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Abstract 
This paper presents a new test resource partitioning 

scheme that is a hybrid approach between extemal 
testing and BIST. I t  reduces tester storage requirements 
and tester bandwidth requirements by orders of 
magnitude compared to conventional extemal testing, but 
requires much less area overhead than a full BIST 
implementation providing the same fault coverage. The 
proposed approach is based on weighted pseudo-random 
testing and uses a novel approach for  compressing and 
storing the weight sets. Three levels of compression are 
used to greatly reduce test costs. No test points or  any 
modifications are made to the function logic. The 
proposed scheme requires adding only a small amount of 
additional hardware to the STUMPS architecture. 
Experimental results comparing the proposed approach 
with other approaches are presented. 

however, is that it generally does not provide high enough 
fault coverage due to the presence of random-pattern- 
resistant faults [Eichelberger 831. There are two solutions 
to this problem. One is to modify the circuit to eliminat’e 
the random pattern resistance by inserting test points 
[Eichelberger 831, and the other is to modify the test 
pattern generator by adding additional hardware to 
generate patterns that detect the hard faults [Touba 961, 
[Kiefer 98, 001, [Fagot 981. Both approaches have 
significant drawbacks. Test point insertion requires 
modifying the function logic which can degrade system 
performance, and modifying the test pattern generator can 
require large amounts of additional silicon area. 

I Tester 

1. Introduction 
The continual increase in integration density for VLSI 

has made system-on-a-chip (SOC) designs possible. The 
amount of test data volume required for testing such large 
designs is growing rapidly. Conventional external testing 
approaches where all test data is stored on the tester and 
transferred to/from the circuit-under-test (CUT) is 
becoming increasingly difficult. Testers have limited 
speed, memory, and I/O channels. The limited test data 
bandwidth (see Fig. 1 )  between the tester and the chip is 
becoming a major bottleneck that is expected to become 
much worse as the projections in [Khoche 001 indicate. 
There is a need for new test resource partitioning schemes 
that reduce test data bandwidth requirements and reduce 
tester storage requirements by orders of magnitude. 

One well-known approach is to use built-in self-test 
(BIST). BIST involves performing test pattern generation 
and output response compaction on the chip. BIST has 
been studied for many years. The most economical BIST 
schemes are based on pseudo-random pattern testing. 
The problem with pseudo-random pattern testing, 

Test Data Bandwidth 
= (#Channels * Clock Rate) 

Chip 

Figure 1. Block Diagram Illustrating Test Data 
Bandwidth 

In this paper, we present a new test resource 
partitioning scheme that is a hybrid approach between 
BIST and external testing. The term “hybrid BIST’ will 
be used in this paper to classify any scheme that involves 
combining external data from the tester along with BIST 
hardware on the chip to provide a hybrid test solution for 
a particular module or core. A hybrid BIST approach 
reduces the test data stored on the tester compared with 
full external testing, but it does not require as much 
hardware overhead as full BIST. There are several 
existing approaches that can be classified as hybrid BIST 
approaches. A simple approach for hybrid BIST is to use 
a STUMPS architecture [Bardell 821 to apply pseudo- 
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random patterns to detect the random pattern testable 
faults, and then use deterministic scan vectors from the 
tester to detect the hard faults. There have been two 
recent case studies on using this approach for large 
industrial designs [Hetherington 991, [Pressly 991. The 
case study in [Pressly99] was done on the Motorola 
PowerPCTM microprocessor core, and the study in 
[Hetherington 991 was done on large ASIC designs. In 
[Pressly 991, the reduction in external test storage 
requirements after using 500K BIST patterns was around 
30%. In [Hetherington 991, test points were inserted, but 
the reduction in test storage requirements after 262K 
BIST patterns still ranged only from 35% to 55%. What 
these results indicate is that most of the vectors in a 
deterministic test set target hard faults which are missed 
by BIST. So a straightforward hybrid BIST approach 
where pseudo-random vectors are applied with BIST 
hardware followed by deterministic vectors from the 
external tester, can only achieve a limited reduction in 
tester storage requirements, generally not an order of 
magnitude reduction. 

