
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2014 2017

Reducing Cost of Yield Enhancement in 3-D
Stacked Memories Via Asymmetric Layer

Repair Capability
Muhammad Tauseef Rab, Asad Amin Bawa, and Nur A. Touba

Abstract— One way to organize 3-D memories is cell arrays
stacked on logic where the upper die layers contain the cell
arrays and the bottom layer implements the peripheral logic.
A new degree of freedom exists when constructing 3-D memories,
which is that the order of the die in the stack can be selected. This
paper proposes a new idea that exploits this additional degree of
freedom to reduce the cost of yield enhancement. In the proposed
approach, the cell array die with the most defective cells is placed
in the lowest layer, followed by the next most defective cells in
the second lowest layer, and so forth finishing with the die with
the fewest defective cells on the top layer. The bottommost layer
(peripheral logic) is designed such that it costs less to tolerate
the defects on the lower layers than it does on higher layers
of the cell arrays. This is done by limiting the domain over
which some spares can be used thereby reducing the number
of fuses needed for configuring the spare. Results show that the
asymmetric repair capability created by fine tuning the domain
of spares in a 3-D integrated circuit allows yield enhancement at
a lower cost in terms of number of spares and fuses.

Index Terms— 3D ICs, memory repair, yield.

I. INTRODUCTION

STACKED memories can be constructed in 3-D integrated
circuit (3DIC) using through silicon vias (TSVs) to inter-

connect multiple layers. One approach is to use stacked banks,
where each stacked die contains a different bank of memory.
This organization offers significant reduction in wire-length
routing in comparison with a corresponding multibank 2-D
memory. Cell arrays stacked on logic (using the term from
[12]) is another exciting new approach that becomes possible
because of TSVs where the upper die layers contain the
cell arrays and the bottom layer implements the peripheral
logic (i.e., row decoders, column select logic, sense amplifiers,
row buffers, output drivers, etc.). The advantage of isolating
the peripheral logic on a separate layer is that different
process technologies can be used. For example, cell arrays
can be implemented with process technology optimized for
density (e.g., n-MOS), whereas the peripheral logic can be
implemented with process technology optimized for speed
(e.g., CMOS). This approach was first commercially used by

Manuscript received February 16, 2013; revised July 11, 2013; accepted
August 12, 2013. Date of publication September 17, 2013; date of current
version August 21, 2014.

The authors are with the Computer Engineering Research Center, Depart-
ment of Electrical and Computer Engineering, University of Texas, Austin,
TX 78712-1084 USA (e-mail: tauseefrab@utexas.edu; bawa@utexas.edu;
touba@ece.utexas.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2013.2280593

Tezzaron semiconductors. Prebond testing of cell array die has
added difficultly, but techniques such as the one described in
[7] can be used to probe TSVs.

A new idea is proposed in this paper (preliminary results
were presented in [8]), which exploits an additional degree
of freedom which is that the order of the die in a
3-D memory stack can be selected and optimized. This creates
a degree of freedom that is used to lower the cost or repair
and improve yield. This degree of freedom can be exploited in
die-to-wafer (D2W) or die-to-die (D2D) cell arrays stacked on
logic type configurations in the following way. In the proposed
arrangement, the lowest die layer will have the dies with the
most defective cells, followed by the next most defective cells
in the second lowest layer, and so forth finishing with the
die with the fewest defective cells on the top layer. All the
cell array dies have identical designs and are manufactured
identically. The bottom most layer, which has the peripheral
logic, is designed such that it costs less to tolerate defects on
the lower layers than it would on higher layers of the cell
arrays. One simple example of this concept is the following.
Suppose there are four layers of cell arrays, and each cell array
die contains one spare column, and for simplicity, there are no
spare rows. Therefore, there are a total of four spare columns.
The concept of sharing unused spares among stacked dies used
in [1] and [13] could be applied to share the four spare columns
globally among all the dies in the stack, which would ensure
that any four die with a cumulative total of four defects or
less could be stacked together and be repaired. An alternative
with asymmetric layer repair capability, however, would be
to dedicate two spares to only be used for the lowest layer
(where the die with the most defects can always be placed),
whereas the other two spares could be used for any of the
four layers. For each spare column that is dedicated to only
be used in one layer (the lowest layer in this example), the
space of possible columns that it can be configured to replace
is reduced by a factor of four (as there are four layers in
this example) meaning that log2(four layers) = 2 less fuses
would be required to implement the reconfiguration logic for
each of those spares to select which column it will replace.
Because there are two such dedicated spares in this example,
the total number of fuses for asymmetric repair is reduced
by four compared with symmetric repair. In terms of overall
repair capability, the asymmetric repair approach could always
handle any stack of four die with a cumulative total of four
defects or less provided at least one of those die has zero
defects. Therefore, if the overall yield of cell array die with

