LFSR: The LFSR must be large enough to yield
a solution to the linear equations for all the test cubes in the set. If smax
denotes the largest number of specified bits in any test cube in the set, then
it has been estimated that the LFSR should have a length of smax + 20 bits
in order to reduce the probability of not finding a seed for a test cube to less
than 10−6 [Chen 1986; Könemann 1991], due to linear dependencies in the
LFSR.

(2) Variance in the Number of Specified Bits in Test Cubes: The number of
specified bits in each test cube can vary considerably, however, the size of
the LFSR is restricted by the test cube with the largest number of specified
bits (smax). So even though most test cubes may have many fewer than smax
specified bits, they still are encoded with LFSR seeds having smax + 20 bits.

So the LFSR reseeding approach described in Könemann [1991] requires smax +
20 bits to encode each test cube regardless of the number of specified bits in the
test cube.

Hellebrand, et al. [1992], proposed a method for improving the encoding ef-
ficiency of LFSR reseeding by using a multiple-polynomial LFSR (MP-LFSR).
An MP-LFSR has a programmable feedback function, and hence can imple-
ment different feedback polynomials. The linear dependency problem can be
solved by having the ability to choose between different feedback polynomi-
als when encoding a test cube. They showed that with 16 different polyno-
mials, the probability of not being able to encode a test cube with smax speci-
fied bits in an MP-LFSR with length smax is less than 10−6. This means that
rather than using an LFSR with length smax + 20 bits, an MP-LFSR with
length smax bits can be used instead. However, some means of identifying which
polynomial to use for a particular seed is required. This can be accomplished
implicitly by grouping together the seeds for specific polynomials and using
a “next-bit” to indicate when the feedback polynomial needs to be changed
[Venkataraman et al. 1993]. Thus, the number of bits required to encode each
test cube can be reduced to smax + 1bit. However, the encoding efficiency is still

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

504 • C. V. Krishna et al.

limited by the fact that most test cubes may have many fewer than smax specified
bits.

Two approaches for addressing the problem related to the variance in the
number of specified bits in the test cubes have been proposed. One involves
concatenating test cubes [Hellebrand et al. 1995a], and the other involves using
variable-length seeds [Zacharia 1995; Zacharia et al. 1996; Rajski et al. 1998a].

The idea of concatenating test cubes was proposed in Hellebrand et al.
[1995a]. Instead of expanding each seed into a single test cube, it involves
expanding each seed into some fixed number of test cubes, j . This is done by
loading each seed into an MP-LFSR, and running the MP-LFSR in autonomous
mode to generate the next j test vectors. So the set of test cubes is partitioned
into groups where each group has no more than j test cubes in it and no more
than a total of smax specified bits. A bin-packing algorithm is used to partition
the test cubes into as few groups as possible under these constraints. For the
groups that have fewer than j test cubes, “dummy” test cubes are inserted. The
linear equations for each test cube in a group are concatenated and solved all
together to find a seed that will produce all the test cubes in the group. Each
group of test cubes requires smax + 1 bits to encode. This approach allows test
cubes with a small number of specified bits to be grouped together to achieve
a better encoding efficiency. In this approach, the encoding efficiency is limited
by how close the number of specified bits in each group is to smax. In Hellebrand
et al. [1995b], a special ATPG procedure is described for improving the encoding
efficiency of test cube concatenation.

An alternative to concatenating test cubes is to use variable-length seeds
as proposed in Rajski et al. [1998a]. Here the idea is to configure part of the
scan chains into variable size LFSRs. For test cubes with larger numbers of
specified bits, larger LFSRs are used, and for test cubes with smaller numbers
of specified bits, smaller LFSRs are used. Identifying the size of the LFSR for a
seed can be accomplished implicitly by grouping together the seeds for specific
LFSR sizes and using a “next-bit” to indicate when the LFSR size needs to be
changed. When encoding a test cube with s specified bits, either an LFSR with
s + 20 bits can be used, or an MP-LFSR with s bits plus a polynomial identifier
having �log2(number of polynomials)� bits can be used. The encoding efficiency
of this approach is limited by the extra bits required for identifying the size
and polynomial of the MP-LFSR for each seed, and by the granularity in the
variable size LFSRs (e.g., if the LFSR sizes go up by increments of � bits, then
some seeds could be up to �−1 bits longer than necessary).

