
320 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2013

Improved Trace Buffer Observation via Selective
Data Capture Using 2-D Compaction for

Post-Silicon Debug
Joon-Sung Yang, Member, IEEE, and Nur A. Touba, Fellow, IEEE

Abstract—This paper presents a novel technique for extending
the capacity of trace buffers when capturing debug data during
post-silicon debug. It exploits the fact that is it not necessary to cap-
ture error-free data in the trace buffer since that information can
be obtained from simulation. A selective data capture method is
proposed in this paper that only captures debug data during clock
cycles in which errors are present. The proposed debug method re-
quires only three debug sessions. The first session estimates a rough
error rate, the second session identifies a set of suspect clock cycles
where errors may be present, and the third session captures the
suspect clock cycles in the trace buffer. The suspect clock cycles
are determined through a 2-D compaction technique using mul-
tiple-input signature register signatures and cycling register sig-
natures. Intersecting both signatures generates a small number of
suspect clock cycles for which the trace buffer needs to capture.
The effective observation window of the trace buffer can be ex-
panded significantly, by up to orders of magnitude. Experimental
results indicate very significant increases in the effective observa-
tion window for a trace buffer can be obtained.

Index Terms—2-D compaction, observation window, post-silicon
debug, selective data capture, trace buffer.

I. INTRODUCTION

W ITH the advancement of process technology, larger
and more complex devices are being manufactured.

Along with the increased complexity, there are shorter time to
market requirements. Moreover, simulation models are increas-
ingly less accurate in nanometer technologies. Consequently,
post-silicon debug has become a critical stage in the design
process.
Pre-silicon verification techniques play a significant role to

provide an equivalence check between the implemented design
and its specification using techniques such as functional sim-
ulation, formal verification, etc. [5], [6], [13]. However, given
the difficulty in modeling complex ICs and the limited compu-
tational resources for simulation or verification [21], the first
silicon may not be error-free.

Manuscript received February 18, 2011; revised September 13, 2011; ac-
cepted December 15, 2011. Date of publication January 31, 2012; date of current
version January 17, 2013. This work was supported in part by the National Sci-
ence Foundation under Grant CCF-0916837.
J.-S. Yang is with Intel Corporation, Austin, TX 78746 USA (e-mail: js21.

yang@gmail.com).
N. A. Touba is with the Department of Electrical and Computer Engi-

neering, University of Texas at Austin, Austin, TX 78712-1084 USA (e-mail:
touba@ece.utexas.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TVLSI.2012.2183399

Many bugs and errors such as logic errors, timing errors,
physical design errors, etc., may go undetected in the pre-sil-
icon verification phase and may cause nonconforming chip be-
havior. Post-silicon debug starts when the first silicon arrives
[17]. [2] shows that post-silicon debug has become a bottleneck
which could consume more than 35% of the chip development
cycle. The International Technology Roadmap (ITRS) for Semi-
conductors indicates that labor intensive post-silicon techniques
such as mechanical probing could bring an exponential time in-
crease [16]
Design-for-debug (DFD) methodologies can be used to add

debug support for a more speedy and accurate process. They are
inserted in the design to extract the information from the logic
and to enhance the internal signal observability. Finding infor-
mation about when (temporal) and where (spatial) failures occur
is the key issue in post-silicon debug. Scan chains and on-chip
memories have been used to provide internal signal information
for the silicon debug process.
Scan chains are widely used to support manufacturing test

by allowing a dump of the system state. Acquisition of internal
signal information is the key issue of post-silicon debug. There-
fore, scan chains are reused for post-silicon debug. Scan-based
debug techniques [7], [8], [9], [21] can achieve high observ-
ability of internal signals. However, it requires halting the
system to scan out responses from the circuit-under-debug
(CUD). Circuit misbehavior can be identified via internal
system states which are read out through the scan chains.
To monitor continuous operation of the CUD, trace buffers

are also commonly used to capture data from a limited number
of signals during system operation [2], [4], [18], [19]. They are
very helpful as they provide real-time at-speed observation of
signals across many clock cycles. Unfortunately, they are a lim-
ited resource and store a limited amount of data. The amount
of data that can be acquired is determined by the size of trace
buffers. There have been some techniques proposed to increase
the effectiveness of the trace buffer by compressing the data for
debug. As suggested in [3], the width and depth of the observa-
tion window in the trace buffer can be defined. One can view the
width of the observation window provided by a trace buffer as
the number of signals observed each clock cycle and the depth
of the observation window as the number of clock cycles over
which the signals are observed.
In this paper, a new post-silicon debug technique for electrical

bugs that utilizes a trace buffer is presented. Preliminary results
were presented in [19]. A key feature of the proposed approach
is that it significantly expands the observation window size by
selectively storing the debug data.

