
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2006 1227

Improving Linear Test Data Compression
Kedarnath J. Balakrishnan, Member, IEEE, and Nur A. Touba, Senior Member, IEEE

Abstract—The output space of a linear decompressor must
be sufficiently large to contain all the test cubes in the test set.
The ideas proposed in this paper transform the output space
of a linear decompressor so as to reduce the number of inputs
required thereby increasing compression while still keeping all the
test cubes in the output space. Scan inversion is used to invert a
subset of the scan cells while reconfiguration modifies the linear
decompressor. Any existing method for designing a linear decom-
pressor (either combinational or sequential) can be used first to
obtain the best linear decompressor that it can. Using that linear
decompressor as a starting point, the proposed methods improve
the compression further. The key property of scan inversion is
that it is a linear transformation of the output space and, thus, the
output space remains a linear subspace spanned by a Boolean ma-
trix. Using this property, a systematic procedure based on linear
algebra is described for selecting the set of inverting scan cells to
maximize compression. A symbolic Gaussian elimination method
to solve a constrained Boolean matrix is proposed and utilized for
reconfiguring the linear decompressor. The proposed schemes can
be utilized in various design flow scenarios and require no or very
little hardware overhead. Experiments indicate that significant
improvements in compression can be achieved.

Index Terms—Linear decompression, linear feedback shift reg-
ister (LFSR) reseeding, on-chip decompression, test data compres-
sion, XOR network.

I. INTRODUCTION

WITH integrated circuits, especially system-on-chip
(SoC) designs, becoming increasingly complex with

each generation, the amount of test data required to achieve
acceptable test quality is becoming very large. Hence, the test
data storage requirements on an external tester and the test
data bandwidth requirements between the tester and chip are
growing rapidly [1]. Test data compression techniques provide
a means to reduce these requirements thereby allowing less
expensive testers to be used as well as reducing the test time.
Compressing the output response is relatively easy since lossy
compression techniques can be employed, e.g., using a mul-
tiple-input signature register (MISR). However, compressing
test vectors is much more difficult because lossless compres-
sion techniques must be used. Recently, as reducing test vector
volume has become such an important problem, a significant
amount of research has been done on lossless compression
techniques for test vectors.

Manuscript received October 11, 2005; revised May 19, 2006.
K. J. Balakrishnan is with NEC Laboratories America, Princeton, NJ 08540

USA (e-mail: bala@nec-labs.com).
N. A. Touba is with the Department of Electrical and Computer Engineering,

University of Texas at Austin, Austin, TX 78712 USA (e-mail: touba@ece.
utexas.edu).

Digital Object Identifier 10.1109/TVLSI.2006.886417

An important class of test vector compression schemes
involve a decompressor which uses only linear operations to
decompress the test vectors. This class, which will be hence-
forth referred to as linear compression schemes, uses a linear
decompressor. A number of different techniques for designing
linear decompressors have been proposed in the literature.
These include techniques based on linear feedback shift reg-
ister (LFSR) reseeding and combinational linear expansion
circuits consisting of XOR gates. Linear compression exploits
the unspecified (don’t care) bit positions in test cubes (i.e.,
deterministic test vectors where the unassigned bit positions are
left as don’t cares) to achieve large amounts of compression.

The idea of using an LFSR as a linear decompressor and
solving for test cubes using linear algebra was described in [2].
Several techniques for improving the compression of LFSR
based linear compression schemes were described in [3]–[8].

Linear decompressors that can receive data from the tester in
a continuous-flow (i.e., “streaming” data) are especially useful
for test data compression. Continuous-flow linear decompres-
sors can be directly connected to the tester and operate very
efficiently since they simply receive the data as fast as the
tester can transfer it. From a tool integration standpoint, this
is very nice since it mimics the standard behavior of normal
scan chains. There is no need for any special scheduling or
synchronization. A number of techniques for designing both
combinational and sequential continuous-flow linear decom-
pressors have been proposed. Combinational continuous-flow
linear decompressors are described in [9]–[13]. Sequential con-
tinuous-flow linear decompressors are described in [14]–[19].
Most of the commercial tools for compressing test vectors are
based on linear decompressors.

If there are scan cells, then the space of all possible scan vec-
tors is . The output space of a linear decompressor is the set of
scan vectors that can be generated by the linear decompressor.
Each bit stored on the tester can be thought of as a “free-vari-
able” that can be assigned any value (0 or 1). Consider the case
where the linear decompressor receives an input sequence from
the tester consisting of -free-variables when generating a scan
vector. Assuming the linear decompressor is always initialized
to the same state before generating each scan vector (if it is a
sequential circuit), then the size of the output space of the linear
decompressor is less than or equal to (since that is the number
of possible unique input sequences that could be applied to it).
The output space will be equal to if every input sequence
maps to a unique scan vector, and less than if some input
sequences map to the same scan vector. In the degenerate case
where the linear decompressor is just a set of wires directly con-
necting each scan chain to a tester channel, then and
the content of every scan cell is equal to a unique free variable
such that the output space of the linear decompressor contains
all possible scan vectors. However, in order to get compression,

1063-8210/$20.00 © 2006 IEEE

1228 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2006

needs to be less than , and thus, in the general case, the output
space of the linear decompressor will be a subset of all possible
scan vectors.

In order to be able to compress a test set, the output space
of any decompressor must contain all the test cubes in the test
set. Linear decompressors have some advantages compared with
nonlinear decompressors. They generally have a larger output
space for the same because of the use of XOR gates which
tend to minimize the number of input sequences that map to
the same scan vector. Another useful property is that the output
space of a linear decompressor is a linear subspace spanned by a
Boolean matrix . The advantage of having the output space be
defined by is that determining whether a particular test cube
is contained in the output space and the corresponding input
sequence to generate it can be done by solving a set of linear
equations using Gaussian elimination.

When using an LFSR as a linear decompressor, it has been
shown that if the number of free-variables used to generate a
test cube is 20 more than the number of specified bits in a test
cube, then the probability of the test cube not being in the output
space is less than one in a million [2]. However, for a given test
set, the number of free-variables can be reduced further pro-
vided the corresponding reduced output space still contains all
the test cubes in the test set. Reducing the number of free-vari-
ables decreases the amount of storage required on the tester and,
hence, increases the compression. As the number of free-vari-
ables are reduced, the output space becomes smaller and smaller
until a point is reached where one or more test cubes are no
longer in the output space. This point terminates the reduction
in free-variables and limits the compression that can be achieved
by the linear compression scheme for a particular test set.