In [Das 001, a hybrid BIST approach was proposed 
where some of the scan chains in a STUMPS architecture 
are filled with deterministic test data from the tester while 
the rest of the scan chains are filled from the pseudo- 
random pattern generator (PRPG). The set of scan chains 
receiving deterministic data is rotated in a round-robin 
fashion. This approach was applied to the Motorola 
PowerPCTM microprocessor core. Results indicated that 
the test storage requirements could be reduced by around 
50% with this approach compared with 31% as was 
reported in [Pressly 991 for using fully pseudo-random 
patterns followed by fully deterministic patterns. 

In this paper, we propose a new hybrid BIST approach 
that is based on weighted pseudo-random testing. 
Weighted pseudo-random testing involves biasing the 
generation of pseudo-random patterns towards those that 
detect the hard faults. A “weight” is assigned to each bit 
position in a test vector and corresponds to the probability 
of a ‘1’ being generated at that bit position. Because of 
conflicting requirements for detecting hard faults in a 
circuit, multiple weight sets are generally required 
[Wunderlich 881. Some number of weighted pseudo- 
random patterns are generated for each weight set to 
detect all of the faults. There are two types of weighted 
pseudo-random testing schemes, one for external testing 
and one for BIST. For external testing, the weight sets 
are stored in the tester memory, and the weighted pseudo- 
random pattern generation is performed on the tester as 
each test vector is being transferred to the chip (as 
illustrated in Fig. 2) [Waicukauksi 891, This approach 
reduces tester memory requirements, but it does not help 
with the test data bandwidth bottleneck problem because 

all of the test data still has to be transferred from the 
tester to the chip. The other scheme for weighted pseudo- 
random testing is to use it for BIST (as illustrated in 
Fig. 3). In this case, the weight sets are stored on the 
chip, and on-chip hardware is used to generate the 
weighted pseudo-random patterns [Brglez 891, [Muradali 
901, [Pomeranz 93a] (or the hardware could be placed on 
a separate “test chip” [Strole 911). The problem with a 
full BIST implementation of weighted pseudo-random 
testing is that storing the weight sets on the chip requires 
an enormous amount of area overhead. 

chip I I Tester in@-, 
Generator 

I Scanchain1 ] 
L Scanchain2 1 . . 

e 

1 ScanChainn I 

Figure 2. Weighted Pseudo-Random Pattern Generation 
for External Testing 

chip 

Generator 
Scan Chain n 

Figure 3. Weighted Pseudo-Random Pattern Generation 
for BIST 

In this paper, we propose a novel hybrid weighted 
pseudo-random scheme that reduces tester storage 
requirements and solves the test data bandwidth 
bottleneck problem, but does not require the area 
overhead of a full BIST implementation. It uses three 
levels of compression to provide orders of magnitude 
reduction in  tester storage requirements. In comparison 
with the approach of performing the weighted pattern 
generation on the tester, the proposed approach not only 
reduces tester memory requirements, but more 
importantly, it also reduces the test data bandwidth 
requirements from the tester to the chip. If weighted 
pattern generation is performed on the tester and then 
used to drive 32 scan chains, it requires 32 channels from 
the tester, whereas the proposed approach can drive the 
same number of scan chains with data coming from only 
a small number of channels from the tester. As system- 
on-a-chip designs become larger and more complex, this 
capability will be essential to keep test time down. Note 
that test time is lower bounded by the total amount of test 
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data stored on the tester divided by the test data 
bandwidth between the tester and chip (which is limited 
by the number of I/O pins on the chip and I/O channels 
from the tester). 

