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Abstract 
     Many chip designs contain one or more serial 
multipliers. A scheme is proposed to exploit this to 
compress the amount of data that needs to be stored on 
the tester and transferred to the CUT during 
manufacturing test. The test vectors are stored on the 
tester in a compressed format by expressing each test 
vector as a product of two numbers.  While performing 
multiplication on these stored seeds in the Galois Field 
modulo 2, GF(2), the multiplier states (i.e. the partial 
products) are tapped to reproduce the test vectors and fill 
the scan chains.  In contrast with other test vector 
decompression schemes that add significant test specific 
hardware to the chip, the proposed scheme reduces 
hardware overhead by making use of existing functional 
circuitry.  Experimental results demonstrate that a high 
encoding efficiency can be achieved using the proposed 
scheme. 

1.  Introduction 

    System-on-a-chip (SOC) designs integrate a lot of 
functionality together on a single chip. This high level of 
integration has reduced manufacturing cost, but has 
greatly increased the cost of test. One of the increasingly 
difficult challenges in testing SOCs is handling the large 
amount of test data that must be transferred between the 
tester and the chip. The entire set of test vectors for all 
components of the SOC must be stored on the tester and 
transferred to the chip during testing. 
     A number of test data compression schemes have been 
developed using a variety of techniques to reduce the test 
storage on the tester and also to reduce the test data 
bandwidth between the tester and the chip. Code based 
compression techniques include run-length codes [1], 
Huffman codes [2], frequency directed codes [3], LZ77 
[4], etc. Another very popular test vector compression 
technique is based on linear expansion where test data is 
decompressed on chip using only linear operations. This 
includes techniques based on linear feedback shift register 
(LFSR) reseeding [6], linear expansion networks 
consisting of XOR gates and seed overlapping [5]. These 
methods exploit the unspecified bits in the test cubes. 
Every decompressed bit is represented as a linear 
combination (modulo 2) of the stored compressed data. 

Every stored bit is denoted as a free variable. Free 
variables can be assigned any value (0, 1). The values are 
assigned such that when shifted into the scan chains 
through linear expansion networks, they can reproduce 
the desired test cubes. Each of the specified bits of the 
scan vectors can be represented by a linear equation in 
terms of the free variables depending on the decompressor 
circuit. Typically only 2-5% of the bits are specified and 
that provides a high degree of freedom while solving the 
linear equations. The choice of decompression network is 
vital as the encoding efficiency, which is defined as the 
ratio of specified bits to the number of bits stored on the 
tester (i.e. the compressed data) largely depends on it. The 
number of free variables used to solve a test cube can be 
fixed [8] or variable [9], [10].  Schemes with a fixed 
number of free variables require less control logic and 
control data. However the encoding efficiency is limited 
by the most specified test cube which is the hardest to 
solve. Schemes using a variable number of free variables 
require more complex control logic compared to those 
with fixed number of free variables. 
    One very economical option is to use the existing 
components in the circuit under test (CUT) to test other 
parts of the circuit. Since multiplication is very commonly 
used and is an expensive operation [11], rapid 
improvements of VLSI technologies have been used to 
increase the reliability and the speed of the multiplication 
units embedded in the circuit. This is particularly 
important for specialized chips supporting multiplication 
intensive operations, such as in digital signal processing 
and computer graphics. For the design of fixed-point 
digital signal processing systems, primarily two 
approaches are used: bit-serial and bit-parallel. Bit-
parallel approaches are time efficient. On the other hand, 
bit serial approaches are highly area efficient. Since 
signal-processing integrated circuits typically require 
many applications over a short period, small area 
multiplier implementations are of particular interest. For 
serial multipliers, area in terms of adder requirement 
grows only linearly with the word size N. This compares 
favorably to the N2 adder required for parallel multipliers. 
Serial multipliers allow a high degree of pipelining and 
hence very high throughput can be achieved. Another 
advantage is very small interconnect area is required for 
communication of numerical data with arbitrary precision. 
The serial multipliers can be easily reconfigured to 
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function as a cyclic code generator, perform 
multiplication in GF(2), and function as an LFSR in 
addition to functioning as a pure binary multiplier. For 
circuits with a built-in serial multiplier unit, test data 
decompression can be performed using the multiplier 
itself without having to modify the scan chains. Our 
proposed scheme is based on a linear expansion technique 
and uses the intermediate states of a reconfigurable 
multiplier that is a functional component of the circuit 
itself to decompress the test data. Experimental results 
suggest that a high encoding efficiency is achievable 
using only the built-in serial multiplier. We also analyze 
how the encoding efficiency can be further improved by 
sharing operands across multiple test cubes.  
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Figure 1.  Architecture of a 4-bit wide reconfigurable 
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2.  Decompression Using Multiplier 

