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Abstract—In this paper, a technique is presented for improving
the compression achieved with any linear decompressor by adding
a small nonlinear decoder that exploits bit-wise and pattern-wise
correlations present in test vectors. The proposed nonlinear
decoder has a regular and compact structure, and allows contin-
uous-flow decompression. It has a very important feature, which is
that its design does not depend on the test data. This simplifies the
design flow and allows the decoder to be reused when testing mul-
tiple cores on a chip. Experimental results show that combining a
linear decompressor with the small nonlinear decoder proposed
here significantly improves the overall compression.

Index Terms—Linear decompression, nonlinear decompression,
rectangular encoding, test vector compression.

I. INTRODUCTION

W ITH THE ADVENT of system-on-a-chip (SoC) and
3-D ICs (3D-ICs), test data volume requirements have

increased dramatically to achieve high test quality as size and
complexity continue to grow [1]. To obtain high test quality, test
data volume may exceed the memory capacity of the available
automatic test equipment (ATE). Furthermore, the large amount
of test data needs to be transferred from the ATE to a chip with
limited tester bandwidth, which results in long test time. To
overcome increased test memory requirements and tester data
bandwidth requirements, test vector compression has become
very important. Test vector compression provides a way of
reducing both the tester memory requirement and the tester data
bandwidth requirement. A number of test vector compression
techniques have been proposed in the literature.

A special class of test vector compression schemes involves
the use of a linear decompressor, which uses only linear oper-
ations to decompress the test vectors. This includes techniques
based on linear feedback shift register (LFSR) reseeding and
combinational linear expansion circuits consisting of XOR gates.
Linear compression schemes are very efficient at exploiting
don’t care values in the test cubes to achieve large amounts of
compression.

Linear decompressors expand seeds to deterministic test
cubes. A seed is an initial state of the linear decompressor
that is expanded by running the linear decompressor. Given
a deterministic test cube, a corresponding seed can be com-
puted by solving a set of linear equations (one equation for
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each specified bit) based on the feedback polynomial of linear
decompressor. Typically, since only 1%–5% of the bits in a test
vector are specified, most bits in a test cube do not need to be
considered when a seed is computed because they are don’t
care bits. Therefore, the size of a seed is much smaller than the
size of a test vector. Consequently, linear decompressors can
significantly reduce test data storage and bandwidth.

The amount of compression that can be achieved with linear
compression schemes depends directly on the number of speci-
fied bits in the test cubes. While linear decompressors are very
efficient at exploiting don’t cares in the test set, they cannot ex-
ploit correlations in the test cubes, and hence, they cannot com-
press the test data to less than the total number of specified bits
in the test data. Nonlinear decompressors, on the other hand, can
exploit correlations in the test cubes, but are not as efficient as
linear decompressors in exploiting don’t cares. Since test data
are typically only 1%–5% specified with the rest as don’t cares,
linear decompressors are generally more effective overall. This
fact coupled with the simple and compact design of linear de-
compressors is the main reason why they are used in commercial
tools.

The approach taken in this paper is to combine linear and
nonlinear compressions together to get the advantages of both.
A nonlinear decompressor is used to exploit correlations in the
specified bits to reduce the number of specified bits that the
linear decompressor has to produce. Since the amount of com-
pression achieved with a linear decompressor depends on the
number of specified bits it needs to produce, this approach re-
sults in a much greater compression than what the linear decom-
pressor could achieve by itself (preliminary results were pre-
sented in [6]).

A block diagram of the proposed scheme is shown in Fig. 1.
A rectangular decoder (which is a sequential nonlinear decom-
pressor) is placed between the linear decompressor and the scan
chains. The rectangular decoder exploits bit-wise and pattern-
wise correlations in the test cubes to reduce the number of speci-
fied bits. Consequently, the input data to the rectangular decoder
have many fewer specified bits than the test cubes themselves.
This makes the job of the linear decompressor easier since it
now needs to produce significantly fewer specified bits. The
number of bits required to be stored on the tester and transferred
to the linear decompressor basically goes down linearly with the
number of specified bits that it needs to produce, as can be seen
in the data reported in [2], and [7]–[9].

