
Hybrid BIST Based on Weighted Pseudo-Random Testing: A New Test Resource
Partitioning Scheme

Abhijit Jas, C.V. Krishna, and Nur A. Touba

Computer Engineering Research Center
Department of Electrical and Computer Engineering

University of Texas, Austin TX 787 12- 1084
E-mail: { jas, krishna, touba} @ece.utexas.edu

Abstract
This paper presents a new test resource partitioning

scheme that is a hybrid approach between extemal
testing and BIST. I t reduces tester storage requirements
and tester bandwidth requirements by orders of
magnitude compared to conventional extemal testing, but
requires much less area overhead than a full BIST
implementation providing the same fault coverage. The
proposed approach is based on weighted pseudo-random
testing and uses a novel approach for compressing and
storing the weight sets. Three levels of compression are
used to greatly reduce test costs. No test points or any
modifications are made to the function logic. The
proposed scheme requires adding only a small amount of
additional hardware to the STUMPS architecture.
Experimental results comparing the proposed approach
with other approaches are presented.

however, is that it generally does not provide high enough
fault coverage due to the presence of random-pattern-
resistant faults [Eichelberger 831. There are two solutions
to this problem. One is to modify the circuit to eliminat’e
the random pattern resistance by inserting test points
[Eichelberger 831, and the other is to modify the test
pattern generator by adding additional hardware to
generate patterns that detect the hard faults [Touba 961,
[Kiefer 98, 001, [Fagot 981. Both approaches have
significant drawbacks. Test point insertion requires
modifying the function logic which can degrade system
performance, and modifying the test pattern generator can
require large amounts of additional silicon area.

I Tester

1. Introduction
The continual increase in integration density for VLSI

has made system-on-a-chip (SOC) designs possible. The
amount of test data volume required for testing such large
designs is growing rapidly. Conventional external testing
approaches where all test data is stored on the tester and
transferred to/from the circuit-under-test (CUT) is
becoming increasingly difficult. Testers have limited
speed, memory, and I/O channels. The limited test data
bandwidth (see Fig. 1) between the tester and the chip is
becoming a major bottleneck that is expected to become
much worse as the projections in [Khoche 001 indicate.
There is a need for new test resource partitioning schemes
that reduce test data bandwidth requirements and reduce
tester storage requirements by orders of magnitude.

One well-known approach is to use built-in self-test
(BIST). BIST involves performing test pattern generation
and output response compaction on the chip. BIST has
been studied for many years. The most economical BIST
schemes are based on pseudo-random pattern testing.
The problem with pseudo-random pattern testing,

Test Data Bandwidth
= (#Channels * Clock Rate)

Chip

Figure 1. Block Diagram Illustrating Test Data
Bandwidth

In this paper, we present a new test resource
partitioning scheme that is a hybrid approach between
BIST and external testing. The term “hybrid BIST’ will
be used in this paper to classify any scheme that involves
combining external data from the tester along with BIST
hardware on the chip to provide a hybrid test solution for
a particular module or core. A hybrid BIST approach
reduces the test data stored on the tester compared with
full external testing, but it does not require as much
hardware overhead as full BIST. There are several
existing approaches that can be classified as hybrid BIST
approaches. A simple approach for hybrid BIST is to use
a STUMPS architecture [Bardell 821 to apply pseudo-

1093-0167/01 $10.00 0 2001 IEEE
2

mailto:ece.utexas.edu

random patterns to detect the random pattern testable
faults, and then use deterministic scan vectors from the
tester to detect the hard faults. There have been two
recent case studies on using this approach for large
industrial designs [Hetherington 991, [Pressly 991. The
case study in [Pressly99] was done on the Motorola
PowerPCTM microprocessor core, and the study in
[Hetherington 991 was done on large ASIC designs. In
[Pressly 991, the reduction in external test storage
requirements after using 500K BIST patterns was around
30%. In [Hetherington 991, test points were inserted, but
the reduction in test storage requirements after 262K
BIST patterns still ranged only from 35% to 55%. What
these results indicate is that most of the vectors in a
deterministic test set target hard faults which are missed
by BIST. So a straightforward hybrid BIST approach
where pseudo-random vectors are applied with BIST
hardware followed by deterministic vectors from the
external tester, can only achieve a limited reduction in
tester storage requirements, generally not an order of
magnitude reduction.

