
Synthesis of Low Power CED Circuits Based on Parity Codes

Shalini Ghosh
1
, Sugato Basu

2
, and Nur A. Touba

1

1
Dept. of Electrical and Computer Engineering,

University of Texas, Austin, TX 78712

{shalini,touba}@ece.utexas.edu

2
Dept. of Computer Sciences,

University of Texas, Austin, TX 78712

sugato@cs.utexas.edu

Abstract

An automated design procedure is described for

synthesizing circuits with low power concurrent error

detection. It is based on pre-synthesis selection of a

parity-check code followed by structure constrained logic

optimization that produces a circuit in which all single
point faults are guaranteed to be detected. Two new

contributions over previous work include (1) the use of a

k-way partitioning algorithm combined with local search

to select a parity-check code, and (2) a methodology for

minimizing power consumption in the CED circuitry.
Results indicate significant reductions in area overhead

due to the new code selection procedure as well as the

ability to find low power implementations for use in

power conscious applications.

1. Introduction

Concurrent error detection (CED) involves detecting

errors at the output of a circuit while it operates. As

technology continues to scale with smaller features sizes,

lower power supply voltages, and higher operating

frequencies, the soft error rate in logic circuits is rapidly

increasing [Shivakumar 02]. CED provides a means to

detect soft errors quickly before they have a chance to

propagate and compromise the data integrity of a system.

CED is widely used in many applications to improve

reliability.

One way to implement CED is to encode the outputs

of a circuit with an error detecting code and have a

checker that monitors the outputs and gives an error

indication if a non-codeword occurs (as illustrated in Fig.

1). The check-bit generator is the parity prediction circuit

that calculates the parity bits directly from the circuit

inputs. The parity checker is self-checking so that any

error that occurs in the checker itself is detected. One

commonly used error detecting code is a parity-check

code. A parity-check code is a linear code in which each

parity check bit checks the parity over a group of output

bits. Two special cases of a parity-check code are single-

bit parity where there is a single parity bit checking all the

outputs of the functional logic and duplication where

there is a parity bit checking each output of the functional

logic.

A number of techniques have been proposed for

automated design of circuits with CED based on parity-

check codes. There are two basic approaches. One is to

first synthesize the functional logic and then select the

parity-check code (post-synthesis code selection). The

other is to select the parity-check code and then

synthesize the functional logic with structural constraints

to ensure high coverage (pre-synthesis code selection).

For post-synthesis methods, the goal is to select a parity-

check code that provides high coverage while minimizing

the complexity of the parity prediction logic (i.e., check

bit generator). Since the functional logic circuit is known

up front, the code can be selected so that it detects all the

output error combinations that can arise due to a specified

fault class [Sogomonjan 93], [Goessel 93]. Recent work

in [Almukhaizim 04] has investigated the use of fast

entropy estimation techniques to find parity-check codes

with less complex parity prediction logic. If 100%

coverage is not necessary, then the complexity of the

parity prediction logic can be reduced. This can be

accomplished by using a self-dual complement

[Saposhnikov 96] or disabling the parity check for some

input combinations [Mohanram 03].

For pre-synthesis methods, the selection of the parity-

check code places constraints on the structure of the

functional logic. The goal is to find a parity-check code

that minimizes the overall area considering the functional

logic, check-bit generator, and parity checker.

Techniques in [De 94] and [Touba 97] have been

proposed to constrain the structure of the functional logic

so that a simpler parity-check code can be utilized to

provide 100% coverage of single-point faults. By trading

off structural constraints on the functional logic (which

may result in it being larger) to get a simpler parity-check

code (which reduces the size of the parity prediction

logic), the overall size of the circuit with CED can be

reduced. The key issue here is how to best select the

parity-check code that optimizes this tradeoff. The

approach in [Touba 97] uses a simply greedy algorithm

that starts with the duplication code and iteratively merges

parity groups as long as the merging causes the overall

area to decrease. The number of parity groups is

determined automatically in this greedy algorithm by the

convergence criterion of merging until no more area

reduction is possible. The drawback of this approach is

Proceedings of the 23rd IEEE VLSI Test Symposium (VTS’05)
1093-0167/05 $ 20.00 IEEE

that it can easily get caught in local minima since no look-

ahead information is used during each merge.