1063-8210/$31.00 © 2012 IEEE

YANG AND TOUBA: IMPROVED TRACE BUFFER OBSERVATION VIA SELECTIVE DATA CAPTURE 321

Section II provides a review of the related work. Section III
gives an overview of the proposed debugging scheme.
Section IV discusses the three pass debug procedure in detail.
Section V describes hardware architecture of the proposed
scheme. Experimental results are shown in Section VI and
conclusions are given in Section VII.

II. RELATED WORK

In [1] and [10], post-silicon debug techniques are proposed
to enhance the signal visibility for combinational signal values.
They try to reconstruct the values of more internal signals
than captured each clock cycle in the trace buffer and hence
these techniques expand the effective width of the observation
window, but not its depth. [12] shows an automated data
restoration method for sequential circuits. They try to restore
the missing states which are not captured in a trace buffer by
defining forward restorability in the circuit.
In [3], a debug architecture is proposed for embedded logic

analysis using lossless compressions techniques. Lossless com-
pression methods based on different dictionary coding algo-
rithms are studied and implemented using content-addressable
memory (CAM) to compress the debug data stored in a trace
buffer. This compression technique can expand the depth of the
observation window in embedded logic as well. Experiments
were run on an MP3 decoder [15] and results for MP3 stereo
data show that the observation window size can be expanded up
to 3.45 times larger. However, the achievable compression ratio
via dictionary coding varies greatly depending on how corre-
lated the data is. While the amount of compression is modest,
a useful feature of the compression architecture in [3] is that it
is a one-pass debugging scheme which does not require re-run-
ning the debug sessions. Debugging in circuits that have sources
of non-determinism like asynchronous interfaces may not allow
reproducing the circuit operation, hence, a one-pass debugging
method is necessary to help finding the root cause of errors.
If the behavior is deterministic and repeatable, as stated, scan

chains can be used. A debug module with scan chains can pro-
vide start, stop, resume and single-step operations [20]. Scan
dumps provide high observability of internal states after the
triggering event. Scan chains can be used in a binary search
manner which iteratively divides the search space in half until
the first cycle that the error is activated and captured. Hence,
multiple debug sessions may be required to narrow down the
temporal and spatial error information with scan-based debug.
Trace buffers can store a limited number of consecutive real-
time internal signals. [4] proposes a debug method using trace
buffers that is applicable to repeatable debug cases. For ex-
ample, automatic test equipment (ATE) and a target application
board that can operate synchronously to allow cycle determin-
istic debug. The debug architecture in [4] requires re-running
the debug session many times which compacts the observed sig-
nals in a MISR and stores MISR signatures in the trace buffer
over progressively finer resolutions of time in each debug ses-
sion. This approach implements an accelerated binary search
that gradually zooms in on clock cycles in which errors may
occur. When multiple trace buffer data and golden signature
comparisons leave the size of debug data search range small
enough to capture in the trace buffer, then the trace buffer is

used to capture all the data in the remaining portion of the cur-
rent search. This is nice and effective idea for accelerating debug
methods based on binary search, however, it may not be a suit-
able replacement for more conventional applications of trace
buffers because it can require a large number of debug sessions.
In this paper, on a cycle-accurate deterministic test environ-

ment, a new debug method for expanding the depth of the ob-
servation window for a trace buffer is proposed to enhance the
efficiency of trace buffer usage. The proposed method requires
only three debug sessions. It can expand the depth of trace buffer
by orders of magnitude which can greatly speed up the debug
process. It is also compatible with other methods for expanding
the width of the observation window. The proposed method ex-
ploits the fact that it is not necessary to capture error-free data in
the trace buffer since that information is obtainable from simu-
lation. The trace buffer need only capture data during clock cy-
cles in which errors are present. During the first debug session,
the rough error rate is measured, in the second debug session, a
set of suspect clock cycles where errors may be present is deter-
mined, and then in the third debug session, the trace buffer cap-
tures only during the suspect clock cycles. The suspect clock cy-
cles are determined through a 2-D compaction technique using
a combination of multiple-input signature register (MISR) sig-
natures and cycling register signatures. By intersecting the sig-
natures, the proposed 2-D compaction technique leaves only a
small set of remaining suspect clock cycles for which the trace
buffer needs to capture data.