In [Das 001, a hybrid BIST approach was proposed
where some of the scan chains in a STUMPS architecture
are filled with deterministic test data from the tester while
the rest of the scan chains are filled from the pseudo-
random pattern generator (PRPG). The set of scan chains
receiving deterministic data is rotated in a round-robin
fashion. This approach was applied to the Motorola
PowerPCTM microprocessor core. Results indicated that
the test storage requirements could be reduced by around
50% with this approach compared with 31% as was
reported in [Pressly 991 for using fully pseudo-random
patterns followed by fully deterministic patterns.

In this paper, we propose a new hybrid BIST approach
that is based on weighted pseudo-random testing.
Weighted pseudo-random testing involves biasing the
generation of pseudo-random patterns towards those that
detect the hard faults. A “weight” is assigned to each bit
position in a test vector and corresponds to the probability
of a ‘1’ being generated at that bit position. Because of
conflicting requirements for detecting hard faults in a
circuit, multiple weight sets are generally required
[Wunderlich 881. Some number of weighted pseudo-
random patterns are generated for each weight set to
detect all of the faults. There are two types of weighted
pseudo-random testing schemes, one for external testing
and one for BIST. For external testing, the weight sets
are stored in the tester memory, and the weighted pseudo-
random pattern generation is performed on the tester as
each test vector is being transferred to the chip (as
illustrated in Fig. 2) [Waicukauksi 891, This approach
reduces tester memory requirements, but it does not help
with the test data bandwidth bottleneck problem because

all of the test data still has to be transferred from the
tester to the chip. The other scheme for weighted pseudo-
random testing is to use it for BIST (as illustrated in
Fig. 3). In this case, the weight sets are stored on the
chip, and on-chip hardware is used to generate the
weighted pseudo-random patterns [Brglez 891, [Muradali
901, [Pomeranz 93a] (or the hardware could be placed on
a separate “test chip” [Strole 911). The problem with a
full BIST implementation of weighted pseudo-random
testing is that storing the weight sets on the chip requires
an enormous amount of area overhead.

chip I I Tester in@-,
Generator

I Scanchain1]
L Scanchain2 1 . .

e

1 ScanChainn I

Figure 2. Weighted Pseudo-Random Pattern Generation
for External Testing

chip

Generator
Scan Chain n

Figure 3. Weighted Pseudo-Random Pattern Generation
for BIST

In this paper, we propose a novel hybrid weighted
pseudo-random scheme that reduces tester storage
requirements and solves the test data bandwidth
bottleneck problem, but does not require the area
overhead of a full BIST implementation. It uses three
levels of compression to provide orders of magnitude
reduction in tester storage requirements. In comparison
with the approach of performing the weighted pattern
generation on the tester, the proposed approach not only
reduces tester memory requirements, but more
importantly, it also reduces the test data bandwidth
requirements from the tester to the chip. If weighted
pattern generation is performed on the tester and then
used to drive 32 scan chains, it requires 32 channels from
the tester, whereas the proposed approach can drive the
same number of scan chains with data coming from only
a small number of channels from the tester. As system-
on-a-chip designs become larger and more complex, this
capability will be essential to keep test time down. Note
that test time is lower bounded by the total amount of test

3

data stored on the tester divided by the test data
bandwidth between the tester and chip (which is limited
by the number of I/O pins on the chip and I/O channels
from the tester).