Note that the previous approaches for LFSR reseeding have involved static
reseeding. Static reseeding is defined here as stopping test application and
loading a new seed before resuming test appplication. All the approaches except
for test cube concatenation [Hellebrand et al. 1995a] stop the test application
after each test vector to load a new seed. The test cube concatenation approach
applies a small fixed number of test cubes (e.g., j = 8) before loading a new
seed, but when it does load a new seed, it stops the test application to do so.
The reseeding approach proposed in this article is a dynamic reseeding method
in which the seed is modified incrementally while the test application proceeds.
In addition to reducing the number of cycles required to apply each test vector,

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Achieving High Encoding Efficiency With LFSR Reseeding • 505

Fig. 2. Proposed partial reseeding scheme. (n < r for an r-bit LFSR).

dynamic reseeding has some other nice properties that result in better encoding
efficiency as will be described in Section 3.

The previous approaches for LFSR reseeding have also required full reseed-
ing. If n is the number of bits that are used for reseeding, then full reseeding is
defined here as the case where n equals r for an r-bit LFSR. The variable-length
seed method [Rajski et al. 1998a] allows for shorter seeds, but the size of the
seed is still equal to the size of the variable length LFSR. The reseeding ap-
proach proposed in this article allows for partial reseeding, where n is less
than r for an r-bit LFSR.

3. OVERVIEW OF PROPOSED PARTIAL RESEEDING METHOD

The proposed partial reseeding approach is illustrated in Figure 2. Note that
an extra XOR gate is included in the feedback of the LFSR. This is similar to
the architecture described in Kay and Maurad [2000], although it is used in a
different way here. The LFSR length, r, is at least smax+20 where smax is the
maximum number of specified bits in any test cube. The r-bit LFSR is initialized
with a starting r-bit seed. This initial seed is used to generate the first test cube
by running the LFSR for m clock cycles (where m is the scan length) to fill the
scan chains. For the second test cube, the LFSR is run for another m clock cycles
to generate the next test cube. However, during each of the first n clock cycles,
a bit is shifted in from the tester and XORed with the feedback of the LFSR.
These n bits coming in from the tester alter the state of the LFSR and in effect
“dynamically reseed” the LFSR. For an r-bit LFSR, n is significantly smaller
than r, so it is a “partial reseeding.”

After the first n clock cycles, the tester stops shifting in data and the LFSR
simply cycles through its normal sequence of states until the scan chains are
full. This partial dynamic reseeding process is repeated for each of the sub-
sequent test cubes that are generated by the LFSR. For each test cube, a bit

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

506 • C. V. Krishna et al.

is shifted in from the tester during each of the first n clock cycles as the scan
chains are filled. The total number of bits required to encode a set of L test
cubes using the proposed approach with an r-bit LFSR is n · (L − 1) + r. Notice
that the number of bits required for encoding is not proportional to smax. This is
a nice property. For all the previously proposed approaches for LFSR reseeding,
with the exception of the variable-length seed method [Rajski et al. 1998a], the
number of bits required for encoding is proportional to smax. The variable-length
seed method avoids dependence on smax but at the cost of the extra complexity
needed to implement variable-size LFSRs.

The additional hardware required for the proposed partial reseeding method
beyond what is needed for the standard STUMPS architecture [Bardell and
McAnney 1982] is just an additional XOR gate in the feedback of the LFSR
which is controlled from the tester. There is no need for a multiple-polynomial
LFSR or any added complexity. The simplicity of partial reseeding is another
nice property that it has.

In dynamic reseeding, the state of the LFSR after the application of test cube
ti carries forward to the generation of the test cube ti+1. This is very beneficial
in the following way. Depending on the number of specified bits in test cube
ti, the solution space for the system of linear equations that is solved to find
a seed that produces ti can be very large. Generally, the fewer specified bits
in test cube ti, the larger the solution space is for seeds that generate ti. With
dynamic reseeding, the degrees of freedom in the solution space for ti can be
used to ease the problem of finding a solution for ti+1. By using the degrees
of freedom in the solution space for ti, fewer additional bits need to be shifted
in from the tester to find a solution for ti+1. This allows n (the number of bits
coming from the tester) to be smaller than r (the size of the LFSR) which results
in partial reseeding. In static reseeding methods, the state of the LFSR after
applying test cube ti is completely overwritten when a new seed is loaded for
test cube ti+1. Hence, the degrees of freedom in the solution space for test cube
ti are completely wasted. With dynamic reseeding, the degrees of freedom in
the solution space for test cube ti are preserved and can be used for solving
the linear equations for subsequent test cubes. This results in a much better
encoding efficiency.