III. OVERVIEW OF PROPOSED SCHEME

The proposed scheme involves adding a debug module to a
trace buffer which is able to support three operations which are
executed in separate debug sessions. The signals being sampled
in each clock cycle will be collectively referred to here as the
“ ”. Three debug sessions are needed to capture pos-
sibly erroneous data. The (i.e., data word errors per
clock cycle) is estimated using lossy compression with a parity
generator in the first debug session. Based on the estimated error
rate, the maximum possible expanded observation window size
can be computed for the given trace buffer size. The following
equation shows the rough window size:

is the expanded observation window size,
is the number of data words that can be stored

in the trace buffer, and is the number of data word
errors (any data bit errors in a data word) per clock cycle. Since
all the erroneous data words must be stored in the trace buffer,
the observation window cannot contain more errors than can fit
in the trace buffer.
In the second debug session, during the clock cycles in the

maximum expanded observation window range from the first
debug session, the 2-D compaction is activated to determine the
suspect set of clock cycles in which errors may occur. The 2-D
compaction consists of using both aMISR and a cycling register
and data words are compacted by both compactors. Signatures
from both compactors are intersected to identify the suspects.
From the MISR, signatures are generated and each signature

322 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2013

compacts consecutive data words. A cycling
register of length compacts the data words such that every
th data word is XORed together in each signature. Because

data words cycle with the length of the cycling register,
the cycling register indicates whether erroneous data exists in
each module set of data words. An erroneous data word pro-
duces an erroneous MISR signature and erroneous cycling reg-
ister signature, respectively. Since erroneous data words corrupt
signatures in the compactors, the suspect clock cycles in which
errors occurred can be identified by observing the intersections
of the faulty signatures from both compactors (MISR and cy-
cling register).
In the third debug session, during the suspect clock cycles,

debug data is captured in the trace buffer. If there is no aliasing
in the compactors, then capturing all suspect clock cycles guar-
antees that all errors in the expanded observation window will
be captured in the trace buffer. The proposed debug method
depends on the signatures from lossy compressors, however, as
will be shown, the probability of aliasing is extremely small for
low error rates (i.e., error rates below 1%). For debug, where
the part has already passed a manufacturing test, errors may
manifest at certain corner cases such as some specific voltage
levels and frequencies of the system. The proposed scheme
exploits debug cases with low error rates allowing selective
capture by lossy compactors to achieve significant observation
window size expansion which greatly enhances visibility.

IV. DETAILS OF THE THREE DEBUG SESSIONS

The following subsections describe each of the debug ses-
sions in detail.

A. Session 1—Estimating Expanded Observation Window Size
Based on Parity

In the first debug session, the debug module computes the
parity of the data word each clock cycle and stores it in the trace
buffer. When the trace buffer gets full, the older data is over-
written, so at the end of the debug session, the tracefer contains
the parity information for the last set of data words. This infor-
mation is downloaded to a workstation and compared with the
fault-free parity values computed through fault-free simulation.
By comparing the fault-free parity with the observed parity, the
number of erroneous data words can be roughly estimated. Be-
cause single-bit parity detects only the odd errors in the data
word, only roughly half of errors in the data words are proba-
bilistically detected during the first debug session. A rough esti-
mate of the error rate can be obtained by multiplying the number
of parity errors by 2 and dividing by the total number of parity
bits stored in the trace buffer. For example, if two parity bits
in a 512 byte trace buffer are erroneous, then the error rate is
2 bit . The trace buffer size divided by
the error rate is used to estimate the maximum trace buffer ob-
servation window size as explained in Section III. Note that the
achieved observation window size may be considerably smaller
than the maximum. The reasons for this will become clear later
and will be discussed in Section VI. The maximumwindow size
as used as the starting point for 2-D compaction in the second
session.

Fig. 1. Session 1: Parity generation.

Fig. 1 illustrates the operation of the debug module in the first
session. Note that the XOR tree can be pipelined as necessary to
meet timing requirements.

B. Session 2—Determining Suspects

2-D compaction is performed in the second debug session.
Signatures are generated using the MISR and cycling register
beginning from the starting point of the maximum observation
window estimated in the first debug session. The trace buffer
is used to store both the MISR signatures and the cycling
register signatures. Assume locations are allocated to store
the MISR signatures and locations are allocated to store
cycling register signatures. The MISR signatures are stored
every clock cycles and the MISR is reset at
that time so that the signatures are independent. The cycling
register signatures are generated by XORing together the data
word coming in with one of the locations in the trace buffer
pointed to by a mod- address counter. In this manner, the
cycling register will generate signatures which consist of the
XOR of every th data word.
1) 2-D Compaction:
2-D Compaction Example: Fig. 2 illustrates the operation