A simple approach for implementing a hybrid BIST 
weighted pseudo-random scheme would be to store all the 
weight sets on the tester, and then transfer one weight set 
at a time to the chip. After some number of weighted 
pseudo-random vectors are generated on the chip for one 
weight set, the next weight set could be transferred from 
the tester to the chip. The problem with this approach is 
that at least 2 bits (or more depending on the precision of 
the weights) are needed to encode the weight value for 
each scan element in a design. This means that the 
storage requirements on the chip for one weight set would 
be at least double the number of scan elements in the 
design which would be an enormous area overhead. 
Fortunately, it turns out that weight sets are highly 
compressible. This fact is greatly exploited in the scheme 
proposed in this paper. We present a novel hybrid BIST 
weighted pseudo-random testing scheme that uses only a 
small amount of data from the tester to significantly 
reduce BIST hardware requirements on the chip. The 
proposed approach reduces tester storage requirements by 
orders of magnitude compared to full external testing 
while requiring much less overhead than a full BIST 
approach that provides the same fault coverage. No test 
points or any modifications are made to the function 
logic. The proposed scheme requires adding only a small 
amount of additional hardware to the STUMPS 
architecture. 

2. Overview of the Proposed Scheme 
This section describes the basic idea of the proposed 

scheme for hybrid BIST with weighted pseudo-random 
testing. The implementation details are explained later 
in subsequent sections of the paper. Figure 4 shows a 
block diagram of the test architecture. In this scheme, 
3-valued weights are used (as was proposed in [Pomeranz 
93a]), i.e., the three possible weights for a specific scan 
element are 0, 1, and U (which signifies “unbiased’). A 
weight of 0 forces the value of a particular scan element 
to 0, a weight of 1 forces it to 1, and a U means that the 
scan element takes on a value of 0 or 1 with equal 
probability. In Fig. 4, the scan elements of the chip have 
been configured into n scan chains each of which contains 
m scan elements (bits). Since a 3-valued weight system is 
being used, two bits are required to store the weight for 
each scan element. The encoding used in this particular 
example for the three weights are (w1; , wOi) = 01 for 
weight 0, 10 for weight 1, and 00 for U. However any 
other 3-valued encoding can be used. 
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Figure 4. Block Diagram of Proposed Hybrid BIST Tesl 
Architecture 

Figure 4 illustrates the STUMPS architecture for BIST 
where at each clock cycle, n pseudo-random bits 
generated by the pseudo-random pattern generator 
(PRPG) are scanned into the n scan chains (one bit into 
each scan chain). However, in the proposed approach the 
pseudo-random bits are transformed by the logic at the 
input of the scan chains according to the weight bits wl, , 
WO,. The weight bits are stored in a look-up table (LUT) 
on the chip. Details of the LUT will be explained in the 
next section. At each clock cycle, the set of weighls 
corresponding to the i-th bit of every scan chain is looked 
up from the LUT and used to transform the pseudo- 
random bits coming out of the PRPG to generate the 
weighted pseudo-random bits which are then scanned into 
the scan chains. It takes m scan clock cycles to 
completely fill the n scan chains. Once the scan chains 
are filled (i.e., nm scan bits have been shifted into the 
scan chains) the system clock is applied and the output 
response is captured in the scan chains. This output 
response is shifted out and compacted in the multiple 
input signature register (MISR) as the next test vector IS 

shifted in. 
The 2n weight bits for the n scan chains (wll,WO1), 

(w12.W02), ... (wl,,,wO,,) are stored in one location of the 
LUT. At each clock cycle, the tester supplies an LUT 
index which is used to read the weights for the n bits froin 
the LUT. These weights are then used to transform the n 
pseudo-random bits coming from the PRPG as they are 
shifted into the scan chains. The tester and the PRPG 
operate at the same clock frequency in a lock-step 
manner. The number of bits required for the LUT index 
depends on the size of the LUT. The number of bits, k ,  
required for the index is generally much less than n. So 
in this scheme, k tester channels are being used to drive n 
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scan chains, where k is much less than n. Hence, the 
tester bandwidth requirements are being reduced. 

For each weight set, a sequence of m LUT indices are 
stored on the tester. If L weighted pseudo-random 
patterns are to be generated for each weight set, then the 
tester simply resends the sequence of indices for each 
weight set L times. Only one copy of the sequence of 
indices for each weight set needs to be stored in the tester 
memory. 

