
 Low Cost Test Vector Compression/Decompression Scheme

for Circuits with a Reconfigurable Serial Multiplier

Avijit Dutta, Terence Rodrigues, and Nur A. Touba

Computer Engineering Research Center
University of Texas, Austin, TX 78712-1084

{adutta,trodrigu,touba}@ece.utexas.edu

Abstract
 Many chip designs contain one or more serial
multipliers. A scheme is proposed to exploit this to
compress the amount of data that needs to be stored on
the tester and transferred to the CUT during
manufacturing test. The test vectors are stored on the
tester in a compressed format by expressing each test
vector as a product of two numbers. While performing
multiplication on these stored seeds in the Galois Field
modulo 2, GF(2), the multiplier states (i.e. the partial
products) are tapped to reproduce the test vectors and fill
the scan chains. In contrast with other test vector
decompression schemes that add significant test specific
hardware to the chip, the proposed scheme reduces
hardware overhead by making use of existing functional
circuitry. Experimental results demonstrate that a high
encoding efficiency can be achieved using the proposed
scheme.

1. Introduction

 System-on-a-chip (SOC) designs integrate a lot of
functionality together on a single chip. This high level of
integration has reduced manufacturing cost, but has
greatly increased the cost of test. One of the increasingly
difficult challenges in testing SOCs is handling the large
amount of test data that must be transferred between the
tester and the chip. The entire set of test vectors for all
components of the SOC must be stored on the tester and
transferred to the chip during testing.
 A number of test data compression schemes have been
developed using a variety of techniques to reduce the test
storage on the tester and also to reduce the test data
bandwidth between the tester and the chip. Code based
compression techniques include run-length codes [1],
Huffman codes [2], frequency directed codes [3], LZ77
[4], etc. Another very popular test vector compression
technique is based on linear expansion where test data is
decompressed on chip using only linear operations. This
includes techniques based on linear feedback shift register
(LFSR) reseeding [6], linear expansion networks
consisting of XOR gates and seed overlapping [5]. These
methods exploit the unspecified bits in the test cubes.
Every decompressed bit is represented as a linear
combination (modulo 2) of the stored compressed data.

Every stored bit is denoted as a free variable. Free
variables can be assigned any value (0, 1). The values are
assigned such that when shifted into the scan chains
through linear expansion networks, they can reproduce
the desired test cubes. Each of the specified bits of the
scan vectors can be represented by a linear equation in
terms of the free variables depending on the decompressor
circuit. Typically only 2-5% of the bits are specified and
that provides a high degree of freedom while solving the
linear equations. The choice of decompression network is
vital as the encoding efficiency, which is defined as the
ratio of specified bits to the number of bits stored on the
tester (i.e. the compressed data) largely depends on it. The
number of free variables used to solve a test cube can be
fixed [8] or variable [9], [10]. Schemes with a fixed
number of free variables require less control logic and
control data. However the encoding efficiency is limited
by the most specified test cube which is the hardest to
solve. Schemes using a variable number of free variables
require more complex control logic compared to those
with fixed number of free variables.
 One very economical option is to use the existing
components in the circuit under test (CUT) to test other
parts of the circuit. Since multiplication is very commonly
used and is an expensive operation [11], rapid
improvements of VLSI technologies have been used to
increase the reliability and the speed of the multiplication
units embedded in the circuit. This is particularly
important for specialized chips supporting multiplication
intensive operations, such as in digital signal processing
and computer graphics. For the design of fixed-point
digital signal processing systems, primarily two
approaches are used: bit-serial and bit-parallel. Bit-
parallel approaches are time efficient. On the other hand,
bit serial approaches are highly area efficient. Since
signal-processing integrated circuits typically require
many applications over a short period, small area
multiplier implementations are of particular interest. For
serial multipliers, area in terms of adder requirement
grows only linearly with the word size N. This compares
favorably to the N2 adder required for parallel multipliers.
Serial multipliers allow a high degree of pipelining and
hence very high throughput can be achieved. Another
advantage is very small interconnect area is required for
communication of numerical data with arbitrary precision.
The serial multipliers can be easily reconfigured to

Proceedings of the IEEE Computer Society Annual Symposium on VLSI
New Frontiers in VLSI Design