1063-8210 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2018 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2014

zero defects is expected to be >25%, then there will be at least
one die with zero defects that could be allocated to each stack.
Results will be shown later in this paper that the overall yield
using asymmetric repair can be effectively equivalent to that
of symmetric repair while using fewer fuses, or alternatively
for the same number of fuses, the yield can be improved.
Note that each array die is identical, and the proposed method
only impacts the design of the reconfiguration logic on the
peripheral layer.

While the simple example above illustrated the concept
of asymmetric layer repair capability using spares dedicated
to certain layers, another efficient way that this concept can
be used is with the selective row partitioning (SRP) scheme
described in [9]. SRP provides a way to logically segment a
single spare column and use it to repair multiple defective cells
in multiple other columns. This capability comes at the cost
of additional fuses, but if it can be used to repair multiple
defective cells then the fuse cost per defective cell repaired
can be minimized. Using SRP symmetrically for all the layers
would tend to be inefficient because some layers may have
one or zero defective cells thereby completely wasting the
extra fuses used to implement SRP. The proposed idea here
is, however, to use SRP for only one or a few layers and
then match up the cell array die having the most defective
cells that can most efficiently benefit with the SRP layers
to efficiently use the SRP capability. This would reduce the
number of spares that needs to be incorporated in the cell
array die thereby reducing the required redundancy to achieve
a given defect tolerance. For example, instead of requiring two
spare columns per cell array die, SRP could be used to achieve
the same yield using only one spare column per cell array die
with a little or no increase in the number of fuses. Reducing
the cell array size helps to reduce area, delay, and power for
the overall memory.

It should be pointed out that the proposed idea does not
increase the number of TSVs needed beyond what is conven-
tionally required for a stacked arrays on logic architecture.
The difference is only in how the repair circuitry on the logic
layer is designed. Therefore, this approach does not impact
yield because of any additional TSVs being added. The idea
improves spare management and related fuse costs and does
not address the TSV yield management.

This paper enhances the original idea presented in [8] in
two major ways. First, the asymmetric definition is expanded.
In [8], a spare that is considered a local spare was local
to one layer. Here, the definition is generalized to allow
spares to be local to any subset of layers of the stack
or any set of columns within a layer. These enhancements
that give a more general domain for the spares to pro-
vide improvements in the results compared with the earlier
results.

Second, the results in [8] were based on simulating uniform
random defects across all the memory locations, which is a
worst case conservative approximation. This simplistic model
may not be how the actual defects show up in actual silicon.
In this paper, we have also investigated how the results would
change if the defects are clustered using a commonly used
clustering model.

The rest of the paper is organized in the following manner.
Section II reviews work in the 3-D memory space to improve
yield. In Section III, the key idea, asymmetric repair in 3-D
memories, is presented. In Section IV, an algorithm for opti-
mizing the number of fuses and spares to improve the yield of
3-D memories is presented. In Section V, the domain for
asymmetric spares is generalized to consider more fine grain
optimization. In Section VI, asymmetric repair is combined
with SRP. Section VII talks about the experimental setup and
Section VIII has the results for various simulations.