II. RELATED WORK

The first linear compression scheme that employs LFSR as a
linear decompressor was introduced in [10], where it was shown
that if is the largest number of specified bits in any test
cube, then for an LFSR of length , the prob-
ability of not being able to find a seed for some test cube is
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Fig. 1. Diagram of the proposed scheme.

less than . Several techniques were proposed to improve
the encoding efficiency of the basic scheme in [10]. Utilizing
multiple-polynomial LFSRs was introduced in [11] and [12].
An LFSR reseeding scheme with variable-length seed was pro-
posed in [13]. More recent work has focused on dynamic LFSR
reseeding, where the seed is incrementally modified as the LFSR
runs [2], [3], [7], [8]. In dynamic LFSR reseeding, the size of a
seed does not depend on , and thus, can be even smaller
than the size of an LFSR. The linear compression techniques
that utilize linear decompressors receiving test data from ATE
in a continuous flow were described in [2], [3], [7], [9], and
[14]–[21]. The continuous-flow linear decompressor is directly
connected to ATE, thereby receiving test data as fast as ATE
operates. The test data compression ratios of the previous works
that employ only linear decompressor are limited by the number
of specified bits in test cubes. To overcome this limitation, it
is proposed in this paper to employ nonlinear decompressor
on top of linear decompressor. The nonlinear decompressor re-
duces the number of specified bits, thereby compressing the test
data smaller than the number of specified bits in the original test
cubes.

There has been some previous work that has also combined
linear and nonlinear codings together, but in fundamentally dif-
ferent ways than what is done here. The inputs to the linear de-
compressor were encoded using a noniinear code in [22]. The
objective in [22] was to select the seeds for the LFSR in such
a way that they could be effectively compressed by a nonlinear
code. In the proposed scheme, the inputs to the scan chains are
encoded with a nonlinear code. The objective here is to reduce
the number of specified bits that need to be produced by the
linear decompressor. Whereas the method in [22] is only appli-
cable for LFSR reseeding, where the seed is periodically loaded,
and the proposed scheme is applicable for any linear decom-
pressor including combinational and sequential continuous-flow
decompressors (for which the method in [22] cannot be used).
Dictionary coding and LFSR reseeding are combined in [23]
such that either one or the other is used to load each scan slice.
In the proposed method, rectangular coding is combined with a
linear decompressor and both are used together for all scan bit
slices, enabling a continuous-flow decompression with greater
efficiency. A combinational statistical decoder is combined with
linear decompression in [24]. The proposed method uses a se-
quential decoder that can exploit correlations across scan slices
as well as across patterns. Results in [22]–[24] are compared
with results in the proposed study in Section VI. Note that [25]
also combines linear and nonlinear codings, but it is for a hybrid
built-in self-test (BIST) application in which many more pat-
terns are applied to the circuit under test (CUT) than the number
of patterns in a deterministic test set.

In addition to the aforementioned differences, there are two
additional key features that distinguish the proposed scheme
from earlier work. The most important is that the design of the
decoder for the proposed scheme is independent of the test set.
In all the earlier test vector compression techniques that com-
bine linear and nonlinear compressions, the design of the non-
linear decoder is customized for the test set. Having a fixed in-
dependent design for the nonlinear decoder is a major advan-
tage as it simplifies the design flow, allows for late engineering
changes to the test set, and allows the decoder to be reused when
testing multiple cores on a chip. Furthermore, unlike the ear-
lier techniques, which use a combinational nonlinear decoder,
the proposed scheme uses a sequential nonlinear decoder that
is able to exploit correlations across scan slices and across pat-
terns, thereby making it more effective.

III. RECTANGULAR ENCODING

One well-known characteristic of the test data is that certain
bit positions in test cubes tend to be correlated across many
patterns. This arises from the fact that many faults in the cir-
cuit require similar input assignments to detect. A number of
BIST schemes exploit this characteristic of test data including
weighted pattern testing, STAR-BIST [26], and folding counters
[27]. In weighted pattern testing, each weight set targets a subset
of the test cubes that have highly correlated values in a subset of
the bit positions. If one represents the test set as a test matrix in
which each row corresponds to a test cube and each column cor-
responds to a bit position, then the correlations tend to exist in
rectangles in this matrix. The idea with rectangular encoding is
to encode these rectangles with a small number of specified bits,
and then, have a simple decoder that decodes them. Since the
rectangles have a regular structure, the decoder design is simple
and independent of the test data.