A simple approach for implementing a hybrid BIST
weighted pseudo-random scheme would be to store all the
weight sets on the tester, and then transfer one weight set
at a time to the chip. After some number of weighted
pseudo-random vectors are generated on the chip for one
weight set, the next weight set could be transferred from
the tester to the chip. The problem with this approach is
that at least 2 bits (or more depending on the precision of
the weights) are needed to encode the weight value for
each scan element in a design. This means that the
storage requirements on the chip for one weight set would
be at least double the number of scan elements in the
design which would be an enormous area overhead.
Fortunately, it turns out that weight sets are highly
compressible. This fact is greatly exploited in the scheme
proposed in this paper. We present a novel hybrid BIST
weighted pseudo-random testing scheme that uses only a
small amount of data from the tester to significantly
reduce BIST hardware requirements on the chip. The
proposed approach reduces tester storage requirements by
orders of magnitude compared to full external testing
while requiring much less overhead than a full BIST
approach that provides the same fault coverage. No test
points or any modifications are made to the function
logic. The proposed scheme requires adding only a small
amount of additional hardware to the STUMPS
architecture.

2. Overview of the Proposed Scheme
This section describes the basic idea of the proposed

scheme for hybrid BIST with weighted pseudo-random
testing. The implementation details are explained later
in subsequent sections of the paper. Figure 4 shows a
block diagram of the test architecture. In this scheme,
3-valued weights are used (as was proposed in [Pomeranz
93a]), i.e., the three possible weights for a specific scan
element are 0, 1, and U (which signifies “unbiased’). A
weight of 0 forces the value of a particular scan element
to 0, a weight of 1 forces it to 1, and a U means that the
scan element takes on a value of 0 or 1 with equal
probability. In Fig. 4, the scan elements of the chip have
been configured into n scan chains each of which contains
m scan elements (bits). Since a 3-valued weight system is
being used, two bits are required to store the weight for
each scan element. The encoding used in this particular
example for the three weights are (w1; , wOi) = 01 for
weight 0, 10 for weight 1, and 00 for U. However any
other 3-valued encoding can be used.

I Tester I

I
I
I
I
I
I
I
I
I
I
I
I
I

Scan Chain 1 (m bits)

Scan Chain 2 (m bits)

l
Scan Chain n (m bits)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 4. Block Diagram of Proposed Hybrid BIST Tesl
Architecture

Figure 4 illustrates the STUMPS architecture for BIST
where at each clock cycle, n pseudo-random bits
generated by the pseudo-random pattern generator
(PRPG) are scanned into the n scan chains (one bit into
each scan chain). However, in the proposed approach the
pseudo-random bits are transformed by the logic at the
input of the scan chains according to the weight bits wl, ,
WO,. The weight bits are stored in a look-up table (LUT)
on the chip. Details of the LUT will be explained in the
next section. At each clock cycle, the set of weighls
corresponding to the i-th bit of every scan chain is looked
up from the LUT and used to transform the pseudo-
random bits coming out of the PRPG to generate the
weighted pseudo-random bits which are then scanned into
the scan chains. It takes m scan clock cycles to
completely fill the n scan chains. Once the scan chains
are filled (i.e., nm scan bits have been shifted into the
scan chains) the system clock is applied and the output
response is captured in the scan chains. This output
response is shifted out and compacted in the multiple
input signature register (MISR) as the next test vector IS

shifted in.
The 2n weight bits for the n scan chains (wll,WO1),

(w12.W02), ... (wl,,,wO,,) are stored in one location of the
LUT. At each clock cycle, the tester supplies an LUT
index which is used to read the weights for the n bits froin
the LUT. These weights are then used to transform the n
pseudo-random bits coming from the PRPG as they are
shifted into the scan chains. The tester and the PRPG
operate at the same clock frequency in a lock-step
manner. The number of bits required for the LUT index
depends on the size of the LUT. The number of bits, k ,
required for the index is generally much less than n. So
in this scheme, k tester channels are being used to drive n

4

scan chains, where k is much less than n. Hence, the
tester bandwidth requirements are being reduced.