of the 2-D compactor. A phase shifter is placed before the
MISR. The purpose of this phase shifter is to eliminate shift
correlation among the data feeding into the MISR (and it
can also be used to perform space compaction if the MISR
is smaller than the data word). Each MISR signature com-
pacts a consecutive sequence of data words.
A symbolic expression of the data words compacted in the
signatures is shown in Fig. 3 for a small example with a total
of 20 clock cycles of data words with and . A
MISR signature is generated every
clock cycles. represents the first MISR signature and

denotes the data word in clock cycle 1. MISR signature
1 compacts the data words in cycles 1 through 4 which is
expressed as . The cycling register
compacts every th data word. The first signature in the

YANG AND TOUBA: IMPROVED TRACE BUFFER OBSERVATION VIA SELECTIVE DATA CAPTURE 323

Fig. 2. Session 2: General concept for 2-D compaction.

Fig. 3. Example of symbolic 2-D compaction using MISR with and
cycling register with for 20 clock cycles.

cycling register in Fig. 3 is denoted as and is expressed as
since .

If is faulty, then and will mismatch with the
fault-free signatures assuming there is no aliasing. The mis-
matching signatures, and are highlighted in gray in
Fig. 3.

Aliasing Probability Analysis: The probability of aliasing
in the MISR depends on the size of MISR. For a 32 bit MISR,
it is , and for a 16 bit MISR, it is . Hence, for a
sufficiently large MISR, this aliasing probability is negligible.
Aliasing in a cycling register signature occurs when an even
number of bit errors occur in the same bit position. The proba-
bility of aliasing in a cycling register signature when the error
rate is low is approximately equal to the probability of a two-bit

error occurring in the same bit position in a cycling register
signature (the probability of 4-bit and higher even bit errors are
negligibly small compared with 2-bit errors) which is equal to

where denotes the number of compacted in
the cycling register signature. For low bit error rates, the aliasing
probability is negligible for the cycling register as well.
The reason why the cycling register is used instead of a MISR

is that more read ports from the trace buffer would be needed
to implement a MISR feedback which has multiple tap points.
The cycling register feedback has only one tap point plus the
data coming in, hence, one word from the trace buffer is read,
XORed with one word coming in and written back. However, if
a MISR is used, multiple words from the trace buffer are needed
to generate the feedback each clock cycle which would require
more read ports.
2) Cycle Tag Data Generation: As shown in Fig. 3, erro-

neous data in corrupts signatures in the MISR and cycling
register and they are highlighted in gray color. By finding the in-
tersection of the mismatching signatures, the suspect clock cy-
cles can be identified. In Fig. 3, intersecting with
gives .
At the end of second session, all the MISR signatures and cy-

cling register signatures in the trace buffer are downloaded to a
workstation where they are compared with the fault-free signa-
tures obtained from simulation. The set of suspects are formed
by intersecting all mismatching MISR signatures with all mis-
matching cycling register signatures and including any clock
cycle that is in the intersection.
In the third session, the trace buffer must capture during the

suspect clock cycles. The information about when to capture is
downloaded into the trace buffer before the start of the third ses-
sion. The information is represented as a set of “cycle tag bits”,
one for each clock cycle in the observation window. Each sus-
pect clock cycle is indicated by setting its corresponding cycle
tag bit to 1 and each vindicated clock cycle is denoted by setting
its corresponding cycle tag bit to 0. For the example in Fig. 3,
the cycle tag bit for is set to 1, and 0 is assigned to the rest of
the clock cycles. In this case, the 20 bit tag information is gener-
ated as . In the third session, the
tag bits are cycled through and used to trigger the trace buffer
to capture during the suspect clock cycles.
Fig. 4 shows the algorithm for computing the cycle tag bits.

Each tag bit has a value of 1 only when the corresponding
clock cycle belongs to both a mismatching MISR signature
and mismatching cycling register signature. Assume the th
MISR signature is mismatching, then the suspect clock cycles
in the th MISR signature are
cycle cycle . With these clock cycles,
cycle th cycling register signature is checked. If the
corresponding cycling register signature is faulty, 1 is assigned
to the corresponding cycling tag bit. The following shows the

324 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2013

Fig. 4. Cycle tag bit generation algorithm.

elements of the th MISR signature and how the corresponding
cycling registers are checked.

...