A. Overview

The first step in rectangular encoding is to partition the test
cubes into clusters such that the pattern-wise correlation within
a cluster is maximized. This is done by using a clustering algo-
rithm that will be described in Section III-D. Each cluster is then
encoded as one unit. If there are scan chains, then each scan
slice consists of the bits that are shifted into the scan chains
in a clock cycle. A test cube with bits consists of scan
slices. In rectangular encoding, the scan slices for a test cube
are partitioned into a sequence of variable-length rectangles.
All the test cubes within each test cube cluster are partitioned
identically. So, in effect, the entire test matrix is partitioned into
rectangles, where the height of each rectangle is determined by
the number of test cubes in the test cube cluster it belongs to,
and the width is determined by the scan slice partitioning for
the test cube cluster it belongs to. A heuristic procedure will
be described in Section III-B for partitioning the scan slices to
maximize compression.

Within each rectangle, the largest set of scan chains that has
compatible values is identified. This set of scan chains must have
either a 1(0) or X for every scan slice across the width of the rec-
tangle and every test cube across the height of the rectangle. A
chain select mask is then defined for the rectangle that identi-
fies which scan chains should be loaded from the linear decom-
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Fig. 2. Example of test cubes.

Fig. 3. Example of rectangles.

Fig. 4. Format of rectangle control data.

pressor and which scan chains should be filled with a specified
fill value (0 or 1). So the information that is needed to decode
each rectangle in a particular test cube cluster consists of three
things. The width of the rectangle, the chain select mask, and
the fill value. This is illustrated in the small example shown in
Figs. 2–4.

In Figs. 2 and 3, there are seven scan slices (columns) and four
scan chains (rows). For simplicity, it is assumed in this example
that there are only two test cubes in a cluster, as shown in Fig. 2.
In Fig. 3, the bit compatibility for the test cubes in the test cube
cluster is shown, where a value of X indicates all the test cubes
in the cluster have X for that scan cell, a value of 1(0) indicates
that they all have either 1(0) or X for that scan cell, and a value
of indicates a conflict where both 1 and 0 are present. The
scan slices are partitioned into three rectangles.

Fig. 4 shows the format for rectangular control data, and
Fig. 5 shows the specific values for the three rectangles in
Fig. 3. The width of the rectangle in terms of scan slices is
encoded as a binary number. The maximum width of a rec-
tangle is a user-defined parameter and determines the number
of bits allocated for specifying the width (experimental data
for different maximum widths is discussed in Section VI). The
chain select mask contains 1 bit for each scan chain to indicate
if the scan chain should be loaded from the linear decompressor
or loaded with the fill value. The last bit indicates the fill value
(either 1 or 0). In the second rectangle rect , all the bits in ,

Fig. 5. Control data for three rectangles.

, and can be filled with 1 (this is not the case for
because there is a conflict in scan slice 6). As can be seen in
Fig. 5, the chain select mask in this case would be 1011 that
would load all the scan chains except with the fill value
of 1 ( would be loaded from the linear decompressor). In
rect , all the scan chains except can be loaded with the fill
value. Moreover, in this case, has only X values, and thus, it
does not matter whether it is loaded with the fill value or from
the linear decompressor, and therefore, the chain select mask is
111X in this case. The last rectangle rect is only one scan slice
wide. For very narrow rectangles, it is generally more efficient
to simply load them from the linear decompressor, and not
bother specifying a chain select mask and fill value. For this
reason, if the width of a rectangle is below some user-defined
minimum threshold, the chain select mask is simply ignored
and all the scan chains are filled from linear decompressor. The
advantage of this is that as can be seen in Fig. 5, the chain select
mask and fill value are simply don’t cares for rect .

B. Partitioning Scan Slices Into Rectangles

The reduction in the number of specified bits that the linear
decompressor has to produce (and hence, the amount of com-
pression achieved) for each rectangle depends on the number
of control bits that need to be specified for decoding the rec-
tangle versus the number of specified bits in the test cubes that
get covered with the fill value (and hence do not need to be gen-
erated by the linear decompressor). The goal in partitioning the
scan slices for a test cube cluster into rectangles is to achieve
the greatest overall reduction in the number of specified bits. A
greedy heuristic procedure for this is described in this section.