For partial dynamic reseeding, to maximally exploit the ability to use the
degrees of freedom in the solution space of the previous test cube when solving
the linear equations for next test cube, the test cubes should be ordered in the
following way. The test cubes with the most number of specified bits should be
interleaved with the test cubes with the fewest number of specified bits (e.g.,
have the least specified test cube followed by most specified test cube, followed
by second least specified test cube, followed by second most specified test cube,
etc.). This eases the burden on solving the linear equations by matching the
larger solution spaces for a preceding test cube with the most specified (i.e.,
hardest to solve test cubes), and the smaller solution spaces for a preceding
test cube with the least specified (i.e., easiest to solve) test cubes. By so doing,
the value of n can be minimized.

So far, in this article, dynamic reseeding has been described with the data
being shifted in from the tester at the same time as data is being shifted from

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Achieving High Encoding Efficiency With LFSR Reseeding • 507

Fig. 3. Example of forming equations for partial reseeding.

the LFSR into the scan chains (“dynamic reseeding concurrent with scan chain
loading”). However, for some applications, it may be desirable to load the scan
chains at a faster clock rate than the tester clock rate. In that case, dynamic
reseeding can also be implemented by shifting in the n bits of data from the
tester and cycling the LFSR without loading the scan chains (“dynamic reseed-
ing before scan chain loading”). After all n bits have come in from the tester
and dynamically reseeded the LFSR, then the scan chains can be loaded from
the LFSR at a clock rate that is faster than the tester clock rate since no more
interaction with the tester is required for that test vector. Dynamic reseeding
before scan chain loading retains all the same properties as dynamic reseeding
concurrent with scan chain loading (the only difference is the phase of the linear
equations). Note that dynamic reseeding before scan chain loading with n equal
to r is equivalent to conventional full static reseeding. If n equals r, then the
state of the r-bit LFSR can be completely controlled by the n = r bits coming in
from the tester. The LFSR can be forced into any state by the proper selection
of the n = r bits coming from the tester. Therefore, full static reseeding can be
considered a special case of partial dynamic reseeding.

4. FORMING AND SOLVING LINEAR EQUATIONS FOR PARTIAL RESEEDING

Now that partial reseeding has been described, the next issues are how to form
and solve the linear equations for the n · (L − 1) + r bits that are stored on the
tester in order to generate a set of L test cubes, and how to choose the minimum
value of n that will result in a solution. Forming the linear equations is done
by representing the n · (L − 1) + r bits stored on the tester with symbols and
symbolically simulating the LFSR operation to generate the linear equations
for each specified bit in the test cubes. A small example is shown in Figure 3. A
4-bit LFSR is used to generate three test cubes (TC1, TC2, and TC3) with n = 2.
In this case, n·(L−1)+r = 2(3−1)+4 = 8. So the test cubes are encoded with 8
bits of data that are symbolically represented by X 0 through X 7. The scan chain
is 6 bits long, so there is a total of 18 bits in the 3 test cubes. The equations for

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

508 • C. V. Krishna et al.

Fig. 4. State transition matrix T and starting state S(t = 0) for LFSR in Fig. 3.

Fig. 5. LFSR states during simulation of LFSR in Fig. 3.

these 18 bits are represented by Z0 through Z17. The equations for Z0 through
Z17 are determined based on the state transition matrix(T) of the LFSR and the
variables X 0 through X 7. The state transition matrix for the LFSR in Figure 3
is shown in Figure 4. The state of the LFSR can be represented by the bits
S3, S2, S1, and S0, as shown in Figure 3. Given a particular state S(t) of the
LFSR at time t, the state S(t + 1) of the LFSR after one cycle of simulation of
the LFSR is given by the matrix product of the state transition matrix and the
current state of the LFSR, that is, S(t + 1) = T*S(t). Proceeding in an iterative
manner, it can be shown that the state of the LFSR after m cycles is given by
S(t + m) = Tm * S(t).

Figure 5 shows how the equations for the variables Z0 through Z17 can be
obtained. Since the LFSR is initialized with a 4-bit seed, the starting state of
the LFSR is as shown in Figure 4. Since no data is brought from the tester for
the generation of the first test cube, the states of the LFSR are updated in a
straightforward manner for 6 clock cycles by multiplying the current state with
T, as shown in the left-hand column in Figure 5. But for the second test cube,
during the first two cycles, two new variables are introduced into the LFSR.
States S(7) and S(8) in Figure 5 show the manner in which the LFSR state is
updated during these two clock cycles. For the remaining 4 clock cycles that are
required to generate the second test cube, no new variables are introduced from

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Achieving High Encoding Efficiency With LFSR Reseeding • 509

Fig. 6. Equations for example in Fig. 3.

the tester, and the LFSR state is again updated in a straightforward manner
as was done for the first test cube. Note that the equation that corresponds
to bit S0 of the LFSR gets shifted into the scan chain during each clock cycle.
Thus bit S0 of state S(1) corresponds to Z0, bit S0 of state S(2) corresponds
to Z1, and so on. The resulting equations for Z0 through Z17 are shown in
Figure 6.