0-7695-2365-X/05 $20.00 © 2005 IEEE

function as a cyclic code generator, perform
multiplication in GF(2), and function as an LFSR in
addition to functioning as a pure binary multiplier. For
circuits with a built-in serial multiplier unit, test data
decompression can be performed using the multiplier
itself without having to modify the scan chains. Our
proposed scheme is based on a linear expansion technique
and uses the intermediate states of a reconfigurable
multiplier that is a functional component of the circuit
itself to decompress the test data. Experimental results
suggest that a high encoding efficiency is achievable
using only the built-in serial multiplier. We also analyze
how the encoding efficiency can be further improved by
sharing operands across multiple test cubes.

D1
F/F

D2
F/F

D0
F/F

A[3] A[2] A[1] A[0]

{B3, B2, B1, B0}

C[2]

FA[2]

C[1]

FA[1]

C[0]

FA[0]

Shift Register

Figure 1. Architecture of a 4-bit wide reconfigurable
multiplier

1xx1 01x1 x00x 1x1x

1xx1
01x1
x00x
1x1x

 Test Vector

Matrix

Figure 2. Test matrix

2. Decompression Using Multiplier

 In this section, we describe the proposed technique to
decompress deterministic test vectors on chip. Figure 1
shows the architecture of a 4 bit wide reconfigurable
serial multiplier. When performing multiplication in
GF(2), the carry register output is constantly set to 0
thereby transforming the full-adder into an XOR gate.
The deterministic vectors are stored as compressed
"seeds" and are decompressed by multiplying the seeds
together in the multiplier which has been reconfigured to
implement GF(2) multiplication. For an (n×n) test matrix,
the objective is to find two n-bit numbers A and B which
will be used as seeds, such that the states of the multiplier
while performing product (A × B) in GF(2) using the

shift-and-add algorithm generates the test matrix. The
scheme is explained later with an example. The Gauss-
Jordan elimination [7] method is used to solve the set of
linear equations in GF(2). Consider the example in Fig.
2 where the test vector is converted into a (4x4) test
matrix. Equation 1 shows the test matrix. The objective is
to find two vectors A and B such that when multiplied in
GF(2) using the built-in serial multiplier implementing
the shift-and-add algorithm, the multiplier states can be
tapped to produce the desired test matrix.

41424344

31323334

21222324

11121314

tttt

tttt

tttt

tttt

 =

xx

xx

x

xx

11

00

110

11

 (1)

 []1234 aaaaA = (2)

 []1234 bbbbB = (3)

 jiij bav = (4)

The matrix of partial products generated while computing
BA× in GF(2) is:

41424344

31323334

21222324

11121314

vvvv

vvvv

vvvv

vvvv

 (5)

The matrix in the right hand side of Eq. 6 shows the state
of the multiplier after each clock cycle. After the first
clock cycle the state of the multiplier while functioning in
GF(2), is same as the first row of that matrix. On
subsequent clock cycles, the state is determined by adding
(modulo 2) the previous row right-shifted by 1 bit
position, to the current row. In the following matrices, ⊕
implies (modulo 2) addition, which is equivalent to an xor
operation. The objective is to choose A and B such that the
matrix entries in Eq. 6 match the entries with a 0 or 1
specified in the matrix in Eq. 1. Equation 7 can be written
in the form yMx= .

41424344

31323334

21222324

11121314

tttt

tttt

tttt

tttt

 =

⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕

⊕⊕⊕

41322314423324433444

312213322314332434

21122213231424

11121314

vvvvvvvvvvv

vvvvvvvvv

vvvvvvv

vvvv

 (6)

Proceedings of the IEEE Computer Society Annual Symposium on VLSI
New Frontiers in VLSI Design

0-7695-2365-X/05 $20.00 © 2005 IEEE

.