While previous work in automated design of circuits

with CED based on parity-check codes has focused on

minimizing area, this paper investigates minimizing

power dissipation. In many low power applications,

including hand-held devices, mobile computing, laptop

computers, etc., minimizing power is a first-order design

issue. This paper presents a new approach for selecting a

parity-check code that provides the best tradeoff between

structural constraints on the functional logic and

complexity of the parity prediction logic to reduce the

overall power of the circuit with CED. The problem is

reformulated as a k-way partitioning problem that

overcomes the limitations of earlier approaches to identify

more optimal parity-check codes. Experiments on

benchmark circuits demonstrate that the proposed

approach is able to reduce the power dissipation of the

CED circuit as well as its area compared to previous

techniques.

The paper is organized as follows: Sec. 2 gives an

overview of the overall scheme, Sec. 3 gives details of the

proposed 2-phase algorithm, Sec. 4 outlines the results of

experiments on benchmark circuits, and finally Sec. 5

concludes the paper.

2. Overview of Proposed Technique

In the proposed technique, a parity-check code is used

to detect all single point faults in the circuit. To ensure

this, one has to be careful about logic sharing while

synthesizing the logic circuit so that single point faults in

the circuit cannot cause errors that get masked and go

undetected. We use the structure constrained logic

synthesis algorithm of [Touba 97] for synthesizing the

logic circuit. The basic idea of this method is that two

outputs assigned to the same parity group should not

share any logic, because that may allow a single error in

the shared logic block to be propagated to both the

outputs, resulting in a two-bit error that would not be

detected by the parity code. The structure constrained

logic optimization algorithm essentially enforces

constraints on logic sharing that are necessary to ensure

that no undetectable errors are caused by single point

faults.

The power consumption in each of the CED circuit

components depends on the type of parity check code

used for concurrent error detection. If the duplication

code is used (i.e., each output is put in its own parity

group), then there are n parity bits for n logic outputs. In

that case, the parity prediction circuit is a duplicate of the

original logic circuit and can have significant power

overhead. However, since there are no logic-sharing

constraints between outputs in each parity group, the

structure constrained logic optimization can share a lot of

logic to reduce the power dissipation in the function logic.

On the other hand, if all the outputs were put into one

parity group, then the parity prediction logic would in

general be simpler and have less power dissipation. But

then the structure constrained logic optimization

algorithm would not be able to share a lot of logic when

synthesizing the function logic, which could result in

increased power dissipation in the function logic. Thus,

we see that there is a tradeoff between the power

dissipation of the parity prediction circuit and the

functional logic circuit, for which the proper choice of the

parity check code is essential to minimize the overall

power of the circuit with CED.

The problem of finding an optimal parity check code

is equivalent to finding the optimal grouping of the

outputs of the function logic such that the power of the

circuit with CED is minimized. This suggests a

formulation of the problem as a k-way partitioning of the

logic outputs into k groups so that the power reduction

from merging the outputs in each group is maximized.

3. Proposed Algorithm

In this work, we propose a 2-phase non-greedy

algorithm of k-partitioning and local search. This avoids

the problem of a greedy algorithm getting stuck in bad

local optima. The algorithm uses a power-based cost

function that estimates the power reduction due to

merging two parity groups at a time.

m

m

n

k

Inputs

Checker

Function

Logic

Check Bit Generator

(Parity

n

Outputs

Error

Indication

Figure 1. Concurrent error detection using parity-check code

Proceedings of the 23rd IEEE VLSI Test Symposium (VTS’05)
1093-0167/05 $ 20.00 IEEE