Note that for simplicity, the example shows an LFSR feeding a single scan
chain, however without loss of generality, the same procedure would apply for
an LFSR feeding multiple scan chains. Once the linear equations have been
formed, they can be efficiently solved using Gauss–Jordan elimination. For the
example in Figure 3 where test cubes t1, t2, and t3, are 0XXX01, 0X 1X 1X , and
X 1XX10, respectively, a solution can be obtained by solving the equations for
the bits with specified values. One solution would be X 0 = 1, X 1 = 1, X 2 =
1, X 3 = 0, X 4 = 1, X 5 = 0, X 6 = 0, X 7 = 0.

The larger the value of n, the more likely there is to be a solution to the
linear equations. If the value of n is too small, a solution may not exist. If the
value of n is greater than or equal to smax + 20, then there is an extremely
high probability of finding a solution. The minimum value of n for which a
solution might reasonably be found would be savg which is the average number
of specified bits per test cube. One strategy for quickly finding a small value
of n that gives a solution is to do a binary search between savg and smax + 20.
This would require �log2(smax − savg + 20)� iterations. Each iteration involves
forming and trying to solve the system of linear equations.

One disadvantage of partial dynamic reseeding compared with full static
reseeding is that the computation time for solving the linear equations is longer.
In full static reseeding, the linear equations for each test cube can be solved
independently. In partial dynamic reseeding, the linear equations for the test
cubes need to be solved all together. Although this results in a more efficient
solution, it may not scale well for large test sets. However, the solution for this
problem is very simple. For large test sets, the test cubes can be partitioned into
smaller subsets of k test cubes each. Partial dynamic reseeding can then be done
for each subset of k test cubes. After each subset of k test cubes is generated by
the LFSR with partial dynamic reseeding, the seed of the LFSR is re-initialized
before the next subset of k test cubes are generated by the LFSR with partial
dynamic reseeding. Thus the linear equations for each subset of k test cubes
can be formed and solved independently. The value of k can be chosen based

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

510 • C. V. Krishna et al.

on the amount of computation time that is acceptable. This provides a very
easy tradeoff between computation time and the optimality of the result. Note
that in the degenerate case where k is equal to 1, partial dynamic reseeding
reduces to full static reseeding. It should be noted that generating and solving
the system of linear equations for partial dynamic reseeding can be done in
polynomial time (it is not exponential), and the procedures are very efficient
and fast. Our experiments indicate that values of k in the order of hundreds
can be processed in a few hours. So in many cases, if the number of test cubes
is in the order of hundreds, it may not be necessary to partition the problem.

Partitioning in some cases can actually be used to obtain a better solution
if there is a large variance in the number of specified bits in the test cubes.
One strategy for partitioning would be to group the test cubes with the largest
number of specified bits in one partition, and the test cubes with a smallest
number of specified bits in another partition. The partition with the larger
number of specified bits would end up with a larger value of n, and the partition
with the smaller number of specified bits would have a smaller value of n.
The encoding efficiency for the two separate partitions may be higher than the
encoding efficiency of processing all of the test cubes together in one partition.
Experimental results for partitioning are discussed in Section 6. Note that
the tester program required for handling multiple values of n would be more
complex than for a single value of n.

5. SCAN WINDOWS

One of the problems for all LFSR reseeding approaches where a separate LFSR
is used (unlike schemes where the LFSRs are configured from the scan chains
themselves [Rajski et al. 1998a]) is that the size of the LFSR scales with smax
and thus can become problematic for large industrial circuits. This problem
can be solved by using “scan windows” [Krishna and Touba 2002]. Note that
the technique based on scan windows is a generic technique and can be used
for any LFSR reseeding based scheme. The idea is to conceptually (not phys-
ically) partition the scan chains into scan windows, and use LFSR reseeding
to fill each scan window one at a time, as illustrated in Figure 7. In Figure 7,
the scan chains are divided into 3 scan windows where each scan window will
have h(m/3) scan cells in it. So instead of generating an entire test cube with
one partial seed from the tester, multiple partial seeds are used to generate
a single test cube. By doing so the number of specified bits that needs to be
generated by each seed is reduced (i.e., the smax for the scan windows is less
than the smax for the complete test cubes). The size of the scan windows can
be chosen based on how large an LFSR is to be used. If an r-bit LFSR is to be
used, then the size of the scan windows can be chosen so that the maximum
number of specified bits for any scan window (i.e., the smax of the scan windows)
does not exceed r-20. Note that the LFSR can be of any size (> 20) provided an
appropriate linear phase shifter is used [Rajski et al. 1998b].