    In this section, we describe the proposed technique to 
decompress deterministic test vectors on chip. Figure 1 
shows the architecture of a 4 bit wide reconfigurable 
serial multiplier. When performing multiplication in 
GF(2), the carry register output is constantly set to 0 
thereby transforming the full-adder into an XOR gate. 
The deterministic vectors are stored as compressed 
"seeds" and are decompressed by multiplying the seeds 
together in the multiplier which has been reconfigured to 
implement GF(2) multiplication. For an (n×n) test matrix, 
the objective is to find two n-bit numbers A and B which 
will be used as seeds, such that the states of the multiplier 
while performing product (A × B) in GF(2) using the 

shift-and-add algorithm generates the test matrix. The 
scheme is explained later with an example. The Gauss-
Jordan elimination [7] method is used to solve the set of 
linear equations in GF(2). Consider the example in Fig. 
2 where the test vector is converted into a (4x4) test 
matrix. Equation 1 shows the test matrix. The objective is 
to find two vectors A and B such that when multiplied in 
GF(2) using the built-in serial multiplier implementing  
the shift-and-add algorithm, the  multiplier states can be 
tapped to produce the desired test matrix.  
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The matrix of partial products generated while computing 
BA×  in GF(2) is: 
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The matrix in the right hand side of Eq. 6 shows the state 
of the multiplier after each clock cycle. After the first 
clock cycle the state of the multiplier while functioning in 
GF(2), is same as the first row of that matrix. On 
subsequent clock cycles, the state is determined by adding 
(modulo 2) the previous row right-shifted by 1 bit 
position, to the current row. In the following matrices, ⊕
implies (modulo 2) addition, which is equivalent to an xor 
operation. The objective is to choose A and B such that the 
matrix entries in Eq. 6 match the entries with a 0 or 1 
specified in the matrix in Eq. 1. Equation 7 can be written 
in the form yMx= .
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Only the equations corresponding to the specified bits 
have to be solved. So finally we have, 
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Next Gauss-Jordan Elimination method can be applied in 
GF(2) on Eq. 8 to obtain the vectors A and B. For this 
example, we finally get, B = 1101 and A = 1011 in 
binary, where B is applied serially with LSB applied first 
and the MSB applied last and A is applied in parallel. The 
states of the multiplier unit are shown in Fig. 4. 4 clock 
cycles are required to reproduce the test matrix. Here the 
storage requirement for the 4×4 (n=4) test vector matrix 

is reduced from 2n  bits to n2  bits i.e. from 16 bits to 8 
bits. For this particular example, the amount of 
compression ((16-8)/16)×100% = 50% and encoding 
efficiency = 9/8 = 1.125.
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The two n-bit numbers A and B are called seeds and 
represent the compressed version of the test-vector 
matrix. In general, the reduction in storage is given by: 

                                   %100
2
2

2

×−
n

nn                      (10) 