This paper describes two techniques to alter and reshape
the output space of a linear decompressor which will allow
the number of free-variables to be reduced further while still
keeping all the test cubes in the output space thereby increasing
the compression. Any method for designing a linear decom-
pressor can be used first to obtain the best linear decompressor
that it can. Using that linear decompressor as a starting point,
the proposed techniques reduce the number of free-variables
further to improve the compression.

The first proposed technique is based on scan inversion that
leads to a linear transformation of the output space. Preliminary
results were presented in [20]. The advantages of this technique
are that it can be implemented without any hardware overhead
and since the transformation is linear, a systematic procedure
exists to select the set of inverting scan cells based on linear
algebra. The second methodology described in this paper en-
ables the reconfiguration of any linear decompressor. Prelimi-
nary results were presented in [21]. Reconfiguration of a decom-
pressor modifies the output space of the decompressor resulting
in higher compression. This technique can be used in SoC de-
signs that have intellectual property (IP) cores where the core
internals are not visible. Further, in multicore SoCs, a single
“reconfigurable” decompressor can be used for several cores in-
stead of having several decompressors thereby providing a sig-
nificant reduction in hardware overhead.

Note that the techniques described in this paper can be used
in conjunction with any linear decompressor including all of the

Fig. 1. Combinational linear decompressor.

Fig. 2. XOR network and matrix for Fig. 1.

ones previously referenced to improve the compression further.
They transform the output space of the linear decompressor in
a way that allows a smaller number of free-variables from the
tester to be used to encode the test set.

The rest of this paper is organized as follows. The next
section describes the motivation behind using the proposed
techniques to transform the output space of a linear decom-
pressor. Section III describes the hardware implementation
while Sections IV and V present systematic techniques for
performing scan inversion and reconfiguration. Section VI
discusses how the proposed techniques can be used to improve
the compression of any linear compression scheme. Section VII
details experimental results and conclusions are in Section VIII.

II. TRANSFORMING OUTPUT SPACE

This section describes the motivation behind the proposed
techniques to transform the output space of a linear decom-
pressor. As mentioned earlier, the output space of a linear de-
compressor can be described using a Boolean matrix .
Each row in corresponds to a scan cell and each column cor-
responds to a free-variable in the input sequence.

Fig. 1 shows a combinational linear decompressor that re-
ceives bits from the tester and expands it to scan chains.
The Boolean matrix for this decompressor can be constructed
simply from the XOR network. Each row corresponding to a scan
chain will have the inputs that are XORed together to get the scan
chain value as and all the others as . An example of a XOR

network with and and the corresponding matrix
is shown in Fig. 2. The columns of the matrix correspond to in-
puts with the first column representing and the last column
representing . Output is the XOR of inputs and and,
hence, in the first row, the values corresponding to these two in-
puts are while the rest are . Obtaining the Boolean matrix

BALAKRISHNAN AND TOUBA: IMPROVING LINEAR TEST DATA COMPRESSION 1229

Fig. 3. System of equations for test cube t .

Fig. 4. After Gaussian–Jordan reduction.

for LFSR-based decompressors by symbolic simulation of the
linear decompressor is described in detail in [8].

For a test cube to be compressible using a linear compression
scheme, a solution to the system of linear equations
must exist, where is an assignment of values to the free-vari-
ables that are inputs to the linear decompressor when generating
the test cube, and is the value of each bit in the test cube.
There is no need to solve the linear equations for the unspec-
ified bits in the test cube, and hence, only the linear equations
(rows) corresponding to the specified bits in need to be consid-
ered. Gaussian elimination [22] can be used to solve the set of
linear equations. Gaussian–Jordan reduction is used to perform
row operations that transform a set of columns into an identity
matrix. The elements that make the identity matrix are called
pivots.

An example of a system of linear equations for a test cube
is shown in Fig. 3 and the corresponding system after

Gaussian–Jordan reduction is shown in Fig. 4. The rows after
Gaussian–Jordan reduction can be classified as either pivoted
rows or linearly dependent rows. The pivoted rows have pivots
while the linearly dependent rows are all . For the example in
Fig. 3, the first three rows are pivoted while the last two rows
are linearly dependent. If all rows are pivoted, then a solution
to the system of linear equations exists, and hence, the test
cube can be decompressed using the linear decompressor. If
some of the rows are linearly dependent, then a solution only
exists if all of the corresponding values in (the vector after
Gaussian elimination) are equal to for the linearly dependent
rows. If there is a linearly dependent row whose corresponding
value in is equal to , then no solution exists. In Fig. 4, the
last row is linearly dependent but the corresponding value in
is , and thus, there is no solution. This is easy to see because
in the original system of linear equations in Fig. 3, both rows
2 and 5 are identical in , however, the corresponding values
in have opposite values. Obviously, there is no assignment to

that will simultaneously solve the linear equations for both
rows 2 and 5.

For the example in Fig. 3, let the specified values in cor-
respond to scan cells through . If either scan cell or
scan cell is inverted, then the system of linear equations be-
comes solvable. This is illustrated in Fig. 5 which shows the

Fig. 5. System of equations for t with c inverted.

Fig. 6. Reconfigured system of equations for t .

new system of equations (with the value on the second row of
the vector changed to) and the result of Gaussian–Jordan
reduction after scan cell is inverted. This is an example of
how scan inversion can be used to make a test cube solvable. If
the decompressor is reconfigured such that the equations corre-
sponding to scan cell and scan cell were exchanged, the
system of linear equations is again solvable. This is shown in
Fig. 6. The last two rows are linearly dependent but the corre-
sponding value in is . This example illustrates how reconfig-
uration can be used to make a test cube solvable.

The proposed schemes have some relation to the idea of trans-
forming the output space of a test pattern generator to encode
test cubes which has been investigated in the past in the context
of built-in self-test (BIST). Techniques for designing a nonlinear
circuit to transform the output space of a pseudorandom gen-
erator to encode test cubes were described in [23]–[31]. Scan
inversion has been used in other contexts, in BIST [32] and to
reduce scan shift power [33].