The first step is to generate a compatibility cube for the test
cube cluster. This is illustrated in Fig. 3 and has been explained
earlier. From the compatibility cube, the rectangle that provides
the largest reduction in specified bits is identified. This is done
by considering each scan slice as a starting point for a rec-
tangle and considering all possible rectangle widths (up to the
user-defined maximum rectangle width) from that starting point.
Once the best rectangle is identified, it is marked as selected and
the procedure repeats, taking into consideration that rectangles
cannot overlap. Rectangles continue to be selected in a greedy
manner until all scan slices have been included in a rectangle.

C. Reducing Size of Chain Select Mask

The amount of control data that needs to be specified for de-
coding the rectangles is typically dominated by the bits for the
chain select mask. One way to reduce these data is that instead
of using 1 bit in the chain select mask for each scan chain, 1 bit
can be used per scan chains. This reduces some of the flexi-
bility since now all scan chains controlled by the same bit in
the chain select mask need to be compatible in order to use the
fill value. However, it generally provides greater compression
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Fig. 6. Example of clustering.

since the control data are significantly reduced. Experimental
results are shown in Section VI for different values of .

D. Forming Test Cube Clusters

In rectangular encoding, the test cubes are partitioned into
clusters, and each cluster is then divided into rectangles. Some
effective algorithms for this type of clustering were described
in [28]. A similar approach is taken here, but using a different
benefit function to maximize correlation within a cluster and
also minimize the number of clusters.

In order to maximize the compression achieved for each
rectangle, it is important that the test cubes in each cluster have
many bit positions with compatible values. As more test cubes
are added to a cluster, the height of each rectangle increases.
This has the benefit of amortizing the control bits required
for decoding each rectangle over more test cubes, but there
is a tradeoff as more bit positions are likely to have conflicts
(thereby increasing the number of s in the compatibility
cube), and thus reducing the effectiveness of each rectangle.
A greedy clustering procedure that takes this tradeoff into
consideration is described here.

One test cube is used as a seed for the cluster. All other test
cubes are then considered as candidates to add to the cluster. The
heuristic that is used to measure the optimality of a cluster is the
total number of specified bits that are present in each compatible
bit position of the cluster. This value forms a benefit function
for the cluster. It is computed by considering each compatible
bit position and adding up the number of test cubes that have
a specified value in that bit position. Consider the test cubes
in Fig. 6. A cluster consisting of test cubes , , and is
compatible in the first 3 bit positions, and the total number of
specified bits in these 3 bit positions is 6 (the Xs are not counted).
The change in this benefit function is computed for adding each
candidate test cube. The one that gives the greatest improvement
in the benefit function is added to the cluster. This continues
until a point is reached, where no positive improvement in the
benefit function can be obtained by adding another test cube to
the cluster. For example, in Fig. 6, if the test cube was added
to the cluster, then the benefit function would actually decrease
because bit position 3 would no longer be compatible. Since the
final cluster is very dependent on the initial seed, all test cubes
are used as seeds and the best resulting cluster is selected. This
process is repeated iteratively for the remaining test cubes until
all test cubes are members of a cluster.

Note that while a greedy clustering procedure is described
here, any clustering procedure can be used to maximize the ben-
efit function defined before. The flow diagram of the proposed
clustering algorithm is shown in Fig. 7. The time complexity is

, assuming is the number of test cubes. The CPU time
with a 1.3-GHz machine for the overall encoding algorithm is
shown in Fig. 8.

Fig. 7. Flow diagram of the clustering algorithm.

Fig. 8. CPU time for the proposed encoding scheme.

IV. RECTANGULAR DECODER

Decoding of the rectangles is done with a sequential non-
linear decoder that is placed between a linear decompressor and
the scan chains. A block diagram for the rectangular decoder
is shown in Fig. 9. It consists of a controller that is a small fi-
nite-state machine, a RAM that stores the rectangular control
data, a RAM address pointer that points to the control data for
the next rectangle, a width counter, and a rectangular control
register that stores the control data for the current rectangle (rec-
tangle width, chain select mask, and fill value). Note that a RAM
that is present for functional purposes can be utilized in the rect-
angular decoder (it is not necessary to add an extra RAM). A
MUX is placed in front of each scan chain. The select line to the
MUX is the bit in the chain select mask that corresponds to that
scan chain. Note that if , then one bit in the chain select
mask will fan out to MUXes. Depending on the corresponding
value in the chain select mask, each scan chain will either be
loaded with the fill value or be loaded from the linear decom-
pressor. Note that if the rectangle width is below the user-de-
fined threshold, then the scan chain is loaded from the linear
decompressor regardless of the value of the chain select mask.
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Fig. 9. Block diagram for rectangular decoder.