One complication that arises is that since the cycle tag bits are
stored in the trace buffer to capture suspect clock cycles in the
third session, the size of a trace buffer could become a limiting
factor on the size of expanded observationwindow. If a cycle tag
bit corresponds to one clock cycle, then the maximum number
of cycle tag bits that can be stored in the trace buffer sets an
upper boundon the observation window size. For example, if a
1 kB trace buffer is used, it can only store tag information for
up to 8192 bits and hence the observation window would be
limited to maximum 8192 clock cycles. This may be lower than
necessary.
To avoid this limitation, it may be necessary to compress the

cycle tag bits. A simple way to do this is to have each tag bit
correspond to a consecutive sequence of clock cycles rather than
a single clock cycle. The cycle tag bits can be initially computed
one per clock cycle, and then successive cycle tag bits can be
grouped and compressed into a single bit. One compressed bit is
used to represent the whole group. Since a single bit represents
multiple clock cycles, the observation window can be extended
with the same number of tag bits stored in a trace buffer. To
form the cycle tag bit compression, successive cycle tag bits are
investigated. A compressed tag bit has value 0 when there are

Fig. 5. Example of symbolic 2-D compaction using MISR with and
cycling register with for 30 clock cycles.

no 1 s in a group, and it has 1 if there is at least one 1. If the
compressed tag bit is 1, the trace buffer must capture during all
the corresponding clock cycles.
Fig. 5 shows a small example of 2-D compaction with a total

of 30 clock cycles with and . , and are er-
roneous and corrupt , , and . Intersecting the sig-
natures identifies , , and as suspects. The following
30 bit tag data is generated:

If tag compression is used to group 2 cycle tag bits into one com-
pressed tag bit, then the 30 bit tag data is compressed into the fol-
lowing 15-bits
which is also illustrated in Fig. 8.

C. Session 3—Capturing Suspect Clock Cycles

In the third debug session, suspect clock cycles are selectively
captured in a trace buffer using the tag information. The cycle
tag data generated in Session 2 is stored in the trace buffer at
the start of Session 3. During session 3, when in the expanded
observation window from Session 1, the trace buffer captures
data whenever the cycle tag bit (or compressed cycle tag big)
for the corresponding clock cycle has a value of 1 indicating it
is a suspect.
The tag data generated in Session 2 is stored in the trace buffer

at the start of Session 3. During Session 3, when in the expanded
observation window, the trace buffer captures data whenever
the tag bit (or compressed tag bit) for the corresponding clock
cycle has a value of 1 indicating it is a suspect. As illustrated
in Fig. 6, both the tag bits and the captured data are stored in
the trace buffer. As the tag data is read out of the trace buffer,
it can be overwritten in the trace buffer by the captured data.
Enough slack has to be incorporated so that the captured data
never overwrites any unread tag data.
In the 2-D compaction example in Fig. 3, is identified

as a suspect clock cycle and the cycle tag bits were generated

YANG AND TOUBA: IMPROVED TRACE BUFFER OBSERVATION VIA SELECTIVE DATA CAPTURE 325

Fig. 6. Session 3: Selective debug data capture with cycle tag data.

Fig. 7. Data in trace buffer for 15 tag bits from example in Fig. 3.

Fig. 8. Data in trace buffer for 15 compressed tag bits from example in Fig. 5.

without compression as . The se-
lective data capture process is shown in Fig. 7 after the third ses-
sion. For the example in Fig. 5, the 30 cycle tag bits are gener-
ated and compressed down to 15 tag bits as illustrated in Fig. 8.
As a result of this compression, in addition to the suspects (,

, and) from the original 30 cycle tag bits, three addi-
tional clock cycles are also captured in the trace buffer, namely
(, , and).
The proposed scheme uses the information from 2-D com-

paction to significantly increase the size of observation window
by the selective data capture. Expanding the trace buffer obser-
vation window gives visibility over wider range of data. Hence
the proposed approach reduces the overall silicon debug time.

Fig. 9. Hardware architecture of aroposed debug module for three debug ses-
sions.

V. HARDWARE ARCHITECTURE OF DEBUG MODULE

The hardware architecture for a proposed debug module is
illustrated in Fig. 9. To perform the operations discussed in
Section IV, the debug module activates different functional
blocks using the signal.
In Session 1, the signal enables the parity gen-

eration mode and the phase 1 block shown in Fig. 9 performs
the operation. In this mode, the debug data is compressed via
an XOR tree to generate a single parity bit each clock cycle. The
single parity bits are stored in the trace buffer and used for esti-
mating the error rate in the data words. This information is used
to roughly estimate the expanded observation window size. As
discussed in Section IV, a parity generator can be pipelined to
avoid timing issues.
Once session 1 is finished, the signal activates

