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Abstract 

An automated design procedure is described for 

synthesizing circuits with low power concurrent error 

detection.  It is based on pre-synthesis selection of a 

parity-check code followed by structure constrained logic 

optimization that produces a circuit in which all single 
point faults are guaranteed to be detected.  Two new 

contributions over previous work include (1) the use of a 

k-way partitioning algorithm combined with local search 

to select a parity-check code, and (2) a methodology for 

minimizing power consumption in the CED circuitry.  
Results indicate significant reductions in area overhead 

due to the new code selection procedure as well as the 

ability to find low power implementations for use in 

power conscious applications. 

1. Introduction 

Concurrent error detection (CED) involves detecting 

errors at the output of a circuit while it operates.  As 

technology continues to scale with smaller features sizes, 

lower power supply voltages, and higher operating 

frequencies, the soft error rate in logic circuits is rapidly 

increasing [Shivakumar 02]. CED provides a means to 

detect soft errors quickly before they have a chance to 

propagate and compromise the data integrity of a system. 

CED is widely used in many applications to improve 

reliability. 

One way to implement CED is to encode the outputs 

of a circuit with an error detecting code and have a 

checker that monitors the outputs and gives an error 

indication if a non-codeword occurs (as illustrated in Fig. 

1). The check-bit generator is the parity prediction circuit 

that calculates the parity bits directly from the circuit 

inputs. The parity checker is self-checking so that any 

error that occurs in the checker itself is detected.  One 

commonly used error detecting code is a parity-check 

code. A parity-check code is a linear code in which each 

parity check bit checks the parity over a group of output 

bits.  Two special cases of a parity-check code are single-

bit parity where there is a single parity bit checking all the 

outputs of the functional logic and duplication where 

there is a parity bit checking each output of the functional 

logic. 

A number of techniques have been proposed for 

automated design of circuits with CED based on parity-

check codes.  There are two basic approaches.  One is to 

first synthesize the functional logic and then select the 

parity-check code (post-synthesis code selection).  The 

other is to select the parity-check code and then 

synthesize the functional logic with structural constraints 

to ensure high coverage (pre-synthesis code selection).  

For post-synthesis methods, the goal is to select a parity-

check code that provides high coverage while minimizing 

the complexity of the parity prediction logic (i.e., check 

bit generator).  Since the functional logic circuit is known 

up front, the code can be selected so that it detects all the 

output error combinations that can arise due to a specified 

fault class [Sogomonjan 93], [Goessel 93].  Recent work 

in [Almukhaizim 04] has investigated the use of fast 

entropy estimation techniques to find parity-check codes 

with less complex parity prediction logic.  If 100% 

coverage is not necessary, then the complexity of the 

parity prediction logic can be reduced.  This can be 

accomplished by using a self-dual complement 

[Saposhnikov 96] or disabling the parity check for some 

input combinations [Mohanram 03].  

For pre-synthesis methods, the selection of the parity-

check code places constraints on the structure of the 

functional logic.  The goal is to find a parity-check code 

that minimizes the overall area considering the functional 

logic, check-bit generator, and parity checker.  

Techniques in [De 94] and [Touba 97] have been 

proposed to constrain the structure of the functional logic 

so that a simpler parity-check code can be utilized to 

provide 100% coverage of single-point faults. By trading 

off structural constraints on the functional logic (which 

may result in it being larger) to get a simpler parity-check 

code (which reduces the size of the parity prediction 

logic), the overall size of the circuit with CED can be 

reduced. The key issue here is how to best select the 

parity-check code that optimizes this tradeoff. The 

approach in [Touba 97] uses a simply greedy algorithm 

that starts with the duplication code and iteratively merges 

parity groups as long as the merging causes the overall 

area to decrease. The number of parity groups is 

determined automatically in this greedy algorithm by the 

convergence criterion of merging until no more area 

reduction is possible. The drawback of this approach is 
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that it can easily get caught in local minima since no look-

ahead information is used during each merge. 