This is implemented by adding another MUX whose select line
comes from a less-than comparator that checks the value of rec-
tangle width. Note that this is not shown in Fig. 9 for sake of
readability.

The RAM holding the rectangular control data can be loaded
through the linear decompressor from the tester, either all at the
beginning of the test session or incrementally during the test
session. If it is all loaded at the beginning, the entire rectangular
control data are transferred through the linear decompressor to
the RAM. In this case, the RAM must be large enough to store
all the rectangular control data. And one additional bit per test
cube is required to indicate whether the current test cube is in
the same cluster as the previous test cube or not. Note that the
number of outputs of a phase shifter should be larger than or
equal to the size of the rectangular control register to load the
rectangular control data into the RAM efficiently. As explained
in Section III-C, one bit in the chain select mask can be used
per scan chains. By increasing the value of , the size of the
rectangular control register can be reduced, which can be also
helpful to increase compression ratio by reducing the amount of
the control data.

The other option is to incrementally load the rectangular con-
trol data each time a new test cube cluster is started. In this case,
only the rectangular control data for one cluster need to be stored
on-chip at a time. Thus, the required RAM size would only de-
pend on the maximum number of rectangles in any cluster. Note
that if configuring the RAM for storing test data is not possible,
additional registers that can store the rectangular control data
for one cluster can substitute for the RAM. The size of the ad-
ditional register depends on the maximum number of rectangles
in any cluster.

The test set is ordered so that all the test cubes in a cluster
come in succession. An extra clock cycle is added at the start
of each test cube in which the linear decompressor generates
one specified bit to indicate to the controller whether or not this
is the start of a new test cube cluster. If it is not the start of a

new cluster, then the same rectangular data that were used for
the previous test cube is used for this one (the RAM pointer is
simply reset back to the first rectangle for this cluster). If it is the
start of a new cluster, then there are two cases. If the rectangular
control data are to be loaded incrementally, it is done at this
point (only the data needed for this cluster). If the rectangular
control data were all loaded into the RAM at the start, then the
RAM address pointer is incremented to point to the start of the
rectangular control data for this new cluster.

After this, each rectangle is decoded one at a time as the test
cube is shifted into the scan chains. For each rectangle, the con-
troller loads the rectangular control data from the RAM into
the rectangular control register, and the width counter is reset
to 0. As each scan slice is loaded into the scan chains, the width
counter is incremented. When it becomes equal to the rectangle
width, then the next rectangle is loaded from the RAM into
the rectangular control register and the RAM pointer is incre-
mented. This process repeats until the entire test cube has been
shifted in.

As can be seen, the rectangular decoder is simple, compact,
and regular. A very proficient feature is that it does not depend
on the actual test data. It can be designed so that it is capable of
decoding any set of rectangles. This simplifies the design flow
since there is no need to have the test data when implementing
the decoder.

V. ENHANCED ENCODING SCHEME

In addition to the scheme described so far, an enhancement
has been developed to maximize the advantage of rectangular
encoding. The total number of specified bits required in the pro-
posed scheme depends on two factors: the number of specified
bits in the encoded test cubes and the number of specified bits
in the control data. This section describes how to reduce both
the number of specified bits in the encoded test cube and the
number of specified bits in the control data further.
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Fig. 10. Rectangles in secondary encoding.

Fig. 11. Format of rectangle control data in secondary encoding.

Fig. 12. Control data for four rectangles in Fig. 8.

A. Secondary Encoding for Control Data

The secondary encoding scheme for control data is motivated
by the following two factors.

1) There are many rectangles that have both ‘‘fill-0’’ and
‘‘fill-1.’’ If a 1 bit fill value is employed, only one binary
value, either 0 or 1, can be filled, and the other value should
be loaded by linear decompressor even though the bit po-
sition may have high pattern-wise correlation.