II. RELATED WORK

Given the high defect rates in memories, spare rows, and
columns are typically used to allow for postmanufacturing
repair to enhance yield [10], [15]. The memory is tested and a
defect map is generated, suggesting which cells in the memory
are defective. With the defect map, the memory is reconfigured
to use the spare rows and columns to bypass defective cells
[6], [14], [16]. The memory reconfiguration can be done either
at manufacture time with fuses, or it can be done with a built-
in self-repair scheme [5].

In a conventional single-die implementation of a memory,
if it is not possible to repair all the defective cells with the
available spare rows and columns, then the die is discarded as
worthless. In a 3-D memory where multiple dies are stacked
together, the idea of using unused spares in one die to help
in repairing another die has been proposed in [2], [3] and
[4]. In these approaches, if there are too many defective cells
to repair using a die’s own intradie resources, it can borrow
unused spares from other die. This is applicable for any of
the integration methods, i.e., wafer-to-wafer, D2W, or D2D. It
is, however, especially powerful for D2W and D2D where
the specific die to be stacked together can be selected to
optimize the overall yield. For example, consider the case
where each die contains one spare row and one spare column.
With the ability to share spares across die, then dies with
four defects could be stacked together with dies containing
zero defects, and dies with three defects could be stacked
with dies containing one defect, and so forth. Therefore, by
categorizing every die in a lot and carefully distributing them
among the various 3-D stacks, the number of unusable die
can be minimized. The schemes in [3] and [4] were conceived
for a stacked banks type configuration for 3-D memory using
additional TSVs to share spares across layers, but the same
concept could be applied for a cell arrays stacked on logic
type configuration also where the row decoders, column select
logic, and reconfiguration logic are all located on the bottom
layer.

In [1], a more general method for sharing spares across
layers was presented for processor memory stacks in which a
stacked banks type of configuration is used for the memory,
but on the processor die, a global spare assignment unit is
placed, which can allocate spares across the layers. Reference
[13] uses a similar approach and also proposes the use of a
spare cylinder, which replaces all the cells in a vertical axis
across multiple die.

The asymmetric layer repair method proposed in this paper
is for the cell arrays stacked on logic memory architecture

RAB et al.: REDUCING COST OF YIELD ENHANCEMENT IN 3-D STACKED MEMORIES 2019

Fig. 1. 3-D multilayer memory organized as cell arrays stacked on logic.

and takes an advantage of the degree of freedom that the
order of the die in the stack can be chosen. It differs from
the earlier methods in that it optimizes repair configuration
logic by exploiting the fact that dies with more defects can
be placed in certain layers in the stack, which allows greater
yield enhancement at a lower cost both in terms of the number
of spares and fuses.

III. ASYMMETRIC SPARES

Fig. 1 shows a block diagram of a 3-D multilayer memory
organized as cell arrays stacked on logic. All the cell array
dies are identical. The spare columns and rows are evenly
distributed among the layers. The row decoder, column select
logic, and other peripheral logic are located in a separate logic
layer. The fuses for configuring the spares to perform repair
are also located on the logic layer. To maximize the repair
capability, the spares could be used for global interdie repair.
In other words, each spare column (row) could be used to
replace any column (row) on any layer. The main cost for this
would be the number of fuses needed to configure each column
(row) globally across all the layers. If there are n layers and
c columns (r rows), the number of fuses needed to make each
spare column (row) a global spare that can be used to replace
any bit line (word line) in any layer would be log2[n] to select
the layer and log2[c] (log2[r]) to select the bit line (word line).
Thus, the cost of a global spare versus the cost of a spare local
to one die is the following:

1) Fuses for global spare = log2[c] (or log2[r])+ log2[n].
2) Fuses for local spare = log2[c] or log2[r].