Partial dynamic LFSR reseeding can easily be applied with scan windows.
The implementation is very similar to partial reseeding of the entire test vec-
tor. Partial reseeding for each w-bit wide scan window is performed by simply

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Achieving High Encoding Efficiency With LFSR Reseeding • 511

Fig. 7. Architecture with scan windows.

shifting in a bit from the tester and XORing it with the feedback of the LFSR
during each of the first n(< w) clock cycles. The LFSR is then run in an au-
tonomous mode for the remaining w − n cycles to fill up the scan window. After
all the scan windows have been loaded, the scan chains contain a complete
test cube. The system clock is then applied and the partial dynamic reseeding
process is repeated for the next test cube. Note that if the length of the scan
chains do not evenly divide into the scan windows, the scan vectors can be aug-
mented with a sufficient number of X’s so that the length of each scan vector is
a multiple of the scan window size (during test application time the extra bits
corresponding to the X’s will simply be shifted off the end of the scan chain).
The advantage of having a larger scan window size is that the ratio of the total
number of scan cells in the scan window versus the smax of the scan window is
generally much larger (it cannot be smaller), thus permitting a greater com-
pression ratio (i.e., the number of scan bits that can be generated from the same
size seed is greater).

6. EXPERIMENTAL RESULTS

Experiments were performed on the largest ISCAS 89 benchmark circuits
[Brglez et al. 1989]. For each circuit, 10,000 pseudo-random patterns were
applied using the LFSR to detect the easy faults. ATPG was performed to
generate test cubes for the remaining faults. Partial reseeding was then used
to encode the set of test cubes. The results are shown in Table I. The num-
ber of scan elements is shown for each circuit followed by the number of test
cubes after merging. Compatible test cubes were merged (using static com-
paction), as described in Hellebrand et al. [1995a], in a way that did not in-
crease smax. The total number of specified bits for the set of test cubes is shown
in Table I, followed by the different scan window sizes used for each circuit

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

512 • C. V. Krishna et al.

Table I. Results for Partial Reseeding After Pseudo-Random Sequence of 10,000 Patterns

Circuit Num Num Scan Test Data
Scan Test Specified Window LFSR Bits per Test Encoding Compression

Name Elements Cubes Bits Size Smax size Vector (n) Storage Efficiency Ratio
s5378 214 30 493 214 18 38 16 502 .982 12.8

107 10 30 8 502 .982 12.8
54 6 26 4 502 .982 12.8
27 4 24 2 502 .982 12.8

s9234 247 138 4674 247 61 81 36 5013 .932 6.8
124 31 51 18 5001 .935 6.8

62 16 36 9 4995 .936 6.8
31 9 29 5 5544 .843 6.2

s13207 700 157 2824 700 24 44 19 3008 .938 36.5
350 17 37 10 3167 .892 34.7
175 11 31 5 3166 .892 34.7

88 6 26 3 3791 .745 28.9
s15850 611 167 5092 611 38 58 31 5204 .978 19.6

306 22 42 16 5370 .948 19.0
153 13 33 8 5369 .948 19.0

77 9 29 4 5369 .948 19.0
s38417 1664 340 23984 1664 85 105 72 24513 .978 23.1

832 51 71 36 24515 .978 23.1
416 27 47 18 24509 .979 23.1
208 15 35 9 24506 .979 23.1

s38584 1464 62 2848 1464 55 75 47 2942 .968 30.9
732 30 50 24 3002 .949 30.2
366 17 37 12 3001 .949 30.2
183 9 29 6 2999 .950 30.3

(the first row for each circuit corresponds to having a single scan window for
the entire test cube). For each of these different scan window sizes, smax (the
maximum number of specified bits in a scan window) is shown, followed by the
size of the LFSR that is used. The LFSR size was chosen to be smax + 20. A
binary search (as described in Section 4) was used to find the lowest value for
n (the number of bits used per test vector) for which a solution to the linear
equations could be found. The test storage requirements (i.e., the number of
encoded bits that would have to be stored on the tester) is shown followed by
the encoding efficiency. The encoding efficiency is the ratio of the number of
specified bits in the set of test cubes to the test storage requirements. As can
be seen, the encoding efficiency for partial reseeding is very high. The last col-
umn shows the compression ratio that is achieved with partial reseeding which
is the ratio of the test storage requirements for the unencoded test vectors
(i.e., simply storing the test vectors themselves on the tester) compared with
the test storage requirements using partial reseeding. As can be seen, partial
reseeding generally provides an order of magnitude reduction in test storage
requirements.