A switch-based reconfiguration of the connection between
external pins and the scan chains in the Illinois scan architec-
ture [9] was proposed in [34]. In [13], control bits are used to
determine the number of scan chains that are fed by the com-
binational network. Configuration multiplexers at the output of
phase shifter network was proposed in [35].

The proposed methods differ significantly from these
methods in that they use linear transformations, are based on
linear algebra, are targeted towards lossless test vector com-
pression, and can be implemented with very little overhead.

III. IMPLEMENTATION

A. Scan Inversion

Implementing inverted scan cells can be accomplished either
by explicitly inserting inverters in the scan chains, or by simply
using the output instead of the output when connecting
the output of one scan cell to the next scan cell. An example
of inverting the contents of a scan cell is shown in Fig. 8. Fig. 7
shows a normal scan chain with no inversion, while Fig. 8 shows
the scan chain with the third scan cell inverted. This is accom-
plished by inverting before and after the third scan cell. If the
same scan vector was shifted into both the normal scan chain
in Fig. 7 and the scan chain in Fig. 8, the contents of the third
scan cell in Fig. 8 would have the opposite value from what it

1230 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2006

Fig. 7. Normal scan chain.

Fig. 8. Scan chain with third scan cell inverted.

would be in the normal scan chain while the contents of all other
scan cells would be the same. Also, when the output response is
shifted out, the bit corresponding to the third scan cell will have
the opposite value from what it normally would have.

While the example in Fig. 8 only involves inverting one scan
cell, any set of scan cells in the scan chain can be inverted by
making appropriate connections from either or to the next
scan cell. To invert the first scan cell in a scan chain, either an
inverter can be placed on the scan_data_in (SDI) input or the
XOR (XNOR) gate that is driving the SDI input can simply be
changed to an XNOR (XOR) gate. If the inverted scan cells are
implemented by simply changing some connections from to

and changing some XOR gates to XNOR gates, then there is
effectively no overhead for using scan inversion. Even if explicit
inverters are used, the overhead would still be small. Note that
this technique does not involve any special ordering of the scan
cells. The scan chains can be ordered in any manner to optimize
the layout.

B. Reconfiguring a Linear Decompressor

There are several possible ways to modify a linear decom-
pressor such that it can be reconfigured. A simple modification
would be to add multiplexers to each output of the network with
the select input coming from configuration bits. The remaining
data inputs could be some other output of the original decom-
pressor. For example, consider the combinational decompressor
using XOR gates shown in Fig. 2. Instead of directly sending the
outputs to the scan chains, there is another stage with a mul-
tiplexer before each scan chain as illustrated in Fig. 9. These
multiplexers will select which output is connected to which scan
chain based on the configuration bits.

In general, the linear decompression network can be modified
using the configuration bits. For each configuration, the output
space of the linear decompressor will be different. Hence, this
increases the chances of a test cube being generated using the
decompressor. The configuration bits can either be stored on the
tester and transferred to the decompressor with the test cubes or
stored on-chip using a ROM. The number of different configu-
rations required depends on the test set. In the case when each
test cube in a test set requires a different configuration, these

Fig. 9. Making a decompressor reconfigurable.

Fig. 10. Augmented system of equations for t .

need to be explicitly stored. In the case when all the test cubes
can be generated using the same configuration, then the decom-
pression network can be finalized for that configuration and no
extra storage is required. This implies that the decompressor is
simply redesigned.

IV. SELECTING SET OF INVERTED SCAN CELLS

To implement scan inversion, a set of scan cells to be inverted
need to be selected. If there are scan cells, then there are dif-
ferent ways the scan cells can be inverted each of which results
in a different transformation of the output space of the linear
decompressor. Given a particular linear decompressor, the goal
is to select the set of inverted scan chains so that the resulting
transformed output space of the linear decompressor will con-
tain all of the test cubes in the test set. This section describes a
systematic procedure based on linear algebra for doing this.

Let be a vector in which if then
scan cell is inverted and if then scan cell is not in-
verted. For a given test cube, a set of constraints on for which
the test cube is solvable can be determined as follows. Consider
the example system of linear equations in Fig. 3 and the cor-
responding Gaussian–Jordan reduced version in Fig. 4. For the
rows in Fig. 4 that are pivoted, there are no constraints on as it
does not matter what the corresponding value of is for those
rows since they are always solvable. For the linearly dependent
rows, the corresponding value of must be , so whatever scan
inversion takes place must ensure that the value for that row is 0
after Gauss-Jordan reduction. This places constraints on . In the
example in Fig. 4, the last two rows are linearly dependent, so
constraints must be placed on to ensure that the corresponding
values in for those rows are always . These constraints can
be determined by augmenting the linear system with a depen-
dency matrix as shown in Fig. 10. The dependency matrix is a
square matrix with the number of rows and columns equal to
the number of rows in and initialized to an identity matrix

BALAKRISHNAN AND TOUBA: IMPROVING LINEAR TEST DATA COMPRESSION 1231

Fig. 11. Gaussian–Jordan reduction with augmented matrix for t .

Fig. 12. Augmented system of equations for t .

Fig. 13. Gaussian–Jordan reduction of augmented matrix for t .

since each value in depends only on itself. The row opera-
tions that are performed during Gaussian–Jordan reduction are
also applied to the dependency matrix. After Gaussian–Jordan
reduction, the dependency matrix indicates which set of scan
cells each value in depends on. For each linearly dependent
row, the constraints on can be obtained by looking at the de-
pendency for the value in for that row. The value in for each
linearly dependent row must be , so a linear equation in terms
of can be written to ensure that the value in will be . In the
example in Fig. 11, the fourth row is linearly dependent and the
corresponding value in depends on scan cells , , and .
Since the corresponding value in in the normal scan chain is ,
the constraint on scan inversion is that should be .
In other words, either none of scan cells , , and should be
inverted or two of them should be inverted (thus, canceling each
other out). If one or all three of them are inverted, then the value
in for that row will become and no solution for the test cube
will exist. Similarly, a linear equation for the constraint due to
the fifth row can be obtained. In this case, for the normal scan
chain the value of for this row is , so it is necessary that one
of the scan cells that it depends on be inverted, either or in
order to get a solution for the test cube.