The proposed idea is to consider allowing some spares to
be global and some to be local rather than the conventional
symmetric design having all the local spares or all the global
spares. The optimal number of local and global spares and
their distribution across the layers depends on the expected dis-
tribution of defects. Without the loss of generality, consider the
case where defects are equally likely in each cell of each die
(i.e., they are not clustered in certain die). Suppose 1000 die
are manufactured each containing 2k bits and the bit error rate
is 2−k . Then, the expected distribution of defects/die is shown

TABLE I

EXPECTED DISTRIBUTION OF DEFECTS/DIE FOR 1000 DIE WITH 2k BITS

AND BIT ERROR RATE OF 2−K

TABLE II

WAY TO CONSTRUCT 250 FOUR-LAYER 3DICS USING THE 1000 DIE

SHOWN IN TABLE I

in Table I. If there are four layers and four global spares, then
the 1000 die can be combined together to construct 250 3DICs
with the configuration shown in Table II. As can be seen from
Table II, 15 3DICs would combine one die with four defects
together with three die having zero defects; 61 3DICs would
combine one die with three defects, one die with one defect,
and two die with zero defects, and so forth.

Using the proposed approach, we can exploit the degree of
freedom of which order the dies are stacked. The peripheral
logic built on the logic array can be designed so that it always
allocates two local spares to the lowest layer and then two
global spares that can be used in any layer. The die with the
most defects is then always placed in the lowest layer. As can
be seen in Table II, all the configurations that are used have
at least one die with two defects. Thus, the two local spares
are fully used. All the configurations have no more than four
defects in total, the combination of the two fully used local
spares plus the two global spares can repair all the defects in
all the configurations. Thus, the yield in this case would be
identical to using four global spares, but the advantage is that
the number of fuses is reduced by four because each local
spare needs log2(four layers) fewer fuses.

Now consider a second example where 996 dies are man-
ufactured each containing 2k bits and the bit error rate is
1.5×2−k . The expected distribution of defects/die is shown in
Table III. If there are six layers and two global spares per die,
then 166 3DICs can be constructed using the configurations
shown in Table IV.

Using the proposed method, three local spares could be
allocated for the lowest layer, two local spares could be
allocated for the second lowest layer, one local spare could
be allowed for the third lowest layer, and three global spares
could be used to cover the rest of the defects not covered
by the local spares. Thus, a total of nine spares are required

2020 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2014

TABLE III

EXPECTED DISTRIBUTION OF DEFECTS/DIE FOR 996 DIES WITH 2k BITS

AND BIT ERROR RATE OF 1.5 × 2−k

TABLE IV

WAY TO CONSTRUCT 166 SIX-LAYER 3DICS USING THE 996 DIES

SHOWN IN TABLE III

with six of those being local and only three of them being
global. This helps to significantly reduce the number of fuses
required.

A procedure for allocating local and global spares to min-
imize the number of spares and number of fuses is given in
the following section.

IV. PROCEDURE FOR ALLOCATING SPARES

Given an expected defect distribution (i.e., the information
shown in Tables I and III), the following procedure can be
used to configure the die in the layers to construct 3DICs for
minimizing the total number of spares required and maximiz-
ing the number of local spares (i.e., to obtain the information
shown in Tables II and IV).

Step 1: Set the total defect limit per 3DIC equal to the
number of defects in the die with the most defects.

Step 2: Fill the lowest layer of each of the n 3DICs with
the n die having the most defects.

Step 3: For the next lowest layer, fill each of the n
3DICs from the population of remaining die placing the most
defective die in the 3DIC with the fewest total defects under
the constraint that the total defects in any 3DIC does not
exceed the total defect limit.

Step 4: Step 3 is repeated until all the layers are filled at
which point the procedure completes. If a point is, however,
reached where it is impossible to fill a 3DIC from the
population of remaining die without violating the total defect

limit constraint, then the total defect limit is incremented by
one and the procedure starts over from Step 2.

Once the procedure above is completed, then the set of
possible distributions of defects per layer is known. The final
total defect limit is the total number of spares required. The
minimum number of defects in a particular layer is the number
of local spares that can be fully used for that layer. If some
of the distributions have zero defects in some layers, then no
local spares can be fully used for that layer. Once the local
spares are determined, then the number of global spares is
simply the total number of spares minus the number of local
spares.