Figure 8 shows how the number of bits used per test vector varies with the
size of the LFSR that is used. It can be seen that even if the size of the LFSR
is slightly less than smax + 20, it is possible to find a solution to the linear
equations. Based on the graph, the smallest LFSR size corresponding to the
lowest value of n can be used to minimize the hardware overhead as well as the
tester storage requirements.

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Achieving High Encoding Efficiency With LFSR Reseeding • 513

Fig. 8. Variation of bits per vector (n) with LFSR size.

Table II. Comparison of Reseeding Schemes for Same Test Set

Standard LFSR Test Cube Variable-Length
Reseeding Concatenation Seeds Proposed

[Könemann [Hellebrand [Rajski Partial
1991] et al. 1995a] et al. 1998a] Reseeding

Circuit LFSR Total LFSR Total LFSR Total LFSR Total
Name size Bits Eff. size Bits Eff. size Bits Eff. size Bits Eff.

s5378 38 1140 .432 18 570 .865 18 658 .749 38 502 .982
s9234 81 11178 .418 61 5332 .877 61 5364 .871 81 5013 .932

s13207 44 6908 .409 24 3925 .719 24 3609 .782 44 3008 .938
s15850 58 9686 .526 38 6513 .782 38 5927 .859 58 5204 .978
s38417 105 35700 .672 85 29240 .820 85 25684 .934 105 24513 .978
s38584 75 4650 .612 55 3472 .820 55 3158 .902 75 2942 .968

Table II shows a comparison of partial reseeding with previous reseeding
schemes (all of which are based on full static reseeding). Each of the reseeding
schemes was used to encode the set of test cubes in Table I. The exact same set
of test cubes is encoded in each case to provide an “apples to apples” compari-
son. For each reseeding scheme, three things are shown: the size of the LFSR,
the total number of encoded bits (i.e., the test storage requirement), and the
encoding efficiency. For the test cube concatenation [Hellebrand et al. 1995a]
and the variable-length seeds [Rajski et al. 1998a] schemes, an MP-LFSR with
16 polynomials was used, so the LFSR size is reduced. As can be seen, partial
reseeding clearly provides the highest encoding efficiency. In terms of hard-
ware overhead and control complexity, standard LFSR reseeding is the sim-
plest scheme. Partial reseeding requires an XOR gate in the feedback tap that
is controlled by the tester. The test cube concatenation scheme [Hellebrand et al.
1995a] requires an MP-LFSR with a control mechanism to change the feedback
polynomial based on the “next-bit” (however, the LFSR length is reduced). The
variable-length seeds scheme [Rajski et al. 1998a] requires a control mecha-
nism to change the size of the LFSR based on the “next-bit” (some of the stages
of the LFSR can be configured from the scan chains themselves). It should be

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

514 • C. V. Krishna et al.

Table III. Comparison of Best Published Results for Reseeding Schemes (Test Sets are
Different)

[Hellebrand et al. 1995a] [Rajski et al. 1998a] Proposed Partial Reseeding
Circuit Test LFSR Total Num. LFSR Total Num. LFSR Bits/Vect Total
Name Groups size bits Vectors size bits Vectors size (n) bits

s5378 24 27 726 NA NA NA 30 38 16 502
s9234 103 61 6923 104 96 4720 138 81 36 5013

s13207 138 24 3570 176 192 5784 157 44 19 3008
s15850 134 46 6528 56 256 6269 167 58 31 5204
s38417 259 91 24283 78 480 16797 340 105 72 24513
s38584 46 70 3406 52 224 3901 62 75 47 2942

noted that the encoding efficiency of the test cube concatenation scheme could
be improved by using the special ATPG procedure described in Hellebrand
et al. [1995b] to better select the test cubes, and the encoding efficiency of the
variable-length seeds scheme could be improved by using a larger LFSR (con-
structed from the scan chains themselves) which would enable more test cube
merging.