2) To fill more specified bits in the test cubes by the nonlinear
decompressor, a larger number of rectangles should be em-
ployed. However, the more rectangles, the more specified
bits in the total control data. Therefore, it is important to
reduce the number of specified bits per rectangle, thereby
allow more rectangles without a significant increase in the
number of specified bits in total control data.

The rectangles for the example in Fig. 3 are shown in Fig. 10.
The format of the rectangle control data in the secondary en-
coding is illustrated in Fig. 11. Fig. 12 shows the control data
for the four rectangles in Fig. 10, using the format in Fig. 11.

As shown in Fig. 11, instead of only a 1-bit fill value, a 2-bit
encoded fill value is utilized to resolve the aforementioned two
issues. There are four modes and each mode is explained as
follows.

Fill 1: The 2-bit fill value is ‘‘11.’’ All the bits in the corre-
sponding rectangle are filled with ‘‘1.’’ Therefore, all the
chain select mask bits are don’t care bits. Only the width
is specified. rect is an example of this mode in Fig 12.
Fill 0: The 2-bit fill value is ‘‘10.’’ All the bits in the corre-
sponding rectangle are filled with ‘‘0.’’ There are no spec-
ified bits in the chain select mask bits. Only the width is
specified. rect is in an example of this mode in Fig. 12.

Fill 0/1: The 2-bit fill value is ‘‘01.’’ Some bit positions in
the rectangle are filled with ‘‘0’’ and some of the other bit
positions are filled with ‘‘1.’’ However, there is no conflict
in any bit position in the rectangle. rect is an example of
this mode in Fig. 12. In this mode, the chain select mask bit
contains fill values for each scan chain. Different from what
is described in Section II, the chain select mask bits in this
case do not indicate which value is loaded (i.e., from the
linear decompressor or from the fill value) into scan chains.
In this mode, since it is ensured that there are no conflicts
in any bit position and all the bit positions can be fixed
to either 0 or 1, the chain select mask bits are utilized to
indicate which value can be fixed for each scan chain. Note
that the width of the rectangle with this mode is always set
to 1, which means that the rectangle is composed of one
scan slice. This makes the width bits don’t care bits in this
mode, thereby reducing the number of specified control
bits.
Fill with c: The 2-bit fill value is ‘‘00.’’ There is a conflict
in some bit position. rect is an example of this mode in
Fig. 12. The bit position that has a conflict is loaded from
the linear decompressor. The chain select mask bits state
which scan chain is loaded from the linear decompressor
(where the chain select mask bit is 0) and which scan chain
is loaded by filling (where the chain select mask bit is 1),
as described in Section II. In this mode, the width of the
rectangle is always set to 1 similar to the ‘‘01’’ mode. Ex-
cept for MSB, all the other bits in the width control data
are assigned to don’t care bits. The MSB is set to the bit
that is filled into scan chains, where corresponding chain
select mask bits have 1.

The secondary encoding increases the number of rectangles
for each cluster; however, it also increases the number of
specified bits in the test cube that are filled by the fill value. The
number of control bits per rectangle is significantly decreased
compared with the use of a 1-bit fill value. Note that the
number of rectangles increases significantly with the secondary
encoding method. However, since the increased number of
rectangles makes the number of bits that must be specified
by the linear decompressor minimal, the overall number of
specified bits is reduced compared to use of a 1-bit fill value.
According to the experimental results, except for two cases
(10 scan chains and 20 scan chains in s15850), the number
of total specified bits is reduced in all the other cases. The
secondary encoding scheme adds only a very small amount of
extra combinational decoding logic (a few additional MUXes)
to the rectangular decoder shown in Fig. 9.

B. Test Cube Clustering Based on Scan Chain Information

The clustering algorithm described in Section II-D has one
form of the clusters regardless of the number of scan chains for
a test set. It maximizes pattern-wise and bit-wise correlations
in each rectangle. However, the clustering algorithm does not
count for the correlation among scan chains in a rectangle. A
rectangle contains bits in multiple scan chains, and in order to fix
all the bits over all scan chains in the rectangle, the correlation
among the bits in the scan chains is as important as pattern-wise
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TABLE I
RESULTS FOR RECTANGULAR ENCODING SCHEME

Fig. 13. Representative cube generation.

correlation and bit-wise correlation. The improved clustering al-
gorithm described in this section considers the scan-chain-wise
correlation in addition to the pattern-wise and bit-wise correla-
tions. This can be accomplished by simply adding one more step
in the clustering algorithm described in Section II-D.