=×

44

43

42

41

34

33

32

31

24

23

22

21

14

13

12

11

44

43

42

41

34

33

32

31

24

23

22

21

14

13

12

11

1000000000000000

0100100000000000

0010010010000000

0001001001001000

0000100000000000

0000010010000000

0000001001001000

0000000100100100

0000000010000000

0000000001001000

0000000000100100

0000000000010010

0000000000001000

0000000000000100

0000000000000010

0000000000000001

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

 (7)

Only the equations corresponding to the specified bits
have to be solved. So finally we have,

=×

44

42

33

32

24

23

21

14

11

44

43

42

41

34

33

32

31

24

23

22

21

14

13

12

11

1000000000000000

0010010010000000

0000010010000000

0000001001001000

0000000010000000

0000000001001000

0000000000010010

0000000000001000

0000000000000001

t

t

t

t

t

t

t

t

t

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

(8)

=

1

1

0

0

0

1

1

1

1

44

42

33

32

24

23

21

14

11

t

t

t

t

t

t

t

t

t (9)

Next Gauss-Jordan Elimination method can be applied in
GF(2) on Eq. 8 to obtain the vectors A and B. For this
example, we finally get, B = 1101 and A = 1011 in
binary, where B is applied serially with LSB applied first
and the MSB applied last and A is applied in parallel. The
states of the multiplier unit are shown in Fig. 4. 4 clock
cycles are required to reproduce the test matrix. Here the
storage requirement for the 4×4 (n=4) test vector matrix

is reduced from 2n bits to n2 bits i.e. from 16 bits to 8
bits. For this particular example, the amount of
compression ((16-8)/16)×100% = 50% and encoding
efficiency = 9/8 = 1.125.

11

0

00

00

1,11

1,11

1,11

1,11

1,11

12212112

23

224

333

1111

4114

2332

2442

4444

=⊕→=⊕
=

=→=
=→=

==→=
==→=
==→=
==→=
==→=

babavv

v

av

bv

bav

bav

bav

bav

bav

The two n-bit numbers A and B are called seeds and
represent the compressed version of the test-vector
matrix. In general, the reduction in storage is given by:

 %100
2
2

2

×−
n

nn (10)

In scan based designs, multiple clock cycles are required
to generate each vector. Each test cube is partitioned into
multiple scan chains as shown in Fig. 3. Each row is
called a bit-slice and it corresponds to a row of the test
matrix. The number of clock cycles required depends on
the length of the largest scan chain. Figure 3 also
illustrates how the multiplier can be integrated into the
scan-based test environment. Once the test cube has been
generated, a capture cycle applies the vector to the CUT.
The response is captured into the scan cells. The response
is serially sent to a multiple input signature register
(MISR) for compaction. At the same time, the next vector
is serially fed into the scan chains. Although the test
matrices are not always solvable, the don’t-care bits in the
test vectors improve the chances of being able to solve
them. The greater the number of don’t-care bits, the fewer
the number of equations, and hence the fewer the number

of constraints on the ijv ’s. If the set of linear equations

cannot be satisfied, then all n2 bits have to be stored. In
the tester the compressed data is stored first and next all
the uncompressed data is stored. The reverse sequence is
also possible. This eliminates the need to keep a marker
bit with every test cube to indicate whether it is
compressed or not. The number of compressed test cubes
(COMPRESSED_COUNT) is also stored on the tester. As
test cubes are applied to the CUT, the VECTOR
_COUNT register in the tester is incremented. Every time
the value of the VECTOR_COUNT register is compared
with the value of COMPRESSED_COUNT. If they match
then all the compressed test cubes have been applied and
the tester switches mode to apply the remaining
uncompressed test cubes. Encoding efficiency and
compression can further be improved by sharing operands
across multiple test cubes. However this requires indexing
of the operands and for every compressed test cube two
indices have to be stored to find the corresponding
operands. If the number of distinct operands is P then

P2log bits are required for indexing. If K is the number

of compressible test cubes then for each of the

Proceedings of the IEEE Computer Society Annual Symposium on VLSI
New Frontiers in VLSI Design

0-7695-2365-X/05 $20.00 © 2005 IEEE

compressed test cubes two indices each consisting of
P2log bits have to be stored. Let the total number of test

cubes be L. The compression without operand sharing is
given by:

%100

))(2()(
2

22

×
×

×−+×−×
nL

nKLnKnL (11)

If the sharing of operands is allowed then the compression
is given by:

%100
)log2)(()(

2

2
22

×
×

+×−+×−×
nL

PKnKLnPnL (12)