In scan based designs, multiple clock cycles are required 
to generate each vector. Each test cube is partitioned into 
multiple scan chains as shown in Fig. 3. Each row is 
called a bit-slice and it corresponds to a row of the test 
matrix. The number of clock cycles required depends on 
the length of the largest scan chain. Figure 3 also 
illustrates how the multiplier can be integrated into the 
scan-based test environment. Once the test cube has been 
generated, a capture cycle applies the vector to the CUT. 
The response is captured into the scan cells. The response 
is serially sent to a multiple input signature register 
(MISR) for compaction. At the same time, the next vector 
is serially fed into the scan chains. Although the test 
matrices are not always solvable, the don’t-care bits in the 
test vectors improve the chances of being able to solve 
them. The greater the number of don’t-care bits, the fewer 
the number of equations, and hence the fewer the number 

of constraints on the ijv ’s. If the set of linear equations 

cannot be satisfied, then all n2 bits have to be stored. In 
the tester the compressed data is stored first and next all 
the uncompressed data is stored. The reverse sequence is 
also possible. This eliminates the need to keep a marker 
bit with every test cube to indicate whether it is 
compressed or not. The number of compressed test cubes 
(COMPRESSED_COUNT) is also stored on the tester. As 
test cubes are applied to the CUT, the VECTOR 
_COUNT register in the tester is incremented. Every time 
the value of the VECTOR_COUNT register is compared 
with the value of COMPRESSED_COUNT. If they match 
then all the compressed test cubes have been applied and 
the tester switches mode to apply the remaining 
uncompressed test cubes. Encoding efficiency and 
compression can further be improved by sharing operands 
across multiple test cubes. However this requires indexing 
of the operands and for every compressed test cube two 
indices have to be stored to find the corresponding 
operands. If the number of distinct operands is P then 

P2log  bits are required for indexing. If K is the number 

of compressible test cubes then for each of the 
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compressed test cubes two indices each consisting of 
P2log  bits have to be stored. Let the total number of test 

cubes be L. The compression without operand sharing is 
given by:   

             
%100

))(2()(
2

22

×
×

×−+×−×
nL

nKLnKnL                   (11)                                                                                      

If the sharing of operands is allowed then the compression 
is given by: 
             

%100
)log2)(()(
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2
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×
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PKnKLnPnL      (12)    

Note that the n-bit shift register (B) is used to apply data 
serially to the multiplier and the n-bit register (A) is used 
to apply data in parallel to the multiplier. Both the 
registers are functional components of the CUT and are 
required. Hence no additional test specific hardware is 
required. However, a shadow register is required to 
maintain continuous flow of test data from the tester to 
the chip and to maximize the use of the tester bandwidth. 
To perform n×n multiplication n clock cycles are initially 
needed to serially fill in the B register and the shadow 
register using 2 tester channels. During the capture cycle 
the shadow register content is transferred in parallel to the 
A register. n clock cycles are required to decompress the 
particular test cube using the multiplier states. At the 
same time, next operands are loaded into the B register 
and shadow register serially. And the operation continues. 
Only 2 tester channels are sufficient and test data 
bandwidth is greatly reduced. 
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Figure 3.  Integrating multiplier in scan test environment 
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    If K test cubes are compressed using our proposed 
scheme and only P distinct operands are required and (P 
< 2K+1), then sharing will yield better encoding 
efficiency if and only if  

                    ))(log2())(()2)(( 2 PKnPnK >−                      (13) 

Since typically the number of free variables is larger than 
the number of specified bits in the test cubes, there are a 
lot of degrees of freedom while solving the set of linear 
equations corresponding to the specified bits. The 
objective is to choose solutions which maximize the 
probability of sharing across different test cubes. 
However as operand size (n) increases it becomes 
increasingly difficult to explore exhaustively all possible 
solutions. Therefore we use two different strategies to 
increase operand sharing, one for smaller operand sizes 
(Strategy 1) and the other one for larger operand sizes 
(Strategy 2). 