While previous work in automated design of circuits 

with CED based on parity-check codes has focused on 

minimizing area, this paper investigates minimizing 

power dissipation. In many low power applications, 

including hand-held devices, mobile computing, laptop 

computers, etc., minimizing power is a first-order design 

issue. This paper presents a new approach for selecting a 

parity-check code that provides the best tradeoff between 

structural constraints on the functional logic and 

complexity of the parity prediction logic to reduce the 

overall power of the circuit with CED. The problem is 

reformulated as a k-way partitioning problem that 

overcomes the limitations of earlier approaches to identify 

more optimal parity-check codes.  Experiments on 

benchmark circuits demonstrate that the proposed 

approach is able to reduce the power dissipation of the 

CED circuit as well as its area compared to previous 

techniques. 

The paper is organized as follows:  Sec. 2 gives an 

overview of the overall scheme, Sec. 3 gives details of the 

proposed 2-phase algorithm, Sec. 4 outlines the results of 

experiments on benchmark circuits, and finally Sec. 5 

concludes the paper. 

2. Overview of Proposed Technique 

In the proposed technique, a parity-check code is used 

to detect all single point faults in the circuit. To ensure 

this, one has to be careful about logic sharing while 

synthesizing the logic circuit so that single point faults in 

the circuit cannot cause errors that get masked and go 

undetected. We use the structure constrained logic 

synthesis algorithm of [Touba 97] for synthesizing the 

logic circuit. The basic idea of this method is that two 

outputs assigned to the same parity group should not 

share any logic, because that may allow a single error in 

the shared logic block to be propagated to both the 

outputs, resulting in a two-bit error that would not be 

detected by the parity code. The structure constrained 

logic optimization algorithm essentially enforces 

constraints on logic sharing that are necessary to ensure 

that no undetectable errors are caused by single point 

faults. 

The power consumption in each of the CED circuit 

components depends on the type of parity check code 

used for concurrent error detection. If the duplication 

code is used (i.e., each output is put in its own parity 

group), then there are n parity bits for n logic outputs. In 

that case, the parity prediction circuit is a duplicate of the 

original logic circuit and can have significant power 

overhead. However, since there are no logic-sharing 

constraints between outputs in each parity group, the 

structure constrained logic optimization can share a lot of 

logic to reduce the power dissipation in the function logic. 

On the other hand, if all the outputs were put into one 

parity group, then the parity prediction logic would in 

general be simpler and have less power dissipation. But 

then the structure constrained logic optimization 

algorithm would not be able to share a lot of logic when 

synthesizing the function logic, which could result in 

increased power dissipation in the function logic. Thus, 

we see that there is a tradeoff between the power 

dissipation of the parity prediction circuit and the 

functional logic circuit, for which the proper choice of the 

parity check code is essential to minimize the overall 

power of the circuit with CED. 

The problem of finding an optimal parity check code 

is equivalent to finding the optimal grouping of the 

outputs of the function logic such that the power of the 

circuit with CED is minimized. This suggests a 

formulation of the problem as a k-way partitioning of the 

logic outputs into k groups so that the power reduction 

from merging the outputs in each group is maximized. 

3. Proposed Algorithm

In this work, we propose a 2-phase non-greedy 

algorithm of k-partitioning and local search. This avoids 

the problem of a greedy algorithm getting stuck in bad 

local  optima.  The  algorithm  uses  a  power-based   cost  

function that estimates the power reduction due to 

merging two parity groups at a time. 
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Figure 1. Concurrent error detection using parity-check code 
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3.1. Power-based Cost Function

Merging two parity groups affects the power 

dissipation in each component of the CED circuit. The 

reduction in power of the checker and parity prediction 

circuit can be calculated by the difference in the power 

dissipated before and after the merging. However, 

merging of the parity groups also reduces the amount of 

logic sharing in the functional logic during structure-

constrained logic synthesis, which results in more power 

dissipation. The overall power cost function is the 

difference of these two components:  