For each weight set, a sequence of m LUT indices are
stored on the tester. If L weighted pseudo-random
patterns are to be generated for each weight set, then the
tester simply resends the sequence of indices for each
weight set L times. Only one copy of the sequence of
indices for each weight set needs to be stored in the tester
memory.

There are three levels of compression in this scheme.
The first level of compression is that only the unique parts
of each weight set need to be stored in the LUT (this will
be explained in detail in the next section), thus for each
weight set there will much less than m rows in the LUT.
The second level of compression is that each weight set is
stored as a sequence of k-bit indices on the tester where k
scales logarithmically with the number of rows in the
LUT and is much less than n. The third level of
compression is that each weight set is expanded into L
weighted pseudo-random test patterns. These three levels
of compression result in greatly reduced tester storage
requirements and tester bandwidth requirements.

3. Determining Contents of LUT
The first step is to determine the weight sets that will

be required to achieve the desired fault coverage. Any
number of weighted pseudo-random patterns can be
generated for each weight set with the scheme presented
here. Many techniques for determining weight sets for a
particular CUT have been proposed in the literature, e.g.,
[Waicukauski 891, [Pomeranz 93a], [Bershteyn 931. Any
of these techniques can be used.

Given the weight sets, the next step is to determine the
contents of the LUT. Figure 5 illustrates how the weight
sets are stored in the LUT and accessed during the
testing. Let n denote the number of scan chains and m
denote the number of bits in each scan chain. Thus the
total number of scan elements is nm. As mentioned
earlier, since a three-valued weight system is being used,
two bits are required to store the weights for each scan
element. The weights for the i-th scan element of all the
scan chains are stored in each location of the LUT so that
they can all be read in the same clock cycle and used to
transform the pseudo-random bits coming in from the
PRPG. Thus, (wll, WO,), (wf2, wOZ), . . . (w f ,,, WO,), denotes
the weights represented by two bits for the i-th scan
element in each of the n scan chains. The rows I -]] , r12,
... I-lm correspond to the first weight set. There is one row
for each of the m bits of the scan chains. 1-21, r22, ... rZm
correspond to the second weight set.

The LUT can be compressed to a great extent by
merging identical rows as is illustrated in Fig. 5. This

results in a lot of compression because many of the weight
sets will have similar assignments in various rows in the
LUT. Very often, the i-th scan elements of the n scan
chains will all be assigned U. This common case reduces
to a single row in the LUT. A small example showing
how two weight sets are compressed in the LUT is shown
in Fig. 6. Reducing the size of the LUT has a two-fold
advantage. Not only does it reduce hardware
requirements, but it also reduces the size of the indices as
fewer bits are now required to index the LUT.

Once the LUT has been constructed, then each weight
set can be stored as a sequence of m indices on the tester
where each index is fiog,p7bits wide where p is the total
number of rows in the LUT.

wl , WO, 0 0 0 w l , W O , w l , W O ,

rl I

rl 2

0
0
0

rlm

r2 I

r22

0
0
0

r2m

a

L

2m
rows

1

w l , WO, 0 0 0 wl, WO, w l , W O ,

r l l , r13 tr23

r12rr22

r14.r212r27

r16, rl 7 , r24

r18*r25

0
0
0

r lp 2 r2m

Figure 5. Storage of Weight Sets in LUT

A small example is shown in Fig. 6. The chip-under-
test has 4 scan chains each of which is 10 bits long,
Assume that 5 weighted pseudo-random patterns will be
generated for each weight set for a total of 10 weighted
pseudo-random patterns as shown in Fig. 7. In Fig. 7, the
bold columns in the figure show the bits that are fixed
because of the weight sets. The U bits take on a value of I
or 0 randomly.