3.1. Power-based Cost Function

Merging two parity groups affects the power

dissipation in each component of the CED circuit. The

reduction in power of the checker and parity prediction

circuit can be calculated by the difference in the power

dissipated before and after the merging. However,

merging of the parity groups also reduces the amount of

logic sharing in the functional logic during structure-

constrained logic synthesis, which results in more power

dissipation. The overall power cost function is the

difference of these two components:

Effective Power Reduction = (Power reduction in checker

circuit and parity prediction circuit) – (Power increase

from decreased logic-sharing in logic circuit)

During logic synthesis, the circuit is represented by a

Boolean network [Sentovich 92] in which each node

represents a two-level logic function and an edge exists

from node A to node B if node A is a fanin to node B. To

estimate the effective power reduction, we consider the

Boolean network of the parity prediction circuit for the

parity code before merging. The power dissipated in each

node of the Boolean network is estimated by

decomposing the node into 2-input gates, assuming

equiprobable input values to the primary inputs of the

Boolean network, and calculating the resulting switching

probability at each gate output weighted by its capacitive

load. We merge the two parity groups under consideration

by removing the two corresponding nodes from the

Boolean network for the parity prediction circuit and

adding a new node obtained by taking an XOR of the

logic functions of those nodes. The difference in load-

weighted switching probabilities between the new node

and the two original nodes gives us an estimate of the

power reduction due to merging.

To estimate the second component of the power cost

function, we calculate the total power dissipated in the

function logic nodes that are reachable from the outputs

of both the parity groups. This gives an estimate of the

power increase due to decreased sharing in the logic

circuit, since the nodes that are reachable from both the

parity groups cannot be shared when the functional logic

is synthesized with constraints. Since that logic cannot be

shared, the total power consumption will increase by that

amount.

The difference between the first and the second

components gives us the power cost function, i.e., the

effective power reduction due to merging two parity

groups. For larger circuits, we can use sampling instead of

exact power estimation for computational efficiency.

Note that the actual power dissipation in the parity

prediction circuit depends on which cell-library is used to

map the logic gates to cells. As an approximation, the

proposed procedure decomposes the parity prediction

circuit into 2-input gates when estimating power. We also

did not consider changing the ordering of the operations

in the parity tree to reduce the power consumed in this

circuit component – schemes such as the one described in

[Mohanram 02] could be used to reorder the parity

operations and further reduce power dissipation.

3.2. k-partitioning and Local Search

The proposed algorithm partitions the logic outputs

into parity groups corresponding to the lowest-power

parity check code. It finds the best number of parity

groups k by searching all values of k between 1 and n,

where n is the total number of logic outputs. For each

value of k, a 2-phase technique is used for partitioning the

logic outputs into parity groups. The details of the

algorithm are given in Fig. 2.

In the first phase, a fast k-partitioning technique is

used to create k good initial groups. Given a particular

value of k, the algorithm chooses k outputs that have the

minimum power reduction due to mutual pairwise

merging and initializes the k partitions with these outputs.

These initial outputs are found using the farthest-first

algorithm [Hochbaum 85], where the basic idea is to get k

points out of n that are mutually “far” from each other. In

farthest first traversal, an initial point is chosen at random.

The next point is selected to be farthest from it using a

particular distance measure and is added to the traversed

set. The remaining points are selected to have maximum

distance from the traversed set, where we use the standard

notion of distance of a point x from a set S: d(x,S) = minz

in S d(x,z). In this case, the distance between two logic

outputs a and b was set to the inverse power reduction

1/power_reduction(a,b) in merging the outputs, and

farthest first traversal was performed on the logic outputs

using this distance measure. So, when we find the k initial

outputs by farthest first traversal, they are put in different

partitions since there will not be a substantial power

reduction by merging any two of these outputs. The

other outputs are then sequentially merged with their

“nearest” partition using a nearest-neighbor assignment

scheme, which effectively gives the maximum power

reduction for each assignment of an output to a group.