The above procedure gives the minimum total number of
spares. In some cases, some of the global spares, however,
can be converted to local spares (i.e., with no net increase
in the total number of spares) while still satisfying the con-
straints. This arises because the number of spares has to be
a whole number, so there can be some slack. Thus, a final
postprocessing step would be to iterate through each layer and
try to convert a global spare to become a local spare for that
layer while still satisfying the constraints.

This design procedure described in this section uses enough
spares to ensure that all the dies in the considered distribution
can be repaired and used (i.e., 100% utilization). If it is
acceptable to allow some of the dies with the most defects
to be discarded (i.e., have less than 100% utilization), then
the same procedure can still be used. The input distribution
would simply be adjusted based on the desired utilization.
For example, if it is acceptable to discard all die with four
or more defects, then the input distribution for the procedure
would only contain the population of die with fewer than four
defects. Under this condition, the procedure would minimize
the number of total spares and maximize the number of local
spares.

V. FINE TUNING DOMAIN OF SPARE

When memories are arranged as cell arrays stacked on logic
it allows for a degree of freedom, which can be exploited to
optimize the use of spare rows/columns to maximize yield.
In Section III, it was shown how this degree of freedom can
reduce the cost, in terms of fuses, of yield enhancement. So
far in this paper, a local spare has been defined as one, which
is restricted to a particular layer in the stacked IC. Similarly, a
global spare is defined to be one, which is capable of tolerating
a defect in all the layers of the stack. While this approach is
successful in reducing the overall cost of repairing defects, it
does not completely exploit the degree of freedom offered by
this memory architecture. In this section, the domain selection
process is generalized to achieve greater reductions.

By allowing spares to cover a smaller domain than a single
layer, the cost of repair can be lowered further. For example,
a local spare can be restricted to a subset of the columns in
a particular layer, thereby lowering the repair cost because
fewer fuses are needed to implement it. Similarly, a global
spare can also be restricted to any subset of layers as opposed
to all the layers. By fine tuning the local spares to a smaller set
within the layer and the global spares to a subset of the layers,

RAB et al.: REDUCING COST OF YIELD ENHANCEMENT IN 3-D STACKED MEMORIES 2021

TABLE V

DOMAIN SELECTION FOR EACH SPARE

the number of fuses required reduces even more as compared
with the approach discussed in Section II, where spares are
restricted to only global or local to one layer.

To illustrate this concept, consider the examples from
Section II of a four-layer stack with a defect ratio of 1.0 and a
total of 1000 dies. It has 250 stacks of four dies in each stack
with the distribution shown in Table I.

Using the algorithm described in Section III, it is known that
the total number of spares needed to tolerate all the defects in
each of the stack is four (maximum of the sum of the defects
in each stack). After going through the complete algorithm,
it is shown (in Section II) that the peripheral logic built on
the logic array can be designed so that it always allocates two
local spares to the lowest layer and then two global spares that
can be used in any layer, as shown in Table II. This saves a
total of four fuses.

By further fine tuning the domain for local and the global
spares, as described earlier in this section, we can reduce one
more fuse. Because we have a layer (top layer) with zero
defects, none of the spares would need to tolerate a defect in
that layer. Similarly, in the next layer, the most defective die
has one defect; hence, covering that layer with only of the
two global spares should be sufficient. Below we show how
we can assign the global and local spares.

One of the global spares (G0 in Table V) only has to repair
a defect in either layer 0 (L0 in Table V) or layer 1 (L1 in
Table V). Therefore, by fine tuning the domain over which
each of the global spares are capable to repair defects, the
number of fuses is reduced by one because one of the global
spare needs log2(two layers) fewer fuses. This increases the
savings from four fuses to five.

In Section VI, the experimental results for fine tuning the
domain of each spare are shown where the cost, in terms of
fuses, of yield enhancement is reduced over several defect
ratios and stacked ICs.