Note that the n-bit shift register (B) is used to apply data
serially to the multiplier and the n-bit register (A) is used
to apply data in parallel to the multiplier. Both the
registers are functional components of the CUT and are
required. Hence no additional test specific hardware is
required. However, a shadow register is required to
maintain continuous flow of test data from the tester to
the chip and to maximize the use of the tester bandwidth.
To perform n×n multiplication n clock cycles are initially
needed to serially fill in the B register and the shadow
register using 2 tester channels. During the capture cycle
the shadow register content is transferred in parallel to the
A register. n clock cycles are required to decompress the
particular test cube using the multiplier states. At the
same time, next operands are loaded into the B register
and shadow register serially. And the operation continues.
Only 2 tester channels are sufficient and test data
bandwidth is greatly reduced.

clk
Serial Bit−slice Scan Chain

Data

Parallel
Data

M
I
S
R

M
U
L
T
I
P
L
I
E
R

Figure 3. Integrating multiplier in scan test environment

1

0

1

1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

0 1 0 1

1 0 0 1

1 1 1 1

and and and and

andandandand

and and and and

andandandand

Figure 4. Multiplier states

 If K test cubes are compressed using our proposed
scheme and only P distinct operands are required and (P
< 2K+1), then sharing will yield better encoding
efficiency if and only if

))(log2())(()2)((2 PKnPnK >− (13)

Since typically the number of free variables is larger than
the number of specified bits in the test cubes, there are a
lot of degrees of freedom while solving the set of linear
equations corresponding to the specified bits. The
objective is to choose solutions which maximize the
probability of sharing across different test cubes.
However as operand size (n) increases it becomes
increasingly difficult to explore exhaustively all possible
solutions. Therefore we use two different strategies to
increase operand sharing, one for smaller operand sizes
(Strategy 1) and the other one for larger operand sizes
(Strategy 2).

Strategy 1: For smaller operands (n < 9) it is possible to
explore all the possible solutions for each of the test
cubes. In this strategy, for a test cube, first the Gauss-
Jordan elimination technique is applied to the set of linear
equations and the pivoted matrix is obtained. Next from
the pivoted matrix, mandatory assignments are found out.
Mandatory assignments correspond to assignments of the
from 1=ijv or 0=ijv . These assignments could be

directly derived from the singleton rows of the pivoted
matrix or may result from some earlier mandatory
assignments. A set of constraints are derived from these
mandatory assignments e.g. 1=ijv implies that both 1=ia
and 1=jb . Similarly 0=ijv implies one or both of ai or bj is

0. After fixing the bit values of the vectors A and B
corresponding to the mandatory assignments, the rest of
the bit positions are allowed all possible values. For each

combination of A and B, the corresponding set of ijv ’s for

all possible values of i and j is determined. Using the

Proceedings of the IEEE Computer Society Annual Symposium on VLSI
New Frontiers in VLSI Design

0-7695-2365-X/05 $20.00 © 2005 IEEE

values of ijv ’s the set of values corresponding to ijt ’s is

calculated. Due to large degrees of freedom, several
choices of A and B vectors can match the current test cube
at the specified bit positions and they all constitute the
solution set for the current test cube. Out of all solutions,
the one that matches with the largest number of distinct
test cubes is chosen. The test cubes that are
decompressible using the chosen A and B pair are
removed from consideration and this process continues
till the set of all test cubes becomes empty.

Strategy 2: However in larger dimensions i.e. (n > 8),
strategy 1 becomes impractical as the number of all
possible solutions becomes unacceptably large. In these
cases, we followed a different strategy to maximize
operand sharing across multiple test vectors. First the set
of all test cubes is partitioned in smaller subgroups of size
(< 6). For each subgroup and for each test cube in the
subgroup, the support set in terms of variables

ijv for each

specified bit of all the test cubes in the subgroup are
computed. The computed list gives the set of variables

ijv

which impacts the specified bits and the corresponding

ia ’s and
jb ’s. The other bit positions are set to constant

values and exhaustive search is initiated using only the
variables in the support set. Next using a similar
technique as in strategy 1, the minimal set of distinct
operands is identified for each of the sub-groups. Finally
all the sub-groups are merged and redundant operands are
removed. Note that unlike strategy 1, this method is not
optimal and different sharing can be achieved for different
partitioning of the test set.