The procedure described previously can be used to obtain a
set of constraints on for each test cube to make it solvable.
Consider test cube whose system of linear equations is shown
in Fig. 12. Note that this test cube has only four specified bits
and, in this case, the specified bits are in scan cells , , ,
and . The system of linear equation after Gaussian–Jordan
elimination is shown in Fig. 13. As can be shown, there is one

Fig. 14. Constraint matrix for test set ft ; t g.

linearly dependent row in this case. The corresponding set of
constraints on can be obtained from the dependency matrix.

In order for the linear decompressor to be able to generate all
the test cubes in the test set, there needs to be a solution for each
test cube. Thus, must be selected to allow all test cubes to be
simultaneously solved. A solution for is obtained by forming
a constraint matrix that incorporates all of the constraints for
all the test cubes. Each constraint for each test cube is added as
a row in . For example, suppose the test set consisted of test
cube and whose constraints were obtained in Figs. 11 and
13. Then the first two rows in would correspond to the two
linear constraint equations from Fig. 11, and the last row in
would correspond to the linear constraint equation from Fig. 13.
The resulting constraint matrix is shown in Fig. 14. Gaussian
elimination is then used to find a solution to the system of linear
equations . The solution for gives the set of scan cells
that need to be inverted so that the test set can be generated
by the linear decompressor. If no solution exists, then it is not
possible for the linear decompressor to be used to generate the
test set under any set of inverted scan cells.

The complexity of the Gaussian elimination method for
solving a set of linear equations with variables is of the
order of . In the proposed scheme, as with any other
linear test vector compression scheme, a set of linear equations
needs to be solved for each test cube. Hence, if is the number
of specified bits in a cube and is the number of compressed
bits for that cube, then solving for that cube will require
time. The only additional task involved in the proposed scheme
is to solve for the constraint matrix. The time complexity for
this additional step will depend on how many equations there
are in the constraint matrix and the number of scan cells that are
included in the inversion constraints. Note that there is no need
to include the scan cells that are not present in any inversion
constraint for any test cube.

For large designs, a partitioning approach can be used to re-
duce the time complexity of solving the constraint equations.
For combinational decompressors, partitioning is simple. Each
scan slice is treated as one partition and the constraints for all
the scan flip-flops in this slice can be solved together for all the
test vectors. This partitioning will not affect the improvement in
compression obtained using scan inversion. For sequential de-
compressors, multiple scan slices can form one partition and the
equations for each partition solved separately. However, this re-
quires the sequential decompressor to be reset after each parti-
tion and, hence, increases the scan shift cycles. The execution
time of scan inversion with and without partitioning are reported
and discussed further for large scan architectures in the results
section.

1232 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2006

Fig. 15. Matrix with functions as elements.

V. SYMBOLIC GAUSSIAN ELIMINATION

Section II described how reconfiguration of a linear decom-
pressor can increase the chances of a test cube being solvable.
In this section, we describe a systematic procedure to do recon-
figuration using symbolic Gaussian elimination. The key idea
is to form the matrix in terms of the configuration bits (i.e.,
each entry in the matrix is a function of the configuration bits)
and then find an assignment of the configuration bits that makes
the system of linear equations solvable.

In traditional Gaussian elimination, elementary row opera-
tions are used to reduce the coefficient matrix (the matrix) to a
set of pivoted and linearly dependent rows. This is done by going
through each column of the matrix and choosing a nonzero el-
ement as the pivot. All other rows with a 1 in this column are
XORed with this row as part of elementary row operation. The
resultant matrix will either have pivoted rows or linearly depen-
dent rows.

We extend this technique to coefficient matrices that have
functions as elements. The functions are Boolean functions on a
given set of variables. This is illustrated in Fig. 15, where each
element of the matrix is a function of the variables .
In this matrix, each is a function such that

In the trivial case when each function is a constant or a con-
stant , this matrix will degenerate to a Boolean matrix with
entries or . The variables correspond to the config-
uration bits of the linear decompressor. Solving for a system of
linear equations such as , with as the matrix shown
in Fig. 15 and is a vector that implies we are looking for a
solution for at least one combination of , , and , or in other
words, for at least one configuration.

Given such a system of linear equations, the algorithm for
symbolic Gaussian elimination is given as follows. First, each
element in the vector is converted to a function in terms of
the variables in . If the element in is then the function
is identically equal to and if the element is , the function
is identically equal to . Then, the algorithm proceeds column
wise choosing pivots in each column. Suppose is the first
pivot. Row operations are performed next for each row and this
pivot. In the row operations, every element in a row is XORed
with the result of the AND of its element in the pivot column and
the corresponding element in the pivot row. This is illustrated in
Fig. 16 that shows the matrix after row operations for pivot .
The idea is to take into account both cases when and

. This operation is repeated for every pivot.
The matrix after doing all the row operations for each pivot

will look like Fig. 17 where are again functions of .
For ease of explanation, assume that the pivot for each column

Fig. 16. Matrix after row operations for pivot f .

Fig. 17. Matrix after all row operations.

is given by element . The next step would be to ensure
that each pivot has at least one minterm for which the func-
tion equates to one. If the pivot function does not have a single
minterm that equates to one, then that row is equivalent to a
linearly dependent row in the normal Gaussian eliminated ma-
trix. Hence, the corresponding element in the matrix should
be zero. This condition for a pivot can be written in mathe-
matical form as

Since this condition must be valid for each pivot, the overall
condition can be written in a product of sum form as

If the previous condition is satisfied, there exists a solution to
the system of equations. The number of minterms of
for which the previous condition is satisfied will indicate the
number of different configurations possible.

Note that there may be more than one possible pivot for each
column and, hence, the pivot is selected using a heuristic. For
the first column, the element that has the maximum number
of minterms is chosen as the pivot since this retains the best
chances of solving the system of equations. For the next
columns, the element that has the most number of minterms in
common with the current pivots is chosen. This ensures that the
algorithm proceeds in such a way that locally maximal number
of solutions (configurations) are possible after each step.