Proceedings of the 23rd IEEE VLSI Test Symposium (VTS’05)
1093-0167/05 $ 20.00 IEEE

In the second phase, these initial partitions are further

refined by using a local-search refinement technique.

Local search is a method of perturbing a solution so as to

help it go out of potential local minima. We use a variant

of local search where a series of local refinements are

performed by considering each output in turn. The local

refinement considers removing each output from its

current partition and placing it in a new partition, and the

resulting power reduction is calculated. For a given

output, it finds the movement that gives the maximum

power reduction, and the output is removed from the old

partition and merged with the new partition. Every output

is considered in turn for this local refinement step, and the

process is continued iteratively until no more movements

give further power reduction. In the end, the outputs in

every partition form a parity group.

Since both these phases are computationally efficient,

they can be applied to do a non-greedy search over all

possible values of k from 1 to n, thereby exploring the

exponential-size space of all possible parity groupings

more effectively. The value of k that gives the best overall

reduction in power and area is used as the number of

parity groups, and the corresponding k-partitioning is used

to synthesize the parity prediction and function logic

circuits.

4. Experimental Results

For our experiments, the proposed algorithm was run

on combinational circuits from the MCNC benchmark

suite. The k-way partitioning, local search, and structure-

constrained logic optimization algorithms were

implemented in SIS-1.2 [Sentovich 92]. The internal BDD

power simulator in SIS-1.2 was used to do power

simulation using a zero-delay model. Power was

measured by the weighted switching probabilities of all

the nodes of the circuit with CED, where the weight for

the switching probability of a node corresponds to the

capacitive load of that node. We used two area estimates –

the total number of factored form literal counts and the

cell area of the circuit with CED after structure-

constrained logic synthesis. The mapping was performed

using 2-input cells from the mcnc.genlib library and the

cell area numbers are given in units of 1000λ2
, where λ is

the minimum size in the technology.

 In the first experiment, we used the 2-phase algorithm

for parity code selection with the proposed cost function

that considers power reduction. Table 1 shows that our

proposed 2-phase scheme of k-partitioning and local

search refinement reduces power by as much as 34% on

the benchmark circuits. As seen in Table 2, running the 2-

phase algorithm with the power cost function also reduces

area for all the benchmark circuits by as much as 35% as

both area and power are correlated to some degree. The

results in Table 1 also show that for some of the

benchmark circuits the number of parity groups selected

Input: Logic circuit with n outputs.

Output: Number of parity groups and parity grouping

of the logic outputs corresponding to the optimal-

power parity check code.

Algorithm:

1. Initialize

 best_power = 0

 best_num_groups = 0
 best_grouping = NIL

2. For k = 1 to n

3. Initialize k partitions using farthest_first_init(k)

4. Assign outputs to the initial partitions using

nearest_neighbor_assign(k)

5. Refine the partitioning obtained using

 local_search_refine(k), store resulting

 partitioning in current_grouping

6. If total power reduction power_reduced in steps

 3 and 4 is more than best_power, update

 best_power = power

 best_num_groups = k
 best_grouping = current_grouping

7. Return best_num_groups and best_grouping

Subroutines:

 farthest_first_init(k)
1. Initialize k partitions with k logic outputs

 chosen using the farthest-first heuristic, using

 1/power_reduced(a,b) as measure of distance

 between a and b

 nearest_neighbor_assign(k)
1. for i = 1 to n

2. If output i is not already assigned to one of the

 k initial partitions, then assign output i to the

 partition that is nearest to it, i.e., has the

 maximum power reduction on merging

local_search_refine(k)

 1. for i = 1 to n

2. Initialialize best_reduction = 0

 3. for j = 1 to k

4. current_reduction = power reduced by

 moving output i from its current partition to

 the new partition j

5. If current_reduction > best_reduction

 best_reduction = current_reduction

 best_new_partition = j

 6. Move output i to partition best_new_partition
 7. Return if best_reduction = 0 for all outputs, else

 repeat steps 1-6

Figure 2. 2-phase algorithm for parity code selection

Proceedings of the 23rd IEEE VLSI Test Symposium (VTS’05)
1093-0167/05 $ 20.00 IEEE

by our algorithm is different from that chosen by the

greedy scheme in [Touba 97], demonstrating that the 2-

phase algorithm is able to reach a better parity check code

by a more effective search of the space of all possible

parity groups.