VI. COMBINING WITH SRP

Another very efficient way that the proposed concept can be
used is with the SRP scheme described in [9]. The SRP method
selectively chooses one or more row address bits to decode
thereby partitioning the row address space. The column that
is replaced by a particular spare column can be different for
each partition of the row address space. This allows a single-
spare column to repair multiple defects provided each defect
exists in a different partition of the row address space. The cost
of SRP is that the number of fuses required for configuring the

spare column is now multiplied by the number of row address
partitions because it can be different in each row addresses
partition. For example, suppose the number of columns is c.
If SRP was used to decode two row address bits and create
four partitions of the row address space, then the number of
fuses required would be 4 log2(c). If four defects are, however,
repaired, then the fuse cost is the same as if four separate spare
columns were used to repair the four defects each requiring
log2(c) fuses. On the other hand, if only three defects are
repaired, then the number of fuses is higher for SRP with one
spare column compared with using three spare columns [i.e.,
4 log2(c) versus 3 log2(c)]. Therefore, the efficiency of SRP
depends on how much of the maximum repair capability of
SRP can be used.

With the proposed idea of asymmetric repair, it is possible
to use SRP for one layer and then select a die whose defect
profile can be most efficiently repaired with SRP. By selective
matching up die with layers implementing SRP, the repair
capability of the SRP can be efficiently used. When it is
possible to always maximally use the SRP repair capability,
then there is no additional fuse cost for using SRP. Thus, it can
effectively either reduce the total number of spares required for
a given yield or enhance the yield for a given number of spare
without requiring additional fuses. If SRP’s repair capability
cannot always be maximally used, then there is some fuse
overheads for using SRP compared with using more spares,
but it still may be worthwhile. For example, it may be possible
to reduce the number of spares included in each cell array die
using SRP at the cost of more fuses. Therrefore, the tradeoff
would be the cost of the additional fuses versus the area, delay,
and power reduction resulting from reducing the number of
spares on each cell array die.

SRP can be used by first selecting spares using the proce-
dure described in the previous sections. A subset of the local
spares in some layers can be replaced by SRP. The smaller
the number of partitions that are used by SRP, the higher
the utilization of repair capability will be. In Section VIII,
the results are shown for two cases. One where SRP is used
only when it will not increase the number of fuses (i.e., its
capacity is fully used), and the other is where SRP is used
more aggressively so that the number of spares per cell array
die is reduced at some costs in terms of additional fuses.

VII. EXPERIMENTAL RESULTS

Simulations were performed targeting different defect ratios
where the defect ratio is defined as the average number
of defective memory cells per cell array die. Note that the
proposed method does not require knowing the exact defect
ratio that will exist when the cell array dies are manufactured,
it simply targets some maximum defect ratios for which it is
desired that the repair capability be able to handle.

Results are shown in Fig. 2 assuming a uniform distribution
of defects across memory cells and die. Results are plotted for
five different methods providing repair capability sufficient
for the targeted defect ratio. The first is the conventional
symmetric repair where all the spares were considered to
be global. The second is the proposed asymmetric repair

2022 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2014

Fig. 2. Comparison of fuse cost and number of spares using different methods targeting different defect ratios.

(Section II) where the procedure in Section III is used to
select local and global spares. The logic layer is designed to
implement these spares using the minimum number of fuses.
The third method is using the proposed asymmetric repair with
SRP only when it does not increase the number of fuses. The
fourth method is using the proposed asymmetric repair with
aggressive use of SRP sufficient to reduce the number of spares
required per cell array die. The fifth approach is using the
technique described in Section IV to improve fine-tune domain
selection for each of the spares. The results were generated
assuming three, four, and six layers of cell array dies. For
each number of layers, there is one graph for the number of
fuses per targeted defect ratio and another graph for the total
number of spares per targeted defect ratio. Note that the total
number of spares is a multiple of the number of layers because
each cell array die is identical and contains the same number

of spares. Furthermore, only four approaches are shown in
the spares results because both the asymmetric approaches
(Sections II and IV) use identical number of spares. The
savings are only in the number of fuses if truly asymmetric
approach is used.