Strategy 1: For smaller operands (n < 9) it is possible to 
explore all the possible solutions for each of the test 
cubes. In this strategy, for a test cube, first the Gauss-
Jordan elimination technique is applied to the set of linear 
equations and the pivoted matrix is obtained. Next from 
the pivoted matrix, mandatory assignments are found out. 
Mandatory assignments correspond to assignments of the 
from 1=ijv or 0=ijv . These assignments could be 

directly derived from the singleton rows of the pivoted 
matrix or may result from some earlier mandatory 
assignments. A set of constraints are derived from these 
mandatory assignments e.g. 1=ijv  implies that both 1=ia
and 1=jb . Similarly 0=ijv  implies one or both of ai or bj is 

0. After fixing the bit values of the vectors A and B
corresponding to the mandatory assignments, the rest of 
the bit positions are allowed all possible values. For each 

combination of A and B, the corresponding set of ijv ’s for 

all possible values of i and j is determined. Using the 
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values of ijv ’s the set of values corresponding to ijt ’s is 

calculated. Due to large degrees of freedom, several 
choices of A and B vectors can match the current test cube 
at the specified bit positions and they all constitute the 
solution set for the current test cube. Out of all solutions, 
the one that matches with the largest number of distinct 
test cubes is chosen. The test cubes that are 
decompressible using the chosen A and B pair are 
removed from consideration and this process continues 
till the set of all test cubes becomes empty. 

Strategy 2: However in larger dimensions i.e. (n > 8),
strategy 1 becomes impractical as the number of all 
possible solutions becomes unacceptably large. In these 
cases, we followed a different strategy to maximize 
operand sharing across multiple test vectors. First the set 
of all test cubes is partitioned in smaller subgroups of size 
(< 6). For each subgroup and for each test cube in the 
subgroup, the support set in terms of variables 

ijv  for each 

specified bit of all the test cubes in the subgroup are 
computed. The computed list gives the set of variables 

ijv

which impacts the specified bits and the corresponding 

ia ’s and 
jb ’s.  The other bit positions are set to constant 

values and exhaustive search is initiated using only the 
variables in the support set. Next using a similar 
technique as in strategy 1, the minimal set of distinct 
operands is identified for each of the sub-groups. Finally 
all the sub-groups are merged and redundant operands are 
removed. Note that unlike strategy 1, this method is not 
optimal and different sharing can be achieved for different 
partitioning of the test set. 

3.  Experimental Results 

    To verify how the encoding efficiency varies for the 
proposed scheme for different distributions of specified 
bits, we first performed experiments with randomly 
generated test cubes. Only 2 tester channels were assumed 
in all the experiments and they were used to transfer the 
operands to the shadow register and the shift register from 
the tester. Test cubes were randomly generated with 
different distributions of specified bits. The generated test 
cubes were encoded using the proposed scheme. In all the 
experiments, 100 randomly generated vectors were used. 
In Table 1, scan architectures with 8, 16, 32 and 64 scan 
chains were used. The number of scan cells was assumed 

to be 2n where n is the number of scan chains. For each 
of the scan architectures the existence of a serial 
multiplier unit (MU) with word-width the same as that of 
the number of scan chains was assumed. The randomly 
generated test cubes were encoded and the encoding 
efficiency was calculated. Table 1 shows the results with 
and without operand sharing. As is expected, if the 
number of specified bits per test cube is small then better 
encoding efficiency can be achieved using operand 