Fig. 6 shows how the weights will be stored in the
LUT on the chip. Weights for a certain bit position for all
the 4 scan chains will be stored in one location of the

5

LUT. Thus every location of the LUT will be 8 bits wide
(2 bits to represent each weight) and there will initially be
10 LUT locations for each weight set for the 10 bit
positions in the scan chains. The scan chains are denoted
by S I , s2, s3, and s4, and the bit positions are denoted by
Bit i. Since the weight sets have a lot of similarities, they
can be compressed to a great extent. In Fig. 6, the unique
weight patterns are shown in bold. Thus, the duplicate
patterns can be eliminated and only the unique patterns
stored in the LUT. Hence the LUT storage requirements
can be reduced from 20 rows to only 8. Only a sequence
of m LUT indices needs to be stored in the tester for each
weight set. In this case, each index is only 3 bits wide
since there are only 8 rows in the LUT.

weight1
weight2

Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bit 9
Bit 1(

luuOululuu~uuuuuluuul~luuOuuuluu~uOulOuuuu0
lulOullluu~uluulluuul~luuOuuuluu~uOulOuuuu0

u u u u u u u u
U l U O U l U O

panem set 1

+ i.‘.i U l U O

joooii 1101 j I 101 11 I 1 11 i 1 I iooioioo i 0001oi 1 100
1010011110~0110111101~1000101110~0011011000

110
1 1 1

2

Compressed LUT Index
Weight Set

~~

1110011110 1101111001 1100110101 1001011000
1110011111 1101110001 1010101101 0011001100
1010011111 0101110101 1100011100 0011011100

Weight Set 1 Weight Set 2

Figure 6. Small Example Illustrating Proposed Approach

scan chain 1 scan chain 2 scan chain 3 scan chain 4

weighted 1100111110~0111011011~1010001110~1001000010
random 1100010111 11010110001 lllO011~1~~ I1001001010

weighted
random

pattem set

1010111100(1110111011)1000001110~10010011u0
1010111101101011101011101010011011001000010

Figure 7. Example of Weighted Pseudo-Random
Patterns Generated for 2 Weight Sets

4. Hardware Implementation of LUT
The LUT can be implemented in hardware in a variety

of ways. One simple way of implementing the LUT is by
using a RAM. Generally there are a lot of RAM’S already
present in a design, so it may be possible to use one of
them to serve as the LUT for this scheme. In this case,

the contents of the LUT would be initially stored in the
tester. Before the testing begins, the tester would
initialize the RAM with the proper contents. The
minimum size required for the RAM would depend on the
number of rows in the LUT and the number of scan
chains. Note that if the RAM is larger than necessary,
this does not present a problem. In such a case, only a
subset of the addressable locations in the RAM would be
used, and only a subset of the data bits stored at each
address would be used.

Another way of implementing the LUT would be to
use a PLA (programmable logic array). Because most of
the weight values are U (which could be encoded using
one specified bit and one don’t care), the number of rows
in the PLA can be greatly minimized. A PLA provides a
very compact and efficient implementation of the LUT.

5. Experimental Results
Experiments were performed on the 5 largest ISCAS-

89 circuits. For each circuit, STUMPS architectures with
different numbers of scan chains were constructed. First,
32,000 pseudo-random patterns were applied with the
STUMPS architecture to detect the random pattern
testable faults. Then the remaining random pattern
resistant faults were targeted using weighted pseudo-
random patterns based on the 3-valued weight system
described in Sec. 2. The weight sets were selected using
the procedure described in [Pomeranz 93a] with 1,000
weighted pseudo-random patterns being generated for
each weight set. Table 1 shows the number of weight sets
that were required for each circuit to achieve 100%
coverage of detectable faults. For each circuit, Table 1
shows the total number of scan elements and the results
for dividing them into different numbers of scan chains.
In each case, the hardware requirements are shown for
using either a RAM or a PLA to implement the LUT.
The amount of test data that must be stored on the tester
is shown for the proposed hybrid BIST approach and for
conventional external testing using the highly compacted
test vectors obtained with COMPACTEST [Pomeranz
93bl. The compression ratio for the test data storage
requirements is shown. It is computed as:

(test data for conventional external testing) / (test data
for proposed hybrid BIST approach)

As can be seen, the tester storage requirements are
reduced by orders of magnitude with the proposed hybrid
BIST approach.