We performed another experiment to explore in detail

the effectiveness of each phase in the proposed 2-phase

algorithm. As shown by the results in Table 3, the first

phase (i.e., k-way partitioning only) alone gave some

reductions in power, but using the 2-phase algorithm (i.e.,

k-way partitioning and local search) increased the amount

of power reduction. This demonstrates that each of the 2

phases in the algorithm plays a significant role in

selecting a low-power parity code.

Circuit Information Greedy Algorithm [Touba 97] Proposed Algorithm Comparison

Name PIs POs

Number of

Parity

Groups

Power

Dissipated

Number of

Parity

Groups

Power

Dissipated

Reduction in

Power (%)

misex1 8 7 3 463 3 305 34.1

wim 4 7 2 211 2 159 24.6

rd53 5 3 1 247 1 171 30.6

squar5 5 8 3 513 1 360 29.8

dc1 4 7 3 396 2 285 28.0

adr2 4 3 2 193 2 140 27.7

b12 15 9 4 589 2 521 11.6

rd73 7 3 1 716 1 518 27.7

misex2 25 18 3 624 4 516 17.4

bw 5 28 9 1375 2 1086 20.9

alu2 10 6 5 1527 4 1482 3.0

inc 7 9 2 740 2 573 22.5

5xp1 7 10 3 921 1 827 10.2

Circuit Information Greedy Algorithm [Touba 97] Proposed Algorithm Comparison

Name PIs POs
Number of

Literals
Cell Area

Number of

Literals
Cell Area

Reduction in

Literals (%)

Reduction in

Cell Area (%)

misex1 8 7 138 156 91 105 30.1 32.7

wim 4 7 69 82 50 57 23.2 30.5

rd53 5 3 55 73 35 47 27.4 35.6

squar5 5 8 139 174 93 120 26.4 31.0

dc1 4 7 101 117 65 78 30.8 33.3

adr2 4 3 48 56 30 37 32.1 33.9

b12 15 9 174 209 153 159 10.0 23.9

rd73 7 3 158 196 121 135 18.9 31.1

misex2 25 18 296 355 255 319 11.5 10.1

bw 5 28 442 548 362 426 14.6 22.3

alu2 10 6 417 512 409 469 1.6 8.4

inc 7 9 215 253 169 197 18.2 22.1

5xp1 7 10 247 289 211 240 12.5 17.0

Table 1. Comparison of power reduction of proposed 2-phase algorithm with greedy algorithm in [Touba 97]

Table 2. Comparison of area reduction of proposed 2-phase algorithm with greedy algorithm in [Touba 97]

Proceedings of the 23rd IEEE VLSI Test Symposium (VTS’05)
1093-0167/05 $ 20.00 IEEE

5. Conclusions

This paper presents a new 2-phase algorithm for

synthesis of low-power concurrent error-detecting

circuits based on parity codes, which outperforms a

previously known parity-code selection technique.

Along with reducing the power of benchmark circuits

with CED by as much as 34%, the 2-phase algorithm is

also able to simultaneously reduce their area by as much

as 35%.

Acknowledgements

The authors would like to thank Subhasish Mitra,

Sandip Ray and Arindam Banerjee for helpful

discussions and suggestions. This research was

supported in part by the National Science Foundation

under Grant No. CCF-0426608.

References

[Almukhaizim 04] Almukhaizim, S., P. Drineas, and Y.

Makris, “Cost-Driven Selection of Parity Trees”, Proc. of

the IEEE VLSI Test Symposium (VTS), pp. 319-324, 2004.