The algorithm described before can be implemented with
very little overhead with respect to the basic Gaussian elimina-
tion method. Each function is stored in terms of its minterms.
For example, if three configuration bits are used, then there are
eight possible minterms. Each element in the matrix consists
of eight values, one corresponding to each minterm. The row
operations are performed on the corresponding minterms. The
only additional step in this procedure is evaluating the final
product of sums condition. This can be achieved by simply
performing bitwise operations on the entries so that the cor-
responding minterms are evaluated together. The number of

BALAKRISHNAN AND TOUBA: IMPROVING LINEAR TEST DATA COMPRESSION 1233

entries in the product of sums condition depends on the number
of pivots and, hence, on the size of the matrix. The complexity
of the evaluation step increases linearly with the size, since the
bitwise operations need to be performed for each additional
pivot. The number of minterms for each function depend on
the number of configuration bits. The number of configuration
bits is a design parameter that can be determined based on the
compression required and the maximum allowed running time
of the algorithm.

VI. INCREASING TEST COMPRESSION

Given a linear decompressor, the previous sections described
how to reconfigure it or select a set of scan cells to invert so
that all the test cubes in the test set will be in the output space
of the decompressor. It is obvious that scan inversion has to be
fixed for all the test cubes in the test set, i.e., the set of scan cells
that are inverted will be the same for all the test cubes. How-
ever, reconfiguration can be done in two ways. The first is to
search for a single configuration by which all the cubes in the
test set can be compressed. In this case, the configuration can
be hardwired into the decompressor, i.e., the decompressor is
redesigned and no explicit configuration bits are required. The
other method would be to have one configuration for each test
cube which is loaded into the decompressor every time a new
test cube is loaded. The configuration bits for each test cube need
to be stored explicitly. Since the proposed schemes work on a
specific set of scan patterns, they are not guaranteed to be able
to encode top-off patterns that were not accounted for during the
design flow. However, if the test infrastructure has a bypass se-
rial mode for diagnosis, any unencodable top-off patterns could
be applied that way if necessary.

Compression obtained using a linear decompression scheme
can be improved using the proposed techniques in several ways.
One method would be to reduce the number of free-variables
that the decompressor receives per test cube from the tester as
much as possible while still keeping the test set compressible
through scan inversion or reconfiguration. Any method can be
used to design the initial decompressor. Then the number of
free-variables that are input to the decompressor per test cube
can be incrementally reduced and the techniques described in
Sections IV and V can be used to check whether it is possible
to still solve for all the test cubes using the proposed schemes.
If so, then this process of incrementally reducing the number
of free-variables and checking for a solution is repeated until
a point is reached when no further reduction in the number of
free-variables per test cube is possible while still being able to
solve for all test cubes. The end result will be a linear decom-
pressor that generates the exact same test set, but uses fewer
tester channels thereby reducing tester storage and bandwidth
requirements.

If the number of tester channels that are allocated for feeding
the linear decompressor is fixed, then another way the proposed
techniques can be used is to allow more specified bits per test
cube. The idea is to keep the number of free-variables that the
decompressor receives per test cube constant, but use the pro-
posed techniques to relax the constraints on automatic test pat-
tern generation (ATPG) such that more specified bits per test
cube can be generated. This will allow more static and dynamic

compaction while still being able to solve for the test cubes.
Some test compression methodologies (e.g., [10], [11], [16]) in-
volve fixing the decompressor design and then constraining the
ATPG so that the resulting test cubes will be in the output space
of the decompressor. The constraints on the ATPG reduce the
amount of static and dynamic compaction that are performed
and, therefore, can result in more test cubes and, hence, more
test time. Reconfiguration of the linear decompressor or scan
inversion can be used to allow more specified bits per test cube
while still being able to solve for the test cube. This can be used
to relax the constraints on the ATPG and thereby allow more
static and dynamic compaction which will in turn reduce the
total number of test cubes and, hence, result in a reduction of
both test time and tester storage requirements.

VII. EXPERIMENTAL RESULTS

Two sets of experiments were performed to evaluate the
effectiveness of the proposed methods. The first set of exper-
iments consisting of those described in the previous section
was done on randomly generated test cubes for large indus-
trial-size scan architectures. The other set of experiments were
performed on 100% stuck-at fault coverage test sets for the
largest ISCAS’89 [36] benchmark circuits. The experiments
were performed on both types of linear decompressors—com-
binational and sequential. The results for each are discussed in
detail as follows.

A. Combinational Decompressor

The combinational linear decompressor consists of XOR gates
as shown in Fig. 1. Circuits are assumed to have either 512 or
1024 scan chains and the initial number of channels from the
tester is assumed to be 32.

The results for scan inversion are shown in Table I. For
each randomly generated test cube, the number of specified
bits was incrementally increased until it could no longer be
solved (i.e., it was no longer in the output space). The average
percentage of specified bits per test cube that could be solved
for is shown along with the corresponding encoding efficiency.
This measures the best encoding efficiency that can be achieved
for normal scan chains without scan inversion. Recall that the
encoding efficiency is defined as the ratio of the number of
specified bits in the test set to the number of bits stored on the
tester. Note that since each test cube is encoded independently,
there is no dependence on the number of test cubes. The run-
ning time of the program to find the tester variables by solving
the linear equations for all the test cubes is shown in column
6. All reported times in this paper are on a 3.2-GHz Pentium-4
machine with 2-GB memory running linux. Results are then
shown for scan inversion using it in the two ways described in
the previous section. The first is using scan inversion to reduce
the number of tester channels while still encoding the same set
of test cubes as before. The number of reduced tester channels
along with the resulting encoding efficiency that is achieved are
shown in columns 7 and 8, respectively. The time taken for the
two phases of the algorithm (solving equations for test patterns
and solving constraint equations) are shown in columns 9 and
10, respectively. The second way that scan inversion is used is
to keep the tester channels at 32 and increase the percentage

1234 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2006

TABLE I
RESULTS FOR SCAN INVERSION ON COMBINATIONAL LINEAR DECOMPRESSOR

TABLE II
RESULTS FOR RECONFIGURATION ON COMBINATIONAL LINEAR DECOMPRESSOR

of specified bits per test cube as much as possible until it is
no longer possible to solve for all the test cubes. The max-
imum percentage of specified bits and the resulting encoding
efficiency are shown in the last two columns of Table I. Note
that when using scan inversion, the effectiveness reduces as the
number of test cubes increases since it is harder to keep all of
the test cubes in the output space. Results are shown for several
different numbers of test cubes.