the 2-D compactors (a MISR and a cycling register) in the phase
2 block. The MISR and cycling register signatures are gener-
ated and stored in the trace buffer. Since the number of inter-
sections is generally minimized when using an equal number
of MISR signatures and cycling register signatures, half of the
trace buffer is used to store MISR signatures and the other half
is used to operate as a cycling register by a modulo operation
and to store cycling register signatures. block periodi-
cally resets a MISR so as to generate an independent signature
and reads out the intermediate cycling register signature
to run the modulo operation with incoming debug data. Cycling
tag bits are generated using both signatures by finding the inter-
sections from mismatching signatures. With a low error rate in
a debug data, the tag information compression helps to signifi-
cantly expand the observation window size.
In Session 3, the signal activates the selection

logic in the phase 3 block which selectively captures the debug
data based on the tag information. A cycle tag bit shift register
is used to provide serial access to the tag bits so they can be
checked one bit at a time each clock cycle. The suspect clock
cycles are selectively captured whenever the tag bit is 1. The

block is programmed with the tag bit compression

326 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2013

TABLE I
RESULTS FOR PROPOSED METHOD FOR DIFFERENT SIZE TRACE BUFFERS AND ERROR RATES

information so that successive clock cycles are captured de-
pending on the compression ratio.
Trace buffers are usually located at multiple locations in a

chip [2]. The proposed debug hardware can be added to each
trace buffer and obtain debug information at various sites.
Different locations may capture different system misbehavior,
hence, based on the error rates from different locations, each
debug module can be independently activated at different
cycles in the same debug session to increase the debugging ca-
pability. For example, assuming two debug modules are placed,
debug module 1 can start executing 2-D compaction from
cycle 100 and debug module 2 can perform 2-D compaction
from cycle 1000. Since the hardware cost is relatively small
and the signal can disable the debug module, this
2-D compression debug methodology can be incorporated with
other silicon debug techniques [2], [9], [20], [21], to enhance
the post-silicon debug process as well.

VI. EXPERIMENTAL RESULTS

In this section, experimental results are presented for an ARM
based processor design [14] and a NOC (network-on-chip) de-
sign on MPEG-4 Video Object Place Decoder [11]. Faults were
randomly injected in circuits to produce misbehavior in the
system and to generate erroneous data with a low error rate. By
changing the injected faults, a set of experiments for different
error rates were generated. A 32-bit data bus is used in an
ARM-based design, and the NOC design uses a 64-bit data bus.

The data bus was assumed to be observed by the trace buffer to
perform the proposed debug technique.
Table I shows the results for different error rates using four

different size (512, 1 K, 2 K, and 4 kB) trace buffers. The error
rates in the data bus are shown in the second column. The error
rates are computed as the number of data bus words (32-bit and
64-bit) with errors divided by the total number of data bus words
and represented as a percentage. The third column shows the
conventional observation window size in terms of the number
of clock cycles worth of 32-bit/64-bit data words that could be
stored in the trace buffer. If a 512 byte trace buffer is used, it
only can capture 128 clock cycles worth of 32-bit words and 64
clock cycles worth of 64-bit words from the data bus. The fourth
column shows the expanded observation window size that can
be obtained using the proposed debugging method. The fifth
column shows the expansion ratio which is computed as the ex-
panded observation window size divided by the conventional
observation window size. The proposed method shows that the
observation window can be significantly expanded by orders of
magnitude depending on the error rates. The last column shows
the error aliasing percentage which is a critical index repre-
senting how accurately the suspect debug data can be captured.
As can be seen from the results, the lower the error rate, the
fewer the number of mismatching signatures from the MISR
and cycling register. The 2-D compaction yields fewer inter-
sections between both mismatching signatures and, hence, this
results in storing fewer suspect clock cycles and significantly
expands the observation window. The experimental results had

YANG AND TOUBA: IMPROVED TRACE BUFFER OBSERVATION VIA SELECTIVE DATA CAPTURE 327

Fig. 10. Expansion ratio estimation with different error rate.