There are three levels of compression in this scheme. 
The first level of compression is that only the unique parts 
of each weight set need to be stored in  the LUT (this will 
be explained in detail in the next section), thus for each 
weight set there will much less than m rows in the LUT. 
The second level of compression is that each weight set is 
stored as a sequence of k-bit indices on the tester where k 
scales logarithmically with the number of rows in the 
LUT and is much less than n. The third level of 
compression is that each weight set is expanded into L 
weighted pseudo-random test patterns. These three levels 
of compression result in greatly reduced tester storage 
requirements and tester bandwidth requirements. 

3. Determining Contents of LUT 
The first step is to determine the weight sets that will 

be required to achieve the desired fault coverage. Any 
number of weighted pseudo-random patterns can be 
generated for each weight set with the scheme presented 
here. Many techniques for determining weight sets for a 
particular CUT have been proposed in the literature, e.g., 
[Waicukauski 891, [Pomeranz 93a], [Bershteyn 931. Any 
of these techniques can be used. 

Given the weight sets, the next step is to determine the 
contents of the LUT. Figure 5 illustrates how the weight 
sets are stored in the LUT and accessed during the 
testing. Let n denote the number of scan chains and m 
denote the number of bits in each scan chain. Thus the 
total number of scan elements is nm. As mentioned 
earlier, since a three-valued weight system is being used, 
two bits are required to store the weights for each scan 
element. The weights for the i-th scan element of all the 
scan chains are stored in each location of the LUT so that 
they can all be read in  the same clock cycle and used to 
transform the pseudo-random bits coming in from the 
PRPG. Thus, (wll, WO,), (wf2, wOZ), . . . ( w f  ,,, WO,), denotes 
the weights represented by two bits for the i-th scan 
element in each of the n scan chains. The rows I - ] ] ,  r12, 
... I-lm correspond to the first weight set. There is one row 
for each of the m bits of the scan chains. 1-21, r22, ... rZm 
correspond to the second weight set. 

The LUT can be compressed to a great extent by 
merging identical rows as is illustrated in Fig. 5. This 

results in a lot of compression because many of the weight 
sets will have similar assignments in various rows in the 
LUT. Very often, the i-th scan elements of the n scan 
chains will all be assigned U. This common case reduces 
to a single row in the LUT. A small example showing 
how two weight sets are compressed in the LUT is shown 
in Fig. 6. Reducing the size of the LUT has a two-fold 
advantage. Not only does it reduce hardware 
requirements, but it also reduces the size of the indices as 
fewer bits are now required to index the LUT. 

Once the LUT has been constructed, then each weight 
set can be stored as a sequence of m indices on the tester 
where each index is fiog,p7bits wide where p is the total 
number of rows in the LUT. 

wl ,  WO,  0 0 0 w l ,  W O ,  w l ,  W O ,  

rl  I  

rl 2 

0 
0 
0 

rlm 

r2 I  

r22 

0 
0 
0 

r2m 

a 

L 

2m 
rows 

1 

w l ,  WO,  0 0 0 wl,  WO, w l ,  W O ,  

r l l ,  r13 tr23 

r12rr22 

r14.r212r27 

r16, rl 7 ,  r24 

r18*r25 

0 
0 
0 

r lp  2 r2m 

Figure 5. Storage of Weight Sets in LUT 

A small example is shown in  Fig. 6. The chip-under- 
test has 4 scan chains each of which is 10 bits long, 
Assume that 5 weighted pseudo-random patterns will be 
generated for each weight set for a total of 10 weighted 
pseudo-random patterns as shown in Fig. 7. In Fig. 7, the 
bold columns in the figure show the bits that are fixed 
because of the weight sets. The U bits take on a value of I 
or 0 randomly. 