From the results, it can be seen that the number of fuses
can be significantly reduced using the proposed asymmetric
repair approaches. If SRP is used, in some cases, the number
of spares per cell array die can also be reduced without any
increase in the number of fuses (e.g., when the defect ratio is
2.25 or 2.5, one spare per die can be reduced with no increase
in the number of fuses).

Finally, if SRP is used more aggressively, it is possible to
reduce the number of spares per cell array die at the cost
of more fuses. Note that the total number of fuses required
to reduce the number of spares/die is generally less than

RAB et al.: REDUCING COST OF YIELD ENHANCEMENT IN 3-D STACKED MEMORIES 2023

Fig. 3. Truly asymmetric approach with and without clustering.

the number of fuses required for conventional symmetric
SRP.

The results in Fig. 2 are conservative in that they assume
that the defects are uniformly distributed, which is the worst
case for the proposed method. To see how clustering of defects
would impact the results, the experiments were performed
where defects were modeled using the Polya Eggenberger
distribution with λ = 2.130 and α = 2.382 [11] to represent
the case with clustered defects. In Fig. 3, the cost of fuses with
a clustered distribution is compared against the results with a
uniform distribution for the fine-tuned asymmetric case. As
can be seen, the results are somewhat better when there is
clustering. The improvement increases with more layers.

VIII. CONCLUSION

The new concept of asymmetric repair described here is
made possible by the degree of freedom in multilayer 3DIC
memories that the order of the die in the stack can be selected.
By matching up die with more defects to the layers that

have greater repair capability, the number of fuses required
to handle a particular defect ratio is significantly reduced.
Moreover, the SRP technique from [9] can be efficiently used
to also reduce the number of spares per cell array. This can
help to reduce the overall cost considerably as reduction in
spare are in multiples of the number of layers per stack. The
gains are significantly more as compared with only the fuse
savings using the asymmetric repair technique by itself. It is
further shown that by fine tuning the domain of each spare
further cost reduction in fuses is possible. Finally, the results
show that the proposed scheme works best when faults are
clustered together. This is because clustering increases the
number of zero-fault dies and also increases the number of
multifault dies. The increase in multifault dies increases the
assignment of local spares (Section III), whereas the increase
in the number of zero-fault dies helps with the better selection
of global spares (Section V).

REFERENCES

[1] C.-C. Chi, Y.-F. Chou, D.-M. Kwai, Y.-Y. Hsiao, C.-W. Wu, Y.-T.
Hsing, L.-M. Denq, and T.H. Lin, “3D-IC BISR for stacked memories
using cross-die spares,” in Proc. Int. Symp. VLSI DAT, Apr. 2012,
pp. 1–4.

[2] C.-W. Chou, Y.-J. Huang, and J.-F. Li, “Yield-enhancement techniques
for 3D random access memories,” in Proc. Int. Symp. VLSI DAT,
Mar. 2010, pp. 104–107.

[3] Y.-F. Chou, D.-M. Kwai, and C.-W. Wu, “Yield enhancement by bad-
die recycling and stacking with through-silicon vias,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 8, pp. 1346–1356,
Aug. 2011.

[4] L. Jiang, R. Ye, and Q. Xu, “Yield enhancement for 3D-stacked memory
by redundancy sharing across dies,” in Proc. ICCAD, Nov. 2010,
pp. 230–234.

[5] I. Kim, Y. Zorian, G. Komoriya, H. Pham, F. P. Higgins, and
J. L. Lewandowski, “Built in self repair for embedded high density
SRAM,” in Proc. Int. Test Conf., Oct. 1998, pp. 1112–1119.

[6] S.-Y. Kuo and K. Fuchs, “Efficient spare allocation for recon-
figurable arrays,” IEEE Design Test, vol. 4, no. 1, pp. 24–31,
Feb. 1987.