3. Experimental Results

 To verify how the encoding efficiency varies for the
proposed scheme for different distributions of specified
bits, we first performed experiments with randomly
generated test cubes. Only 2 tester channels were assumed
in all the experiments and they were used to transfer the
operands to the shadow register and the shift register from
the tester. Test cubes were randomly generated with
different distributions of specified bits. The generated test
cubes were encoded using the proposed scheme. In all the
experiments, 100 randomly generated vectors were used.
In Table 1, scan architectures with 8, 16, 32 and 64 scan
chains were used. The number of scan cells was assumed

to be 2n where n is the number of scan chains. For each
of the scan architectures the existence of a serial
multiplier unit (MU) with word-width the same as that of
the number of scan chains was assumed. The randomly
generated test cubes were encoded and the encoding
efficiency was calculated. Table 1 shows the results with
and without operand sharing. As is expected, if the
number of specified bits per test cube is small then better
encoding efficiency can be achieved using operand

sharing as this makes use of the degrees of freedom while
solving the linear equations. In some cases (denoted by
*), the encoding efficiency with operand sharing is worse
than without sharing. In these cases the condition of Eq.
13 is violated. For all the reported results in Table 1, all
the test cubes were solvable because the number of free
variables was significantly more than the number of
specified bits per test cube. The results presented in Table
1 also provide an insight into choosing a particular
multiplier word-size for any test set with a particular
distribution of specified bits if the CUT contains multiple
multiplier units. If the CUT contains only one multiplier,
then its word-size is used. Higher encoding efficiency can
be achieved using larger multiplier unit when the number
of specified bits per test cube is small. On the other hand,
if the test cubes are densely specified then smaller
multiplier units provide better encoding efficiency. The
empty cells in the Table 1 refer to the cases when one or
more of the test cubes were not solvable. We performed a
second set of experiments to compare our proposed
scheme with other schemes. Note that the proposed
compression/decompression scheme is targeted for
circuits with a built-in serial multiplier component
present, since this allows good encoding efficiency with
significantly reduced test hardware. For the sake of
comparison, we encoded the test cubes corresponding to
four of the largest ISCAS 89 benchmark circuits. The test
cubes for non-redundant faults were generated using
ATALANTA. The multiplier size was chosen so as to
maximize encoding efficiency based on the distribution of
the specified bits in the test cubes. Table 2, shows the
results for the proposed scheme corresponding to the
ISCAS circuits. The number of scan chains is equal to the
word-size of the multiplier unit being chosen. Note that
using a smaller number of scan chains increases test time.
Consider the circuit s15850. Here the number of scan
cells is 611 and the existence of a 8×8 multiplier was
assumed. Since the specified bit distribution is 12%, this
provides the best encoding efficiency. Figure 5 shows the
overall organization with 8 scan chains and 2 tester
channels. The length of each test cube was made a
multiple of 64 by adding extra padding bits. With
padding, every test cube becomes 640-bit long. Next each
test cube is partitioned into 10 64-bit blocks and each
block is decompressed using the multiplier. The number
of clock cycles (including capture cycle) required to
decompress a particular test cube is ((10×8) + 1)). The
total number of clock cycles required to decompress the
entire test set (including the setup time to fill the shift-
register and shadow-register for the first time is
((142×81) + 8) i.e. 11510. Table 3 shows a comparison of
the results for the proposed scheme with a variety of other
compression schemes. The best results in terms of test
storage requirement are highlighted. Note that the
technique proposed in [10] provides a higher encoding
efficiency than all the results which are compared here.
But for that scheme scan chain modification, dedicated
test hardware, and a larger number of tester channels are

Proceedings of the IEEE Computer Society Annual Symposium on VLSI
New Frontiers in VLSI Design

0-7695-2365-X/05 $20.00 © 2005 IEEE

required. As can be seen from Table 3, in 3 out of 4 cases,
the proposed scheme required least test data storage.