Table 2 shows a comparison of the proposed hybrid
BIST approach versus an approach where BIST is used to
detect the random pattern testable faults and then “top-
up” deterministic test vectors are applied from the tester
to detect the random pattern resistant faults. The “top-

6

up” deterministic vectors were obtained by first applying As can be seen, the tester storage requirements are
32,000 pseudo-random patterns using the STUMP reduced by at least an order of magnitude in all cases with
architecture, and then doing ATPG for the remaining the proposed hybrid BIST approach based on weighted
undetected faults. The compression ratio for the test data pseudo-random testing.
storage requirements is shown. It is computed as: Table 3 shows a comparison of the area overhead for

the proposed hybrid BIST approach compared with the
best published results for deterministic BIST in [Kiefer 981

(test data for “top-up ’’ test vectors) /(test data for
proposed hybrid BIST approach)

525
263
110

2139
1070
535

18720
9360
4680
2663
3294
1922
96 1
615

Table 1. Comparison of Proposed Hybrid BIST Scheme with External Testing

331800

150306

316160

366000

-
Rows

96
99
62

-

35
35
22
74
100
75

255
358
27 1
227
44
64
65
53

-

-

Test Data

37 1

Test Data
Compression

Ratio
38
77
180
632
1261
3016

70
140
28 1
17
34
67
119
111
190
381
595

Table 2. Comparison of Proposed Hybrid BIST Scheme with BIST Followed by Top-Up Test Patterns from Tester

Table 3. Comparison of Proposed Hybrid BIST Scheme with Deterministic BIST Scheme Described in [Kiefer 981

Compression

7

that provides the same fault coverage. This comparison
assumes that a PLA implementation is used. It should be
noted that for one or both of the techniques, a multilevel
logic implementation may be more efficient than a PLA
(this is in fact suggested in [Kiefer 981 for a STUMPS
architecture). Also, note that the comparison only
considers the area overhead of the PLA. It does not
include the area overhead for the STUMPS architecture
itself, however, the results in [Kiefer 981 indicate that the
PLA area dominates the total area for BIST for these
circuits. The compression ratio for the PLA area
overhead requirements is shown. It is computed as:

(PLA area for [Kiefer 981) / (PLA area for proposed
hybrid BIST approach)

As can be seen, the area overhead is greatly reduced with
the proposed hybrid BIST approach. Note that the
reduction becomes more pronounced for the larger
circuits. For ~38417 and ~38.584, the hardware overhead
is reduced by a factor of 7.5 and 6.1, respectively. Of
course, it should be noted that the full BIST
implementation in [Kiefer 981 does not have any tester
storage requirements.

6. Conclusions
The new test resource partitioning scheme presented

here combines BIST hardware with external data from the
tester to provide a hybrid BIST solution. By using three
levels of compression, the tester storage requirements are
reduced by orders of magnitude compared to conventional
external testing. Compared with using a deterministic
BIST scheme to achieve the same fault coverage, it was
shown that the area overhead on the chip can be
significantly reduced. This new test resource partitioning
scheme provides another design point in addition to
external testing or deterministic BIST that may be
attractive in some test resource partitioning scenarios.
Note that in addition to the benefits of reducing tester
storage and bandwidth requirements, the proposed
approach also provides the benefits of weighted pseudo-
random pattern testing in detecting non-modeled defects.

Acknowledgements
This material is based on work supported in part by

the National Science Foundation under Grant No. MIP-
9702236 and in part by the Texas Advanced Technology
Program under Grant No. 003658-0644- 1999.

References
[Bardell 821 Bardell, P.H., and W.H. McAnney “Self-Testing of Multichip

Logic Modules,” Proc. of International Test Conference, pp. 200-
204, 1982.

[Brglez 891 Brglez, F., G. Gloster. and G. Kedem, “Hardware-Based
Weighted Random Pattern Generation for Boundary Scan,” Proc. of
International Test Conference, pp. 264-274, 1989.