A number of interesting observations can be made from
Table I. Scan inversion is remarkably effective at improving
the encoding efficiency for combinational decompressors (it
is more than doubled in most cases). Typically the encoding
efficiency for combinational decompressors is fairly low be-
cause of the fact that they must receive enough free-variables
every clock cycle to be able to encode each bit-slice of the
scan chains. The worst case most heavily specified bit-slices
typically limit the encoding efficiency. As can be shown in
Table I, the encoding efficiency is less than 0.5 without scan
inversion. However, with scan inversion, the most heavily
specified bit slices can be solved with fewer free-variables per
clock cycle thereby allowing the number of tester channels to
be reduced substantially. The fact that the encoding efficiency
can be increased to around 0.9 with a combinational decom-
pressor is a surprising result. This level of encoding efficiency
is of the order of what is typically achieved with sequential de-
compressors, however, in this case no LFSR is needed thereby
reducing the hardware overhead. Combinational decompres-
sors are attractive because they are very simple requiring low
hardware overhead. The only drawback to using them has been
the substantially reduced encoding efficiency compared with
sequential decompressors, however, these results indicate that
with scan inversion the gap in encoding efficiency between com-

binational and sequential decompressors can be significantly
reduced. The results for keeping the number of channels at 32
and increasing the percentage of specified bits per test cube did
not provide as high encoding efficiency as reducing the tester
channels did.

The execution time of scan inversion algorithm as reported
in Table I indicate that the increase with respect to no inver-
sion is around 10% for 512 scan chains and 20% for 1024 scan
chains. Further, the time required for solving constraint equa-
tions (reported as “Phase-II”) is negligible. This is because the
constraint matrix is constructed and solved separately for the
flip-flops in each scan slice. This type of partitioning does not
affect the compression for combinational decompressors. The
maximum memory used by the scan inversion program (1024
scan chains and 1000 test cubes) was 11 MB.

For reconfiguration, a four-input multiplexer was added to the
output of the combinational decompressor with the select bits
coming from the configuration bits. All the experiments were
performed with a total of eight configuration bits. The results are
presented in Table II. The first two columns show the number
of scan chains and length of each scan chain. The length of the
scan chains varied from 24 to 128. The columns under “Without
Reconfiguration” show the maximum compression that can be
obtained using the given decompressor. For each randomly gen-
erated test cube, the number of specified bits was incrementally
increased until it could no longer be solved using the given de-
compressor. The maximum percentage of specified bits per test
cube that could be solved by the given decompressor is shown
in column 4. The corresponding encoding efficiency and com-
pression ratios are given in columns 5 and 6. Compression ratio
is the ratio of the original bits in the test set to the compressed
bits.

BALAKRISHNAN AND TOUBA: IMPROVING LINEAR TEST DATA COMPRESSION 1235

TABLE III
RESULTS FOR ISCAS’89 BENCHMARKS WITH COMBINATIONAL DECOMPRESSOR

The columns under “Reducing Channels” show the results
for reduction in the number of tester channels using reconfig-
uration. The reduced number of tester channels along with the
corresponding compression ratio are shown under “Red. Chan.”
and “Compr. Ratio.” The configuration bits are assumed to be
shifted in at the first cycle so there is no need to have separate
channels for the configuration bits. Note that each test pattern
requires one additional shift cycle which is taken into account
when calculating the compression ratio. The area overhead of
the reconfiguration part is one multiplexer for each scan chain
and one flip-flop for each configuration bit. The column “%
Impr.” shows the improvement in compression ratio due to the
reconfiguration. The average percentage improvement for all the
different scan sizes is around 36.2% which is a significant im-
provement for the extra hardware overhead. The columns under
“Increasing Spec. Bits” show the results for increasing the per-
centage of specified bits that can be handled by a given decom-
pressor using reconfiguration. The tester channels are kept con-
stant at 32 and the number of specified bits are increased as
much as possible until it is no longer possible to solve for all the
test cubes. The new percentage of specified bits and encoding
efficiency are shown as well as the percentage improvement in
the encoding efficiency. The experiments assume a single con-
figuration for each test cube and the configuration bits are taken
into account while calculating the compression results. In this
experiment, the average percentage improvement for all the dif-
ferent scan sizes is 36.5%.

To compare the improvement in the compression obtained
using a combinational linear decompressor by the proposed
techniques, another set of experiments were performed. These
were done on 100% stuck-at fault coverage test sets for the
largest ISCAS’89 [36] benchmark circuits. Table III compares
the compression results obtained using reconfiguration and
scan inversion with some of the combinational decompressor
techniques proposed earlier. The amount of test data that need
to be stored on the tester for the Illinois scan architecture [9],
XOR network [10] and the adjustable width technique [13] are
compared with those of the proposed schemes.

Note that in [9] and [10] the decompressor design is inte-
grated into the test pattern generation, while in [13] compres-
sion is performed on already generated test patterns. However,
the scheme proposed in [13] requires that each group of scan
chains be controlled by separate clocks [so that one or more
group(s) can be shifted simultaneously]. The test patterns used
in our experiments were the same as in [13]. Both reconfigu-
ration and scan inversion perform better than Illinois scan [9]
and XOR network [10] for all circuits. This is expected since the
main aim of these techniques is to improve compression of such
schemes. The compression obtained by the proposed schemes

Fig. 18. Sequential linear decompressor.

are similar to [13], while controlling clocks during scan shifting
is not needed.

B. Sequential Decompressor

Experiments were performed to study the impact of scan in-
version on compression of a continuous flow sequential linear
decompressor as shown in Fig. 18. The results for randomly
generated test cubes are shown in Table IV. In this case, the
number of channels from the tester for the normal scan chain
without inversion was 16 and a 64-bit LFSR was used. Because
the original sequential linear decompressor is very efficient al-
ready, the number of channels that can be reduced using scan
inversion is not as spectacular as for combinational decompres-
sors. Nonetheless, a significant increase in the encoding effi-
ciency (above 1 in many cases) can be achieved especially for
1024 scan chains where the percentage of specified bits per test
cube is less. Note also that the results for keeping the number of
channels at 16 and increasing the percentage of specified bits per
test cube were actually better than reducing the tester channels.
This is the opposite of what happened for combinational decom-
pressors where reducing channels achieved higher encoding ef-
ficiency.