sharing as this makes use of the degrees of freedom while 
solving the linear equations. In some cases (denoted by 
*), the encoding efficiency with operand sharing is worse 
than without sharing. In these cases the condition of Eq. 
13 is violated. For all the reported results in Table 1, all 
the test cubes were solvable because the number of free 
variables was significantly more than the number of 
specified bits per test cube. The results presented in Table 
1 also provide an insight into choosing a particular 
multiplier word-size for any test set with a particular 
distribution of specified bits if the CUT contains multiple 
multiplier units. If the CUT contains only one multiplier, 
then its word-size is used. Higher encoding efficiency can 
be achieved using larger multiplier unit when the number 
of specified bits per test cube is small. On the other hand, 
if the test cubes are densely specified then smaller 
multiplier units provide better encoding efficiency. The 
empty cells in the Table 1 refer to the cases when one or 
more of the test cubes were not solvable. We performed a 
second set of experiments to compare our proposed 
scheme with other schemes. Note that the proposed 
compression/decompression scheme is targeted for 
circuits with a built-in serial multiplier component 
present, since this allows good encoding efficiency with 
significantly reduced test hardware. For the sake of 
comparison, we encoded the test cubes corresponding to 
four of the largest ISCAS 89 benchmark circuits. The test 
cubes for non-redundant faults were generated using
ATALANTA. The multiplier size was chosen so as to 
maximize encoding efficiency based on the distribution of 
the specified bits in the test cubes. Table 2, shows the 
results for the proposed scheme corresponding to the 
ISCAS circuits. The number of scan chains is equal to the 
word-size of the multiplier unit being chosen. Note that 
using a smaller number of scan chains increases test time. 
Consider the circuit s15850. Here the number of scan 
cells is 611 and the existence of a 8×8 multiplier was 
assumed. Since the specified bit distribution is 12%, this 
provides the best encoding efficiency. Figure 5 shows the 
overall organization with 8 scan chains and 2 tester 
channels. The length of each test cube was made a 
multiple of 64 by adding extra padding bits.  With 
padding, every test cube becomes 640-bit long. Next each 
test cube is partitioned into 10 64-bit blocks and each 
block is decompressed using the multiplier. The number 
of clock cycles (including capture cycle) required to 
decompress a particular test cube is ((10×8) + 1)). The 
total number of clock cycles required to decompress the 
entire test set (including the setup time to fill the shift-
register and shadow-register for the first time is 
((142×81) + 8) i.e. 11510. Table 3 shows a comparison of 
the results for the proposed scheme with a variety of other 
compression schemes.  The best results in terms of test 
storage requirement are highlighted. Note that the 
technique proposed in [10] provides a higher encoding 
efficiency than all the results which are compared here. 
But for that scheme scan chain modification, dedicated 
test hardware, and a larger number of tester channels are 
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required. As can be seen from Table 3, in 3 out of 4 cases, 
the proposed scheme required least test data storage. 

Table 1.  Encoding efficiency for different specified bit 
distributions

Operand 
Sharing 

Specified      
Bit Distribution 

n=8 
88×

n=16 
1616×

n=32 
3232×

n=64 
6464×

1-3 .14 .30 .48 .70
3-5 .23 .40 .70 

5-10 .40 .58* - - 
YES 

10-20 .48* - - - 
1-3 .08 .16 .32 .64 
3-5 .16 .32 .64  

5-10 .30 .60 - - 
NO

10-20 .60 - - - 

Table 2.  Results for ISCAS 89 circuits

Circuit 
Name 

Mult 
Used 

Num. 
Test

Cubes 

Total 
Num 
Bits 

Num 
Spec 
Bits 

Test
Storage 
(Bits) 

Enc 
Eff. 

s13207 32x32 255 178500 9335 16320 .58 
s15850 8x8 142 86762 10452 20720 .51 
s38417 8x8 105 174720 29847 48680 .61 
s38584 16x16 192 281088 25636 29872 .85 

Table 3.  Comparing test data storage for different 
encoding schemes

FDR Codes 
[3] 

Seed Overlapping  
[5] 

Proposed Circuit 
Name 

Num. 
Vect. 

Total Bits Num. 
Vect. 

Total 
Bits 

Num. 
Vect. 

Total 
Bits 

s13207 236 30880 272 17970 255 16320 
s15850 126 26000 174 15774 142 20720 
s38417 99 93466 288 60684 105 48680 
s38584 136 77812 215 31061 192 29872 

4.  Conclusions 
    In this paper, a novel low cost 
compression/decompression scheme has been proposed 
using a reconfigurable serial multiplier which is a 
functional component of the circuit under test. The 
encoding efficiency can further be improved by 
minimizing number of 1s in the ATPG generated vectors.  
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