Table 1. Encoding efficiency for different specified bit
distributions

Operand
Sharing

Specified
Bit Distribution

n=8
88×

n=16
1616×

n=32
3232×

n=64
6464×

1-3 .14 .30 .48 .70
3-5 .23 .40 .70

5-10 .40 .58* - -
YES

10-20 .48* - - -
1-3 .08 .16 .32 .64
3-5 .16 .32 .64

5-10 .30 .60 - -
NO

10-20 .60 - - -

Table 2. Results for ISCAS 89 circuits

Circuit
Name

Mult
Used

Num.
Test

Cubes

Total
Num
Bits

Num
Spec
Bits

Test
Storage
(Bits)

Enc
Eff.

s13207 32x32 255 178500 9335 16320 .58
s15850 8x8 142 86762 10452 20720 .51
s38417 8x8 105 174720 29847 48680 .61
s38584 16x16 192 281088 25636 29872 .85

Table 3. Comparing test data storage for different
encoding schemes

FDR Codes
[3]

Seed Overlapping
[5]

Proposed Circuit
Name

Num.
Vect.

Total Bits Num.
Vect.

Total
Bits

Num.
Vect.

Total
Bits

s13207 236 30880 272 17970 255 16320
s15850 126 26000 174 15774 142 20720
s38417 99 93466 288 60684 105 48680
s38584 136 77812 215 31061 192 29872

4. Conclusions
 In this paper, a novel low cost
compression/decompression scheme has been proposed
using a reconfigurable serial multiplier which is a
functional component of the circuit under test. The
encoding efficiency can further be improved by
minimizing number of 1s in the ATPG generated vectors.

Acknowledgement

 This material is based on work supported in part by
Intel and in part by the National Science Foundation
under Grant No. CCR-0306238.

Shadow Register

A Register
(parallel)

(serial)

 Multiplier

 8x8

8x81

10

MISR

Channel 1

Channel 0
 B Register

Figure 5. Scan architecture for s15850 using 8×8
multiplier unit as decompressor

References
[1] Jas, A., and N.A. Touba, “Test Vector Decompression via

Cyclical Scan Chains and Its Application to Testing Core-
based Designs”, Proc. of Int. Test Conference, pp. 458-
464, 1998.

[2] Jas, A., J. Ghosh-Dastidar, and N. Touba, “Scan Vector
Compression/Decompression using Statistical Coding”,
Proc. of IEEE VLSI Test Symposium, pp. 114-120, 1999.

[3] Chandra, A., and K. Chakrabarty, “Frequency-Directed Run
Length (fdr) Codes with Application to System-on-a-Chip
Test Data Compression”, Proc. of VLSI Test Symposium,
pp. 42-47, 2001.

[4] Wolff, F.G., and C. Papachristou, “Multiscan-based Test
Compression and Hardware Decompression using lz77”,
Proc. of International Test Conference, pp. 331-339,
2002.

[5] Rao, W., I. Bayraktaroglu, and A. Orailoglu, “Test
Application Time and Volume Compression through Seed
Overlapping”, Proc. of Design Automation and Test in
Europe, pp. 732-737, 2003.

[6] Konemann, B., “LFSR-Coded Test Patterns for Scan
Designs”, Proc. of European Test Conf., pp. 237-242,
1991.

 [7] Cullen, C. G., Linear Algebra with Applications, Addison-
Wesley, ISBN 0-673-99386-8, 1997.

 [8] Rajski, J., et al., “Embedded Deterministic Test for Low
Cost Manufacturing Test,” Proc. of Int. Test Conf., pp.
301-310, 2002.

 [9] Konemann, B., “A SmartBIST Variant with Guaranteed
Encoding”, Proc. of Asian Test Symposium., pp. 325-330,
2001.

 [10] Krishna, C.V., and N. Touba, “3-stage Variable Length
Continuous-flow Scan Vector Decompression Scheme”,
Proc. of VLSI Test Symposium, 2004.

[11] Stelling, P., C. Martel., V. Oklobdzija., and R. Ravi,
"Optimal Circuits for Parallel Multipliers”, IEEE Trans.
On Computer, Vol. 47 No. 3, pp. 273-285, Mar. 1998.

Proceedings of the IEEE Computer Society Annual Symposium on VLSI
New Frontiers in VLSI Design

0-7695-2365-X/05 $20.00 © 2005 IEEE