In Table III, the results for partial LFSR reseeding are compared with the
best previously published results. In this case, the test sets are all different, so
the optimality of the ATPG and compaction procedures used to obtain the test
sets strongly affects the results. In Hellebrand et al. [1995b], a special ATPG
procedure was used to find a set of test cubes that optimizes the effectiveness of
test cube concatenation. In Rajski et al. [1998a], the scan chains were configured
into extra large LFSRs to enable more test cube merging to be used. For each
reseeding scheme, three things are shown: the number of vectors (or test groups
in the case of Hellebrand et al. [1995b]), size of the LFSR, and the total number
of encoded bits (i.e., the test storage requirement).

As can be seen, even though the set of test cubes for partial reseeding are
not optimized, the results still compare favorably. It is very likely that if a
better ATPG procedure was used to obtain the test cubes for partial reseed-
ing, the results could be improved considerably. For the circuit, s38417, the
variable-length seeds scheme [Rajski et al. 1998a] clearly outperformed the
other schemes because of its inherent ability to configure very large LFSRs out
of the scan chains in the CUT. If it were possible to configure a larger LFSR
for partial seeding (perhaps from some idle scan chains that are not part of the
CUT), then the results for partial reseeding could also be improved.

In Table IV, results are shown for partitioning the set of test cubes. For each
circuit, the set of test cubes was partitioned into two equal subsets. The least
specified test cubes were placed in partition 1, and the most specified test cubes
were placed in partition 2. The system of linear equations for each partition
was solved independently. The value of n and the test storage requirements
are shown for each partition followed by the total test storage requirements
for the two partitions combined. As can be seen, in some cases the total test
storage requirements were slightly better with partitioning, and in some cases
they are slightly worse. Overall, partitioning did not make too much difference
in the results.

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Achieving High Encoding Efficiency With LFSR Reseeding • 515

Table IV. Results for Partial Reseeding with Partitioning of the Test Set

Circuit No Partitioning Partitioning
Total Partition 1 Partition 2 Total

Num LFSR Bits/Vect. Test Bits/Vect. Test Bits/Vect. Test Test
Name Vectors Size (n) Storage (n) Storage (n) Storage Storage

s5378 30 38 16 502 15 248 16 262 510
s9234 138 81 36 5013 23 1645 45 3141 4786

s13207 157 44 19 3008 15 1199 22 1760 2959
s15850 167 58 31 5204 27 2272 35 2963 5235
s38417 340 105 72 24513 65 11090 78 13287 24377
s38584 62 75 47 2942 42 1335 52 1635 2970

7. CONCLUSIONS

Partial dynamic LFSR reseeding is an attractive approach for compressing test
data. It offers the following features:

� Better encoding efficiency than full static reseeding;
� Encoding efficiency not proportional to smax;
� Encoding efficiency improves as the size of the LFSR is increased;
� Very simple hardware implementation and control complexity;
� Very little additional hardware required beyond what is needed for STUMPS

[Bardell and McAnney 1982];
� Fewer clock cycles are required to generate each test vector than with static

LFSR reseeding;
� Easy to tradeoff computation time and optimality of encoding;

The drawback of partial dynamic LFSR reseeding compared with full static
LFSR reseeding is that the computation time for solving the linear equations is
longer. However, the computation time can be kept manageable by partitioning
the set of test cubes. Full static LFSR reseeding is actually a special case of
partial dynamic LFSR reseeding where the partition size is a single test cube.

Partial dynamic LFSR reseeding can be used in conjunction with pseudoran-
dom BIST to form a mixed-mode testing approach. Pseudorandom patterns can
be used to detect the random pattern testable faults, and partial LFSR reseed-
ing can be used to generate test cubes that detect the random pattern resistant
faults. This approach avoids the need for test points. The encoded test data for
the partial LFSR reseeding can be either stored on the tester or stored on the
chip in a ROM.

Partial dynamic LFSR reseeding can also be used in conjunction with ex-
ternal testing to reduce the test data storage and bandwidth requirements for
the tester. The test data on the tester can be stored in compressed form and
then decompressed using partial LFSR reseeding. Partial LFSR reseeding can
reduce tester storage requirements by an order of magnitude or more.

REFERENCES

BARDELL, P. H. AND MCANNEY, W. H.. 1982. Self-testing of multichip logic modules. Proceedings of
International Test Conference, pp. 200–204.

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

516 • C. V. Krishna et al.

BARNHART, C., BRUNKHORST, V., DISTLER, F., FARNSWORTH, O., KELLER, B., AND KOENEMANN, B. 2001.
OPMISR: The foundation for compressed ATPG vectors. In Proceedings of the International Test
Conference, pp. 748–757.