only one case where aliasing occurred and this resulted in a loss
of 2.43% of the erroneous data words. As shown in Section IV,
the aliasing probability depends on the bit error rate and the
number of data words compacted in a compactor. With a given
error rate in the system, the aliasing probability can always
be reduced by using a less aggressive expanded observation
window size. The aliasing probability of the proposed debug-
ging method is negligible, however, the suspect clock cycles can
be captured more accurately with less observation window size.
Fig. 10 shows a trace buffer expansion ratio estimation with

different error rate. As graph shows, the expansion ratio in-
creases as the error rate goes down. If error data is sparsely dis-
tributed, the amount of error-free data that needs to be captured
increases because of the cycle tag bit compression. If the error
data is clustered in the debug data, the expansion ratio will in-
crease. Because the debug data captured by cycle tag bit com-
pressions is likely to contain clustered errors, the number of cap-
tured error-free data will be smaller than the sparsely distributed
error data case.
As discussed in Section III, the maximum possible expanded

observation window size is equal to the trace buffer size di-
vided by the error rate. The observation window size is esti-
mated using the rough error rate by single parity information.
In this observation window, the data with odd bit errors can be
captured in a trace buffer. The trace buffer size is not considered
when estimating the maximum possible expanded observation
window size.
The expanded observation window size actually achieved

with the proposed method is considerably less than the estima-
tion in Section III. There are two reasons for this. One is that
the 2-D compaction generally yields more suspects from the
mismatching signature intersections than the actual erroneous
clock cycles as shown an example in Fig. 5. The other reason
is that the cycle tag bits may need to be compressed to increase
the observation window which reduces the suspect resolution
thereby increasing the number of clock cycles that need to be
captured. Because the maximum expanded observation window
size is not achievable, one way to reduce the search space for
the 2-D compaction would be to compute a tighter upper bound
on the expanded observation window size. This can be done by
estimating the number of 2-D signature intersections and the
amount of tag bit compression based on the trace buffer size

and the estimated error rate. Using this information, a tighter
upper bound on the expanded window size can be computed as
follows:

where denotes the average number of intersections and
cycle tag bit group size represents the number of original cycle
tag bits that need to be compressed together as discussed in
Section IV. This tighter upper bound on the expanded window
size can be used to determinewhen to begin the 2-D compaction.

VII. CONCLUSION

The key in the post-silicon debug process is to maximize ob-
servability of internal signals. The experimental results indicate
that the proposed debug methodology in this paper only uses
three debug sessions to expand the observation window for a
trace buffer by one to two orders of magnitude via the selec-
tive debug data capture based on 2-D compaction. This provides
much greater visibility of the real-time at-speed system opera-
tion.
The proposed methodology is compatible with other debug

techniques [2], [9], [20], [21] and trace buffer compression
techniques [4]. Moreover, it can also be applied even when
a trace buffer is only triggered during certain events which
may not necessarily be in consecutive clock cycles. From the
debug modules viewpoint, the stream of data that is being
observed can be relative to only the clock cycles when the trace
buffer would normally be triggered. The expanded observation
window in this case would be expanded only across the clock
cycles when the trace buffer would normally be triggered.
The proposed method can be applied to a selected part of a

design such as newly implemented and unverified modules that
require more debugging effort. It should also be noted that if a
design contains distributed multiple trace buffers, the proposed
methodology could be concurrently or independently applied to
all the trace buffers. However, the total number of debug ses-
sions would still be three regardless of how many trace buffer
observations windows are being expanded. This helps to isolate
the bug location and to narrow down the error cycles, hence, this
will speed up the post-silicon process.

REFERENCES
[1] M.Abramovici andY.-C. Hsu, “A new approach to silicon debug,” pre-

sented at the Int. Silicon Debug Diagnosis Workshop (SDD), Austin,
TX, 2005.

[2] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi,
and D. Miller, “A reconfigurable design-for-Debug infrastructure for
SoCs,” in Proc. Design Autom. Conf., 2006, pp. 7–12.

[3] E. Anis and N. Nicolici, “On using lossless compression of debug data
in embedded logic analysis,” in Proc. IEEE Int. Test Conf., 2007, pp.
1–10.

[4] E. Anis and N. Nicolici, “Low cost debug architecture using lossy com-
pression for silicon debug,” Proc. Design, Autom., Test Euro., pp. 1–6,
2007.

[5] D. Van Campenhout, H. Al-Asaad, J. P. Hayes, T. Mudge, and R. B.
Brown, “High-level design verification of microprocessors via error
modeling,” ACM Trans. Design Autom. Electron. Syst., vol. 3, no. 4,
pp. 581–599, 1998.

[6] G. Parthasarathy, M. K. Iyer, T. Feng, L.-C. Wang, K.-T. Cheng, and
M. S. Abadir, “Combining ATPG and symbolic simulation for efficient
validation of embedded array systems,” in Proc. IEEE Int. Test Conf.,
2002, pp. 203–212.

328 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2013

[7] H. Fang, Z. Wang, X. Gu, and K. Chakrabarty, “Mimicking of func-
tional state space with structural tests for the diagnosis of board-level
functional failures,” in Proc. IEEE Asian Test Symp., 2010, pp.
421–428.