The execution time of scan inversion for reducing channels of
a sequential decompressor is shown in Table V. For each scan
architecture and number of test cubes reported in Table IV, the
corresponding running times are shown for basic compression
(row “Without Inversion”), with inversion (row “Inversion”) and
using partitioning with inversion (row “Partitioning”). To get
the results for partitioning, the scan flip-flops were divided into
two partitions and the equations for each partition were solved
separately. Though it is possible that partitioning may reduce
the optimality of the results, we did not see any change in the
number of reduced channels in our experiments when using
partitioning. The time taken by both phases of scan inversion;
solving test pattern equations (labeled “Phase-I”) and solving
constraint equations (labeled “Phase-II”) are shown separately.
From Table IV, it is clear that the time taken for the first phase in-
creases steadily with the number of test cubes as expected while
the time for the second phase varies depending on the number of
constraint equations to be solved. By partitioning into two par-
titions, the running time of scan inversion is reduced by a factor
of 3.2 on average. The maximum memory used by the scan in-
version program was 1.1 GB (for 1024 scan chains and 1000 test
cubes) while partitioning reduced the memory usage to 800 MB
for the same scan architecture.

Experiments were also performed on 100% stuck-at fault cov-
erage test sets for the largest ISCAS’89 benchmark circuits to

1236 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2006

TABLE IV
RESULTS FOR SCAN INVERSION ON SEQUENTIAL LINEAR DECOMPRESSOR

TABLE V
EXECUTION TIME FOR SCAN INVERSION ON SEQUENTIAL LINEAR DECOMPRESSOR

TABLE VI
COMPARISON OF TEST DATA FOR DIFFERENT ENCODING SCHEMES

compare the results with previously published techniques. In
this case, a scan architecture with 64 scan chains was assumed
and an LFSR of size 64 was used. Table VI shows the results ob-
tained by the proposed method along with other test data com-
pression schemes. The first column shows the circuit name and
the next two columns are the number of vectors and the total
test size of the dynamically compacted test cubes generated
by MINTEST [37]. The next six columns show the number of
test vectors and the compressed test size for frequency directed
run-length codes [38], mutation encoding scheme [39], and seed
overlapping scheme [18]. The next four columns show results
for the sequential decompressor of Fig. 18 without and with
scan inversion, respectively. As can be seen from the results,
scan inversion substantially reduces the tester storage require-
ments compared to using the sequential decompressor without
scan inversion.

VIII. CONCLUSION

Two methods for improving the compression of linear com-
pression schemes, scan inversion, and reconfiguration of the de-
compressor, have been proposed in this paper. A systematic pro-
cedure based on linear algebra was described for selecting the
set of inverted scan cells. Experimental results show that scan
inversion can dramatically improve the encoding efficiency of

combinational linear decompressors bringing it close to that of
sequential decompressors. Scan inversion can also significantly
improve the encoding efficiency for sequential linear decom-
pressors. Scan inversion can be implemented with no hardware
overhead.

The reconfiguration of a linear decompressor is represented
as a constrained Boolean matrix and a symbolic Gaussian elim-
ination method is proposed to solve it. Reconfiguration requires
very little hardware. Experimental results show that compres-
sion obtained using a linear decompressor can be significantly
improved using reconfiguration.

REFERENCES

[1] A. Khoche and J. Rivoir, “I/O bandwidth bottleneck for test: Is it
real,” in Proc. Int. Workshop Test Resource Partitioning, 2000, pp.
2.3-1–2.3-6.

[2] B. Könemann, “LFSR-coded test patterns for scan designs,” in Proc.
Eur. Test Conf., 1991, pp. 237–242.

[3] S. Hellebrand, S. Tarnick, J. Rajski, and B. Courtois, “Generation of
vector patterns through reseeding of multiple-polynomial linear feed-
back shift registers,” in Proc. Int. Test Conf., 1992, pp. 120–129.

[4] N. Zacharia, J. Rajski, and J. Tyszer, “Decompression of test data
using variable-length seed LFSRs,” in Proc. VLSI Test Symp., 1995,
pp. 426–433.

[5] N. Zacharia, J. Rajski, J. Tyszer, and J. Waicukauski, “Two dimensional
test data decompressor for multiple scan designs,” in Proc. Int. Test
Conf., 1996, pp. 186–194.

BALAKRISHNAN AND TOUBA: IMPROVING LINEAR TEST DATA COMPRESSION 1237

[6] J. Rajski, J. Tyszer, and N. Zacharia, “Test data decompression for mul-
tiple scan designs with boundary scan,” IEEE Trans. Comput., vol. 47,
no. 11, pp. 1188–1200, Nov. 1998.

[7] C. V. Krishna, A. Jas, and N. A. Touba, “Test vector encoding using
partial LFSR reseeding,” in Proc. Int. Test Conf., 2001, pp. 885–893.

[8] C. V. Krishna and N. A. Touba, “Reducing test data volume using
LFSR reseeding with seed compression,” in Proc. Int. Test Conf., 2002,
pp. 321–330.

[9] I. Hamzaoglu and J. H. Patel, “Reducing test application time for full
scan embedded cores,” in Proc. Int. Symp. Fault Tolerant Comput.,
1999, pp. 260–267.

[10] I. Bayraktaroglu and A. Orailoglu, “Test volume and application time
reduction through scan chain concealment,” in Proc. Des. Autom.
Conf., 2001, pp. 151–155.

[11] ——, “Decompression hardware determination for test volume and
time reduction through unified test pattern compaction and compres-
sion,” in Proc. VLSI Test Symp., 2003, pp. 113–118.

[12] S. Mitra and K. Kim, “XMAX: X-tolerant architectures for maximal
test compression,” in Proc. Int. Conf. Comput. Des., 2003, pp. 326–330.

[13] C. Krishna and N. Touba, “Adjustable width linear combinational
scan vector decompression,” in Proc. Int. Conf. Comput.-Aided Des.
(ICCAD), 2003, pp. 863–866.

[14] A. Jas, B. Pouya, and N. Touba, “Virtual scan chains: A means for
reducing scan length in cores,” in Proc. VLSI Test Symp., 2000, pp.
73–78.