Before running the clustering algorithm, each test cube is
translated into a representative cube. The representative cube
contains correlation information among scan chains. In the rep-
resentative cube, each bit position indicates the specified bit in
each scan slice. Fig. 13 shows an example of the representative
for a test cube. If a scan slice has 1 and X only, then the corre-
sponding bit position is a ‘‘1.’’ If there are both 0 and 1 in a scan
slice, the corresponding bit position in the representative cube
has ‘‘c,’’ which means that the scan slice is not correlated (i.e.,
it has a conflict).

The representative cubes for all test cubes in a test set are cre-
ated and given to the clustering algorithm described in Section
II-D instead of the test cubes. Since the representative cube can
be different based on the number of scan chains, the configura-
tion of clusters depends on the number of scan chains. Using the
representative cubes, the clustering method can consider the cor-
relation among scan chains as well as bit-wise and pattern-wise
correlations, thereby providing more efficient clusters for the
rectangular encoding scheme.

VI. EXPERIMENTAL RESULTS

Experiments were performed on the four largest ISCAS-89
circuits. The test cubes used in the experiments were gener-
ated in the following way. Atalanta generated uncompacted test
cubes, and then, bit stripping was performed [29]. Finally, the
test cubes were merged to minimize the number of specified bits.
In Table I, the number of test cubes and the number of speci-
fied bits in deterministic test sets are shown in the second and

Fig. 14. Specified bits versus width and � value in s38417

third columns. The fourth column shows the number of clusters
obtained with the pattern clustering algorithm described in Sec-
tion II-D. Results for the proposed method were generated for
three different numbers of scan chains. In the sixth column, the
number of total rectangles across all clusters is shown. The next
three columns show the size of a rectangle control data required
for each rectangle. ‘‘ ’’ is the number bits used for the rec-
tangle width, ‘‘ ’’ is the number of chain select mask bits, and
‘‘ ’’ is the number of total bits per rectangle (which is equal to

plus 1 for the fill value). Note that in all cases,
(i.e., each chain select mask bit controlled two scan chains), and
thus, is equal to the number of scan chains divided by 2 in all
cases.

Note that the graph in Fig. 14 (top) shows the total number of
specified bits with different values for . As can be seen,
the best result occurs for . The graph in Fig. 14 (bottom)
shows the total number of specified bits using different num-
bers of bits for specifying the rectangle width (i.e., using dif-
ferent maximum rectangle widths) for . The best result
is observed when using 4 bits for the width. In all of the circuits
except for , the best result is observed using 4 bits, while
for it is observed for 3 bits.

The total number of specified bits that the linear decom-
pressor has to produce when using the proposed nonlinear
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TABLE II
RESULTS FOR ENHANCED RECTANGULAR ENCODING SCHEME

TABLE III
AREA OVERHEAD FOR CONTROL LOGIC

decoder is shown in the 12th column (this includes all the
specified rectangular control data as well as the extra bit for
each test cube to indicate if it is the start of a new cluster.)
The percentage reduction in specified bits is shown in the next
column. As can be seen, the number of specified bits that the
linear decompressor has to produce is significantly reduced.
This reduction in the specified bits is a very powerful result
because it means that in most cases, up to an additional 30% or
more, compression can be achieved on top of the best possible
compression that is currently available for any linear decom-
pression scheme. If the test data bandwidth is held constant,
this translates to an equivalent reduction in test time. As the
number of scan chains increases, the number of specified bits
required for the proposed scheme increases slightly, but not
much. The last column shows the size (in number of bits) of
the RAM required to store the rectangular control data if it is
incrementally loaded. Note that it is very small.

Table II shows results with the enhanced rectangular en-
coding scheme. The greatest difference between the original
rectangular scheme and the enhanced scheme is that the number
of rectangles employed in the enhanced scheme increases dras-
tically compared to the number of rectangles in the original
scheme (Table I). The large number of rectangles contributes to
reducing the number of specified data bits even more than the
original rectangular encoding. On the other hand, the number
of specified control bits increases due to the large number of
rectangles. As explained in Section V, the secondary encoding

TABLE IV
RESULTS COMBINED WITH PARTIAL RESEEDING

scheme is employed to minimize the increase in the number of
specified control bits. As a result, more reduction in the number
of specified bits can be achieved by the enhanced rectangular
scheme, as shown in the 13th column in Table II.