[7] B. Noia and K. Chakrabarty, “Pre-bond probing of TSVs in 3D stacked
ICs,” in Proc. IEEE ITC, Sep. 2012, pp. 1–10.

[8] M. T. Rab, A. A. Bawa, and N. A. Touba, “Improving mmeory repair
by selective row partitioning,” in Proc. 24th IEEE Symp. Defect Fault
Tolerance, Oct. 2009, pp. 211–219.

[9] M. T. Rab, A. A. Bawa, and N. A. Touba, “Using asymmetric layer
repair capablity to reduce the cost of yield enhancement in 3D stacked
memories,” in Proc. VLSI-SoC, Oct. 2012, pp. 195–200.

[10] S. E. Shuster, “Multiple word/bit line redundancy for semiconductor
memories,” IEEE J. Solid-State Circuits, vol. 13, no. 5, pp. 698–703,
Oct. 1978.

[11] C. H. Strapper, A. N. McLaren, and M. Dreckmann, “Yield model
for productivity optimization of VLSI memory chips with redundancy
and partially good product,” IBM J. Res. Develop., vol. 24, no. 3,
pp. 398–409, May 1980.

[12] M. Taouil and S. Hamdioui, “Layer redundancy based yield improve-
ment for 3D wafer-to-wafer stacked memories,” in Proc. 16th IEEE ETS,
May 2011, pp. 45–50.

[13] X. Wang, D. Vasudevan, and H.-H. S. Lee, “Global built-in self-repair
for 3D memories with redundancy sharing and parallel testing,” in Proc.
Int. 3DIC, Aug. 2012, pp. 1–8.

[14] C.-L. Wey and F. Lombardi, “On the repair of redundant RAM’s,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 6, no. 2, pp.
222–231, Mar. 1987.

[15] Y. Zorian and S. Skoukourian, “Embedded-memory test and repair:
Infrastructure IP for SOC yield,” IEEE Design Test Comput., vol. 20,
no. 3, pp. 58–66, May 2003.

[16] V. Hemmady and S. M. Reddy, “On repair of redundant RAMs,” in
Proc. Design Autom. Conf., Jun. 1989, pp. 710–713.

2024 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2014

Muhammad Tauseef Rab received the B.S., M.S.,
and Ph.D. degrees from the University of Texas at
Austin, Austin, TX, USA, in 2002, 2005, and 2013,
respectively, all in electrical engineering.

He is currently a Design Engineer with Qualcomm,
Inc., Austin, TX, USA. He has worked in the semi-
conductor industry for over ten years. His current
research interests include VLSI testing, design for
test and yield analysis, and improvements in ICs.

Asad Amin Bawa received the B.S. and M.S.
degrees from the University of Texas at Austin,
Austin, TX, USA, in 2003 and 2006, respectively,
both in electrical engineering. He is currently pur-
suing the Ph.D. in electrical engineering from the
University of Texas at Austin, Austin, TX, USA.

He has worked with the industry in the VLSI field
for over ten years. His current research interests
include VLSI testing, design for test and yield analy-
sis, and improvements in ICs.

Nur A. Touba (SM’05–F’09) received the B.S.
degree from the University of Minnesota, Minneapo-
lis, MN, USA, in 1990, and the M.S. and Ph.D.
degrees from Stanford University, Stanford, CA,
USA, in 1991 and 1996, respectively, all in electrical
engineering.

He is currently a Professor with the Department
of Electrical and Computer Engineering, University
of Texas at Austin, Austin, TX, USA.

Dr. Touba was a recipient of the National Science
Foundation Early Faulty CAREER Award in 1997,

the Best Paper Award in the 2001 VLSI Test Symposium, and the 2008 Defect
and Fault Tolerance Symposium. He served as a Program Chair for the 2008
International Test Conference and a General Chair for the 2007 Defect and
Fault Tolerance Symposium. He currently serves on the program committee
for the Design Automation and Test in Europe Conference, International On-
Line Test Symposium, European Test Symposium, Asian Test Symposium,
and Defect and Fault Tolerance Symposium.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