[Bolchini 97] Bolchini, C., F. Salice, and D. Sciuto, “A novel

methodology for designing TSC networks based on the

parity bit code”, Proc. of the European Design and Test

Conference (ED&TC-97), pp. 440 – 444, 1997.

[De 94] De, K., C. Natarajan, D. Nair, and P. Banerjee,

“RSYN: A system for automated synthesis of reliable

multilevel circuits,” IEEE Trans. on VLSI Systems, vol. 2,

pp. 186 – 195, June 1994.

[Goessel 93] Goessel, M., and S. Graf, Error Detection

Circuits, London, NY: McGraw-Hill, 1993.

[Hochbaum 85] Hochbaum, D., and D. Shmoys, “A best

possible heuristic for the k-center problem”, Mathematics

of Operations Research, Vol. 10, No. 2, pp. 180 – 184,

1985.

[Mohanram 02] Mohanram, K., and N.A. Touba, “Input

Ordering in Concurrent Checkers to Reduce Power

Consumption”, Proc. of IEEE Symposium on Defect and

Fault Tolerance, pp. 87 – 95, 2002.

[Mohanram 03] Mohanram, K., and N.A. Touba, “Partial Error

Masking to Reduce Soft Error Failure Rate in Logic

Circuits”, Proc. of IEEE Symposium on Defect and Fault

Tolerance, pp. 433 – 440, 2003.

[Saposhnikov 96] Saposhnikov, Vl.V., A. Dmitriev, M.

Goessel, V.V. Saposhnikov, “Self-dual parity checking - a

new method for on-line testing”, Proc. of the IEEE VLSI

Test Symposium (VTS), pp. 162 – 168, 1996.

[Sentovich 92] Sentovich, E.M., et al., SIS: A System for

Sequential Circuit Synthesis," TRM No. UCB/ERL

M92/41, University of California, Berkeley, 1992.

[Shivakumar 02] Shivakumar, P., M. Kistler, S.W. Keckler, D.

Burger, and L. Alvisi, “Modeling the Effect of Technology

Trends on the Soft Error Rate of Combinational Logic”,

Proc. of the International Conference on Dependable

Systems and Networks, pp. 389 – 398, 2002.

[Sogomonjan 93] Sogomonjan, E.S., and M. Goessel, “Design

of self-parity combinational circuits for self-testing and on-

line detection”, Proc. of the IEEE International Workshop

on Defect and Fault Tolerance in VLSI Systems, pp. 239 –

246, 1993.

[Touba 97] Touba, N.A., and E.J. McCluskey, “Logic

Synthesis of Multilevel Circuits with Concurrent Error

Detection”, IEEE Trans. on Computer-Aided Design, Vol.

16, No. 7, pp. 783 – 789, 1997.

Circuit Information
Greedy Algorithm

[Touba 97]
After phase 1 After phase 2 Comparison

Name PIs POs
Power

Dissipated

Power

Dissipated

Power

Dissipated

Power Reduction

after phase 1 (%)

Power Reduction

after phase 2 (%)

misex1 8 7 463 326 305 29.6 34.1

wim 4 7 211 166 159 21.3 24.6

rd53 5 3 247 187 171 24.2 30.6

squar5 5 8 513 399 360 22.1 29.8

dc1 4 7 396 298 285 24.9 28.0

adr2 4 3 193 140 140 27.7 27.7

b12 15 9 589 551 521 6.5 11.6

rd73 7 3 716 564 518 21.2 27.7

misex2 25 18 624 546 516 12.5 17.4

bw 5 28 1375 1108 1086 19.4 20.9

alu2 10 6 1527 1489 1482 2.4 3.0

inc 7 9 740 577 573 22.1 22.5

5xp1 7 10 921 882 827 4.3 10.2

Table 3. Breakdown on power reduction for each phase of proposed 2-phase algorithm

Proceedings of the 23rd IEEE VLSI Test Symposium (VTS’05)
1093-0167/05 $ 20.00 IEEE