BAYRAKTAROGLU, I. AND OGAILOGLU, A. 2001. Test volume and application time reduction through
scan chain concealment. In Proceedings of the Design Automation Conference, pp. 151–155.

BRGLEZ, F., BRYAN, D., AND KOZMINSKI, K. 1989. Combinational profiles of sequential benchmark
circuits. In Proceedings of the International Symposium on Circuits and Systems, pp. 1929–1934.

CHEN, C. L. 1986. Linear dependencies in linear feedback shift registers. IEEE Trans. Comput.
C-35, 12 (Dec). pp. 1086–1088.

HELLEBRAND, S., TARNICK, S., RAJSKI, J., AND COURTOIS, B. 1992. Generation of vector patterns
through reseeding of multiple-polynomial linear feedback shift registers. In Proceedings of the
International Test Conference, pp. 120–129.

HELLEBRAND, S., RAJSKI, J., TARNICK, S., VENKATARAMAN S., AND COURTOIS, B. 1995a. Built-in test
for circuits with scan based on reseeding of multiple-polynomial linear feedback shift registers.
IEEE Trans. Comput., 44, 2 (Feb.), pp. 223–233.

HELLEBRAND, S., REEB, B., TARNICK, S., AND WUNDERLICH, H.-J. 1995b. Pattern generation for a
deterministic BIST scheme. In Proceedings of the International Conference on Computer-Aided
Design (ICCAD). pp. 88–94.

International Technology Roadmap for Semiconductors (ITRS), 2001 Edition, Test and Test Equip-
ment Section.

KAY, D. AND MOURAD, S. 2000. Controllable LFSR for BIST. In Proceedings of the Instrumentation
and Measurement Technology Conference, Vol. 1, pp. 223–228.

KHOCHE, A. AND RIVOIR, J. 2000. I/O bandwidth bottleneck for test: Is it real?. In Proceedings of
the International Workshop on Test Resource Partitioning.

KÖNEMANN, B. 1991. LFSR-coded test patterns for scan designs. In Proceedings of the European
Test Conference, pp. 237–242.

KÖNEMANN, B. 2000. Logic DFT and test resource partitioning for 100M gate ASICs. In Proceed-
ings of the International Workshop on Test Resource Partitioning.

KOENEMANN, B., BARNHART, C., KELLER, B., SNETHEN, T., FARNSWORTH, O., AND WHEATER, D. 2001. A
SmartBIST variant with guaranteed encoding. In Proceedings of the Asian Test Symposium,
pp. 325–330.

KRISHNA, C. V., JAS, A., AND TOUBA, N. A. 2001. Test vector encoding using partial LFSR reseeding.
In Proceedings of the International Test Conference, pp. 885–893.

KRISHNA, C. V. AND TOUBA, N. A. 2002. Reducing test data volume using LFSR reseeding with
seed compression. In Proceedings of the International Test Conference, pp. 321–330.

RAJSKI, J., TYSZER, J., AND ZACHARIA, N. 1998a. Test data decompression for multiple scan designs
with boundary scan. IEEE Trans. Comput., 47, 11 (Nov.), pp. 1188–1200.

RAJSKI, J., TAMARAPALLI, N., AND TYSZER, J. 1998b. Automated synthesis of large phase shifters for
built-in self-test. In Proceedings of the International Test Conferenc, pp. 1047–1056.

RAJSKI, J., TYSZER, J., KASSAB, M., MUKHERJEE, N., THOMPSON, R., TSAI, K.-H., HERTWIG, A., TAMARAPALLI,
N., MRUGALSKI, G., EIDER, G., AND QIAN, J. 2002. Embedded deterministic test for low-cost man-
ufacturing test. In Proceedings of the International Test Conference, pp. 301–310.

VENKATARAMANN, S., RAJSKI, J., HELLEBRAND, S., AND TARNICK, S. 1993. An efficient BIST scheme
based on reseeding of multiple polynomial linear feedback shift registers. In Proceedings of the
International Conference on Computer-Aided Design (ICCAD), pp. 572–577.

ZACHARIA, N., RAJSKI, J., AND TYSZER, J. 1995. Decompression of test data using variable-length
seed LFSRs. In Proceedings of the VLSI Test Symposium, pp. 426–433.

ZACHARIA, N., RAJSKI, J., TYSZER, J., AND WAICUKAUSKI, J. 1996. Two dimensional test data decom-
pressor for multiple scan designs. In Proceedings of the International Test Conference, pp. 186–
194.

Received March 2003; revised September 2003 and June 2004; accepted June 2004

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