Fig. 6 shows how the weights will be stored in the 
LUT on the chip. Weights for a certain bit position for all 
the 4 scan chains will be stored in one location of the 
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LUT. Thus every location of the LUT will be 8 bits wide 
(2 bits to represent each weight) and there will initially be 
10 LUT locations for each weight set for the 10 bit 
positions in the scan chains. The scan chains are denoted 
by S I ,  s2, s3, and s4, and the bit positions are denoted by 
Bit i. Since the weight sets have a lot of similarities, they 
can be compressed to a great extent. In Fig. 6, the unique 
weight patterns are shown in bold. Thus, the duplicate 
patterns can be eliminated and only the unique patterns 
stored in the LUT. Hence the LUT storage requirements 
can be reduced from 20 rows to only 8. Only a sequence 
of m LUT indices needs to be stored in the tester for each 
weight set. In this case, each index is only 3 bits wide 
since there are only 8 rows in the LUT. 

weight1 
weight2 

Bit 1 
Bit 2 
Bit 3 
Bit 4 
Bit 5 
Bit 6 
Bit 7 
Bit 8 
Bit 9 
Bit 1( 

luuOululuu~uuuuuluuul~luuOuuuluu~uOulOuuuu0 
lulOullluu~uluulluuul~luuOuuuluu~uOulOuuuu0 

u u u u  u u u u  
U l U O  U l U O  

panem set 1 

+ i.‘.i U l U O  

joooii 1101 j I 101 11 I 1 11 i 1 I iooioioo i 0001oi 1 100 
1010011110~0110111101~1000101110~0011011000 

110 
1 1 1  

2 

Compressed LUT Index 
Weight Set 

~~ 

1110011110 1101111001 1100110101 1001011000 
1110011111 1101110001 1010101101 0011001100 
1010011111 0101110101 1100011100 0011011100 

Weight Set 1 Weight Set 2 

Figure 6. Small Example Illustrating Proposed Approach 

scan chain 1 scan chain 2 scan chain 3 scan chain 4 

weighted 1100111110~0111011011~1010001110~1001000010 
random 1100010111 11010110001 lllO011~1~~ I1001001010 

weighted 
random 

pattem set 

1010111100(1110111011)1000001110~10010011u0 
1010111101101011101011101010011011001000010 

Figure 7. Example of Weighted Pseudo-Random 
Patterns Generated for 2 Weight Sets 

4. Hardware Implementation of LUT 
The LUT can be implemented in hardware in a variety 

of ways. One simple way of implementing the LUT is by 
using a RAM. Generally there are a lot of RAM’S already 
present in a design, so it may be possible to use one of 
them to serve as the LUT for this scheme. In this case, 

the contents of the LUT would be initially stored in the 
tester. Before the testing begins, the tester would 
initialize the RAM with the proper contents. The 
minimum size required for the RAM would depend on the 
number of rows in the LUT and the number of scan 
chains. Note that if the RAM is larger than necessary, 
this does not present a problem. In such a case, only a 
subset of the addressable locations in the RAM would be 
used, and only a subset of the data bits stored at each 
address would be used. 

Another way of implementing the LUT would be to 
use a PLA (programmable logic array). Because most of 
the weight values are U (which could be encoded using 
one specified bit and one don’t care), the number of rows 
in the PLA can be greatly minimized. A PLA provides a 
very compact and efficient implementation of the LUT. 

5. Experimental Results 
Experiments were performed on the 5 largest ISCAS- 

89 circuits. For each circuit, STUMPS architectures with 
different numbers of scan chains were constructed. First, 
32,000 pseudo-random patterns were applied with the 
STUMPS architecture to detect the random pattern 
testable faults. Then the remaining random pattern 
resistant faults were targeted using weighted pseudo- 
random patterns based on the 3-valued weight system 
described in Sec. 2. The weight sets were selected using 
the procedure described in [Pomeranz 93a] with 1,000 
weighted pseudo-random patterns being generated for 
each weight set. Table 1 shows the number of weight sets 
that were required for each circuit to achieve 100% 
coverage of detectable faults. For each circuit, Table 1 
shows the total number of scan elements and the results 
for dividing them into different numbers of scan chains. 
In each case, the hardware requirements are shown for 
using either a RAM or a PLA to implement the LUT. 
The amount of test data that must be stored on the tester 
is shown for the proposed hybrid BIST approach and for 
conventional external testing using the highly compacted 
test vectors obtained with COMPACTEST [Pomeranz 
93bl. The compression ratio for the test data storage 
requirements is shown. It is computed as: 

(test data for  conventional external testing) / (test data 
for  proposed hybrid BIST approach) 

As can be seen, the tester storage requirements are 
reduced by orders of magnitude with the proposed hybrid 
BIST approach. 