[8] H. Fang, Z. Wang, X. Gu, and K. Chakrabarty, “Deterministic test for
the reproduction and detection of board-level functional failures,” in
Proc. IEEE/ACM Asia South Pacific Design Autom. Conf., 2011, pp.
491–496.

[9] A. Hopkins and K.McDonald-Maier, “Debug support for complex sys-
tems on-Chip: A review,” IEEE Proc. Comput. Digit. Techn., vol. 153,
no. 4, pp. 197–207, Jul. 2006.

[10] Y.-C. Hsu, F. Tsai, W. Jong, and Y.-T. Chang, “Visibility enhancement
for silicon debug,” in Proc. Design Autom. Conf., 2006, pp. 13–18.

[11] W. Jang, D. Ding, and D. Pan, “A voltage-frequency island aware
energy optimization framework for networks-on-Chip,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design, 2008, pp. 264–269.

[12] H. F. Ko and N. Nicolici, “Automated trace signals identification and
state restoration for improving observability in post-silicon validation,”
Proc. Design, Autom., Test Euro., pp. 1298–1303, 2008.

[13] M. N. Velev, “Collection of high-level microprocessor bugs from
formal verification of pipelined and superscalar designs,” in Proc.
IEEE Int. Test Conf., 2003, pp. 138–147.

[14] J. Shen and J. A. Abraham, “Verification of processor microarchitec-
tures,” in Proc. IEEE VLSI Test Symp., 1999, pp. 189–194.

[15] S. Hacker, MP3: The Definitive Guide. Sebastopol, CA: O’Reilly &
Associates, Inc., 2000.

[16] Semiconductor Industry Association, “The International Technology
Roadmap for Semiconductors,” 2005.

[17] L.-T. Wang, C. E. Stroud, and N. A. Touba, System-on-Chip Test Ar-
chitectures. Boston, MA: Morgan Kaufmann, 2008.

[18] F.-C. Yang, C.-L. Chiang, and I.-J. Huang, “A reverse-encoding-based
on-chip AHB bus tracer for efficient circular buffer utilization,” in
Proc. IEEE/ACM Asia South Pacific Design Autom. Conf., 2009, pp.
721–726.

[19] J.-S. Yang and N. A. Touba, “Expanding trace buffer observation
window for in-system silicon debug through selective capture,” in
Proc. IEEE VLSI Test Symp., 2008, pp. 345–351.

[20] B. Vermeulen, S. Oostdijk, and F. Bouwman, “Test and debug strategy
of the PNX8525 NexperiaTM digital video platform system chip,” in
Proc. IEEE Int. Test Conf., 2001, pp. 121–130.

[21] B. Vermeulen, T. Waayers, and S. K. Goel, “Core-based scan archi-
tecture for silicon debug,” in Proc. IEEE Int. Test Conf., 2002, pp.
638–647.

Joon-Sung Yang (S’05–M’09) received the B.S. de-
gree from Yonsei University, Seoul, Korea, in 2003,
and the M.S. and Ph.D. degrees from the University
of Texas at Austin, Austin, in 2007 and 2009, respec-
tively, all in electrical and computer engineering.
He is currently with Intel Corporation, Austin, TX.

His research interests are VLSI testing, silicon debug
and nanometer scale test and design methodologies.
Dr. Yang was a recipient of Korea Science and En-

gineering Foundation (KOSEF) Scholarship in 2005
and the Best Paper Award at the 2008 IEEE Interna-

tional Symposium on Defect and Fault Tolerance in VLSI Systems.

Nur A. Touba (SM’05–F’09) received the B.S. de-
gree from the University of Minnesota, Minneapolis,
in 1990, and the M.S. and Ph.D. degrees from Stan-
ford University, Stanford, CA, in 1991 and 1996, re-
spectively, all in electrical engineering.
He is currently a Professor with the Department of

Electrical and Computer Engineering, University of
Texas at Austin, Austin.
Dr. Touba was a recipient of the National Science

Foundation Early Faulty CAREER Award in 1997,
the Best Paper Award at the 2001 VLSI Test Sym-

posium, and the 2008 Defect and Fault Tolerance Symposium. He served as
program chair for the 2008 International Test Conference and general chair for
the 2007 Defect and Fault Tolerance Symposium. He currently serves on the
program committee for the Design Automation and Test in Europe Conference,
International On-Line Test Symposium, European Test Symposium, Asian Test
Symposium, and Defect and Fault Tolerance Symposium.