[15] B. Könemann, “A SmartBIST variant with guaranteed encoding,” in
Proc. Asian Test Symp., 2001, pp. 325–330.

[16] J. Rajski et al., “Embedded deterministic test,” IEEE Trans. Comput.-
Aided Des. Integr. Circuit Syst., vol. 23, no. 5, pp. 776–792, May 2004.

[17] E. Volkerink and S. Mitra, “Efficient seed utilization for reseeding
based compression,” in Proc. VLSI Test Symp., 2003, pp. 232–237.

[18] W. Rao, I. Bayraktaroglu, and A. Orailoglu, “Test application time and
volume compression through seed overlapping,” in Proc. Des. Autom.
Conf., 2003, pp. 732–737.

[19] C. Krishna and N. Touba, “3-stage variable length continuous-flow
scan vector decompression scheme,” in Proc. VLSI Test Symp., 2004,
pp. 79–86.

[20] K. J. Balakrishnan and N. Touba, “Improving encoding efficiency for
linear decompressors using scan inversion,” in Proc. IEEE Int. Test
Conf., 2004, pp. 936–943.

[21] ——, “Reconfigurable linear decompressors using symbolic Gaussian
elimination,” in Proc. Des. Autom. Test Eur., 2005, pp. 1130–1135.

[22] C. Cullen, Linear Algebra With Applications. Reading, MA: Ad-
dison-Wesley, 1997.

[23] N. Touba and E. McCluskey, “Transformed pseudo-random patterns
for BIST,” in Proc. IEEE VLSI Test Symp., 1995, pp. 410–416.

[24] ——, “Synthesis of mapping logic for generating transformed pseudo-
random patterns for BIST,” in Proc. IEEE Int. Test Conf., 1995, pp.
674–682.

[25] ——, “Bit-fixing in pseudo-random sequences for scan BIST,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 20, no. 4, pp.
545–555, Apr. 2001.

[26] M. Chatterjee and D. Pradhan, “A new pattern biasing technique for
BIST,” in Proc. VLSI Test Symp., 1995, pp. 417–425.

[27] H.-J. Wunderlich and G. Kiefer, “Bit-flipping BIST,” in Proc. Int. Conf.
Comput.-Aided Des. (ICCAD), 1996, pp. 337–343.

[28] G. Kiefer and H.-J. Wunderlich, “Using BIST control for pattern gen-
eration,” in Proc. Int. Test Conf., 1997, pp. 347–355.

[29] ——, “Deterministic BIST with multiple scan chains,” in Proc. Int. Test
Conf., 1998, pp. 1057–1064.

[30] L. Li and K. Chakrabarty, “Deterministic BIST based on a reconfig-
urable interconnection network,” in Proc. Int. Test Conf., 2003, pp.
460–469.

[31] A. Al-Yamani and E. J. McCluskey, “Built-in reseeding for serial
BIST,” in Proc. VLSI Testing Symp., 2003, pp. 63–68.

[32] K.-H. Tsai, J. Rajski, and M. Marek-Sadowska, “Scan encoded test
pattern generation for BIST,” in Proc. IEEE Int. Test Conf., 1997, pp.
548–556.

[33] I. Bayraktaroglu and A. Orailoglu, “Test power reduction through min-
imization of scan chain transitions,” in Proc. VLSI Testing Symp., 2002,
pp. 166–171.

[34] H. Tang, S. Reddy, and I. Pomeranz, “On reducing test data volume
and test application time for multiple scan chain designs,” in Proc. Int.
Test Conf., 2003, pp. 1079–1088.

[35] K. A. B. , J. Hewitt, and N. Nicolici, “Embedded compact deterministic
test for IP-protected cores,” in Proc. Int. Symp. Defect Fault Tolerance,
2003, pp. 519–526.

[36] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in Proc. Int. Symp. Circuits Syst., 1989,
pp. 1929–1934.

[37] I. Hamzaoglu and J. H. Patel, “Test set compaction algorithms for com-
binational circuits,” in Proc. Int. Conf. Comput.-Aided Des. (ICCAD),
1998, pp. 283–289.

[38] A. Chandra and K. Chakrabarty, “Frequency-Directed Run length
(FDR) codes with application to system-on-a-chip test data compres-
sion,” in Proc. VLSI Test Symp., 2001, pp. 42–47.

[39] S. Reda and A. Orailoglu, “Reducing test application time through test
data mutation encoding,” in Proc. Des., Autom. Test Eur., 2002, pp.
387–393.

[40] K. J. Balakrishnan, “New approaches and limits to test data compres-
sion for systems-on-chip,” Ph.D. dissertation, Dept. Elect. Comput.
Eng., Univ. Texas at Austin, Austin, 2004.

Kedarnath J. Balakrishnan (M’00) received the
B.Tech. degree in electrical engineering from the
Indian Institute of Technology, Bombay, India, in
2000, and the M.S. and Ph.D. degrees in electrical
and computer engineering from the University of
Texas at Austin, Austin, in 2002 and 2004, respec-
tively.

He is currently a Research Staff Member with
NEC Laboratories America, Princeton, NJ, where
he is leading System LSI Test projects in both gate
level and RTL designs. His research has focused on

test volume reduction techniques using test compression and built-in self-test
(BIST), system-on-a-chip (SoC) testing issues, and design for test techniques
for delay testing.

Nur A. Touba (M’92) received the B. S. degree from
the University of Minnesota, Minneapolis, in 1990,
and the M.S. and Ph.D. degrees from Stanford Uni-
versity, Stanford, CA, in 1991 and 1996, respectively,
all in electrical engineering.

He is currently an Associate Professor in the De-
partment of Electrical and Computer Engineering,
University of Texas at Austin, Austin.

Dr. Touba was a recipient of the National Science
Foundation (NSF) Early Faulty CAREER Award in
1997 and the Best Paper Award at the 2001 VLSI Test

Symposium. He is on the program committee for the International Test Confer-
ence, International Conference on Computer Design, Design Automation, and
Test in Europe Conference, International On-Line Test Symposium, European
Test Symposium, Asian Test Symposium, Defect and Fault Tolerance Sympo-
sium, Microprocessor Test and Verification Workshop, International Workshop
on Open Source Test Technology Tools, and International Test Synthesis Work-
shop.