Table 2 shows a comparison of the proposed hybrid 
BIST approach versus an approach where BIST is used to 
detect the random pattern testable faults and then “top- 
up” deterministic test vectors are applied from the tester 
to detect the random pattern resistant faults. The “top- 
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up” deterministic vectors were obtained by first applying As can be seen, the tester storage requirements are 
32,000 pseudo-random patterns using the STUMP reduced by at least an order of magnitude in all cases with 
architecture, and then doing ATPG for the remaining the proposed hybrid BIST approach based on weighted 
undetected faults. The compression ratio for the test data pseudo-random testing. 
storage requirements is shown. It is computed as: Table 3 shows a comparison of the area overhead for 

the proposed hybrid BIST approach compared with the 
best published results for deterministic BIST in [Kiefer 981 

(test data for “top-up ’’ test vectors) /(test data for  
proposed hybrid BIST approach) 

525 
263 
110 

2139 
1070 
535 

18720 
9360 
4680 
2663 
3294 
1922 
96 1 
615 

Table 1. Comparison of Proposed Hybrid BIST Scheme with External Testing 

331800 

150306 

316160 

366000 

- 
Rows 

96 
99 
62 

- 

35 
35 
22 
74 
100 
75 

255 
358 
27 1 
227 
44 
64 
65 
53 

- 

- 

Test Data 

37 1 

Test Data 
Compression 

Ratio 
38 
77 
180 
632 
1261 
3016 

70 
140 
28 1 
17 
34 
67 
119 
111 
190 
381 
595 

Table 2. Comparison of Proposed Hybrid BIST Scheme with BIST Followed by Top-Up Test Patterns from Tester 

Table 3. Comparison of Proposed Hybrid BIST Scheme with Deterministic BIST Scheme Described in [Kiefer 981 

Compression 
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that provides the same fault coverage. This comparison 
assumes that a PLA implementation is used. It should be 
noted that for one or both of the techniques, a multilevel 
logic implementation may be more efficient than a PLA 
(this is in  fact suggested in [Kiefer 981 for a STUMPS 
architecture). Also, note that the comparison only 
considers the area overhead of the PLA. It does not 
include the area overhead for the STUMPS architecture 
itself, however, the results in [Kiefer 981 indicate that the 
PLA area dominates the total area for BIST for these 
circuits. The compression ratio for the PLA area 
overhead requirements is shown. It is computed as: 

(PLA area for  [Kiefer 981) / (PLA area for  proposed 
hybrid BIST approach) 

As can be seen, the area overhead is greatly reduced with 
the proposed hybrid BIST approach. Note that the 
reduction becomes more pronounced for the larger 
circuits. For ~38417 and ~38.584, the hardware overhead 
is reduced by a factor of 7.5 and 6.1, respectively. Of 
course, it should be noted that the full BIST 
implementation in [Kiefer 981 does not have any tester 
storage requirements. 

6. Conclusions 
The new test resource partitioning scheme presented 

here combines BIST hardware with external data from the 
tester to provide a hybrid BIST solution. By using three 
levels of compression, the tester storage requirements are 
reduced by orders of magnitude compared to conventional 
external testing. Compared with using a deterministic 
BIST scheme to achieve the same fault coverage, it was 
shown that the area overhead on the chip can be 
significantly reduced. This new test resource partitioning 
scheme provides another design point in addition to 
external testing or deterministic BIST that may be 
attractive in some test resource partitioning scenarios. 
Note that in addition to the benefits of reducing tester 
storage and bandwidth requirements, the proposed 
approach also provides the benefits of weighted pseudo- 
random pattern testing in detecting non-modeled defects. 
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