[Bershteyn 931 Bershteyn, M., “Calculation of Multiple Sets of Weights lor
Weighted Random Testing,” Proc. of International Test Conference,

[Das 001 Das, D., and N.A. Touba, “Reducing Test Data Volume Using
ExternaULBIST Hybrid Test Pattems,” Proc. of International Test
Conference, pp. I15-122,2000.

[Eichelberger 83.1 Eichelberger, E.B., and E. Lindbloom, “Random-Pattem
Coverage Enhancement and Diagnosis for LSSD Logic Self-Test,”
IBM Journal of Research & Development, Vol. 27, No. 3, pp. 265-
272, May 1983.

[Fagot 981 Fagot, C., P. Girard, and C. Landrault, “On Using Machine
Learning for Logic BIST,” Proc. of International Test Conference,

[Hetherington 991 Hetherington, G., T. Fryars, N. Tamarapalli, M. Kassab,
A. Hassan and J. Rajski, “Logic BIST for Large Industrial Designs:
Real Issues and Case Studies,” Proc. of International Test
Conference, pp. 358-367, Sept. 1999.

[Khoche 001 Khoche, A., and J. Rivoir, “IIO Bandwidth Bottleneck for
Test: Is it Real?,” Proc. of International Workshop on Test
Resource Partitioning, 2000.

[Kiefer 981 Kiefer, G., and H.-J. Wunderlich, “Deterministic BIST with
Multiple Scan Chains,” Proc. of International Test Conference,
pp. 1057-1064, 1998.

[Kiefer 001 Kiefer, G., H. Vranken, E.J. Marinissen, and H.-J.
Wunderlich, “Application of Deterministic Logic BIST on
Industrial Circuits.” Proc. of International Test Conference,

[Muradali 901 Muradali, F., V.K. Agarwal, and B. Nadeau-Dostie, “A New
Procedure for Weighted Random Built-In Self-Test,’’ Proc. of
International Test Conference, pp. 660-668, 1990.

[Pomeranz 93aI Pomeranz, I., and S.M. Reddy, “3-Weight Pseudo-Random
Test Generation Based on a Deterministic Test Set for Combinational
and Sequential Circuits,” IEEE Transactions on Computer-Aided
Design, Vol. 12, No. 7, pp. 1050-1058, Jul. 1993.

[Pomeranz 93bl Pomeranz, I., L.N. Reddy, and S.M. Reddy,
“COMPACTEST: A Method to Generate Compact Test Sets for
Combinational Circuits,” IEEE Transactions on Computer-Aided
Design, Vol. 12, No. 7, pp. 1040-1049, Jul. 1993.

[Pressly 991 Pressly, M., D. Das, and C. Hunter, “LBIST for PowerPCTM
Embedded Core Microprocessors: Feasible or Not?,” International
Workshop on Microprocessor Test and Verification, 1999.

[Strole 911 Strole, A.P., and H . J . Wunderlich, “TESTCHIP: A Chip for
Weighted Random Pattern Generation, , Evaluation, and Test
Control”, lEEE Journal of Solid-state Circuits, Vol. 26, No. 7,

[Touba 961 Touba, N.A., and E.J. McCluskey, “Altering a Pseudo-Random
Sequence of Bits for Scan-Based BIST”, Proc. of International Test
Conference, pp. 167-175, 1996.

[Waicukauski 891 Waicukauski, J.A., E. Lindbloom, E.B. Eichelberger,
and P. Forlenza, “A Method for Generating Weighted Random Test
Patterns,” IBM Journal of Research and Development, Vol. 33, No. 2.

[Wunderlich 881 Wunderlich, H.-J., “Multiple Distributions for Biajed
Random Test Patterns,” Proc. of International Test Conference, pp.
236-244, 1988.

pp. 1031-1040, 1993.

pp. 338-346, 1998.

pp. 105-1 14,2000.

pp. 1056-1063, Jul. 1991

pp. 149-161, Mar. 1989.

8