The area overhead for the control logic in the original rectan-
gular encoding scheme is calculated based on standard cell area
and shown in Table III. For the overhead calculation, the stan-
dard library for a TSMC 0.18- process [30] has been utilized.
The second column actually shows the sum of widths of all the
standard cells in each ISCAS-89 benchmark circuits. The height
for all the cells is 5 . Table III shows major components in
the control logic from the third column to the sixth column. The
RAM memory required for the proposed scheme is shown in
the sixth column. Note that the RAM memory is not additional
overhead if a functional RAM can be configured to be utilized
as proposed. As shown in the eighth column, the area overhead
in this case is very small (0.61% 2.54%). If a functional RAM
cannot be used during test, then additional registers whose size
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TABLE V
RESULTS COMPARED TO [22]–[24]

is equal to value in the sixth column are required to store rectan-
gular control data for one cluster. In the scenario where a func-
tional RAM cannot be used for test data decompression, the ad-
ditional registers become a dominant component in the hard-
ware overhead.

Results for combining the proposed scheme with an actual
linear decompressor are shown in Table IV. The number of test
patterns in the test set and the number of specified bits that need
to be generated using the linear decompressor in [8] alone and
using it with the proposed scheme are shown in Table IV. As
can be seen, the reduction in test storage is very closely related
to the reduction in specified bits. Note that the proposed scheme
can be used with any linear decompressor.

We also compared the number of specified bits and tester
storage required in the proposed scheme to the number of speci-
fied bits and tester storage required in [22]–[24] in Table V. The
same test set is employed in [22], [24], and the proposed study,
while [23] does not ([23] employs Mintest test set). As shown
in Table V, the proposed scheme achieves the highest compres-
sion ratio in all the circuits, which is enabled by reduction in the
number of specified bits. Compared with [23], more compres-
sion ratio is observed in the proposed study. Another important
advantage over [23] is that the decoder in the proposed scheme
is independent of circuit or test data, while [24] requires a dic-
tionary that is dependent on circuit. Note that the Mintest test
set in [23] has a smaller number of test cubes and more incon-
sistent in terms of the number of specified bits than the test set
used in the proposed study.

Note that [24] reports the best tester storage results among
compression schemes that use both linear and nonlinear tech-
niques. In all the cases shown in [24], the proposed scheme
reduces the number of specified bits more. Not only does the
proposed scheme provide greater compression than previous
schemes that combine linear and nonlinear compression tech-
niques (i.e., [22]–[24]), it also allows continuous flow decom-
pression and the design of the decoder is independent of the test
data.

The percentage of specified bits in the test sets for the
ISCAS-89 circuits (around 5%–20%) is typically much higher
than what is reported for industrial circuits. Experiments were
performed to see how effective the proposed scheme would
be with much lower percentages of specified bits. A test set
that has 2% specified bits was randomly generated with dif-
ferent degrees of correlation. The amount of correlation was
controlled by a variable B% that determines both the bit-wise
correlation and the pattern-wise correlation. Each bit has a 2%
probability of being specified and 98% probability of being
a don’t care. If a bit is specified, then it has B chance of
having the same specified value as the previous specified bit

Fig. 15. Results for test set having few specified bits.

in the test cube. Pattern-wise correlation is generated in the
following way. If the previous test cube was specified in some
bit position, then there is a 50% chance for the current test cube
to be also specified in the same bit position and a B chance
of having the same specified value as the previous test cube.
Fig. 15 shows how the percentage reduction in the number of
specified bits varies with the amount of correlation. Test sets
typically have quite a bit of correlation, so these data suggest
that the proposed method can be quite effective.

VII. CONCLUSION

The proposed scheme harnesses the power of linear and non-
linear decompressions together using a simple and compact de-
coder whose design is independent of the test set. Note that the
compression could be significantly improved if scan chain re-
ordering was employed along with the proposed scheme to in-
crease bit-wise correlation.
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