Effective Power Reduction = (Power reduction in checker 

circuit and parity prediction circuit) – (Power increase 

from decreased logic-sharing in logic circuit) 

During logic synthesis, the circuit is represented by a 

Boolean network [Sentovich 92] in which each node 

represents a two-level logic function and an edge exists 

from node A to node B if node A is a fanin to node B. To 

estimate the effective power reduction, we consider the 

Boolean network of the parity prediction circuit for the 

parity code before merging. The power dissipated in each 

node of the Boolean network is estimated by 

decomposing the node into 2-input gates, assuming 

equiprobable input values to the primary inputs of the 

Boolean network, and calculating the resulting switching 

probability at each gate output weighted by its capacitive 

load. We merge the two parity groups under consideration 

by removing the two corresponding nodes from the 

Boolean network for the parity prediction circuit and 

adding a new node obtained by taking an XOR of the 

logic functions of those nodes. The difference in load-

weighted switching probabilities between the new node 

and the two original nodes gives us an estimate of the 

power reduction due to merging.  

To estimate the second component of the power cost 

function, we calculate the total power dissipated in the 

function logic nodes that are reachable from the outputs 

of both the parity groups. This gives an estimate of the 

power increase due to decreased sharing in the logic 

circuit, since the nodes that are reachable from both the 

parity groups cannot be shared when the functional logic 

is synthesized with constraints. Since that logic cannot be 

shared, the total power consumption will increase by that 

amount. 

The difference between the first and the second 

components gives us the power cost function, i.e., the 

effective power reduction due to merging two parity 

groups. For larger circuits, we can use sampling instead of 

exact power estimation for computational efficiency. 

Note that the actual power dissipation in the parity 

prediction circuit depends on which cell-library is used to 

map the logic gates to cells. As an approximation, the 

proposed procedure decomposes the parity prediction 

circuit into 2-input gates when estimating power. We also 

did not consider changing the ordering of the operations 

in the parity tree to reduce the power consumed in this 

circuit component – schemes such as the one described in 

[Mohanram 02] could be used to reorder the parity 

operations and further reduce power dissipation. 

3.2. k-partitioning and Local Search 

The proposed algorithm partitions the logic outputs 

into parity groups corresponding to the lowest-power 

parity check code. It finds the best number of parity 

groups k by searching all values of k between 1 and n,

where n is the total number of logic outputs. For each 

value of k, a 2-phase technique is used for partitioning the 

logic outputs into parity groups. The details of the 

algorithm are given in Fig. 2. 

In the first phase, a fast k-partitioning technique is 

used to create k good initial groups.  Given a particular 

value of k, the algorithm chooses k outputs that have the 

minimum power reduction due to mutual pairwise 

merging and initializes the k partitions with these outputs. 

These initial outputs are found using the farthest-first

algorithm [Hochbaum 85], where the basic idea is to get k

points out of n that are mutually “far” from each other. In 

farthest first traversal, an initial point is chosen at random. 

The next point is selected to be farthest from it using a 

particular distance measure and is added to the traversed 

set. The remaining points are selected to have maximum 

distance from the traversed set, where we use the standard 

notion of distance of a point x from a set S: d(x,S) = minz

in S d(x,z). In this case, the distance between two logic 

outputs a and b was set to the inverse power reduction 

1/power_reduction(a,b) in merging the outputs, and 

farthest first traversal was performed on the logic outputs 

using this distance measure. So, when we find the k initial 

outputs by farthest first traversal, they are put in different 

partitions since there will not be a substantial power 

reduction by merging any  two of  these outputs. The 

other outputs are then sequentially merged with their 

“nearest” partition using a nearest-neighbor assignment 

scheme, which effectively gives the maximum power 

reduction for each assignment of an output to a group. 

Proceedings of the 23rd IEEE VLSI Test Symposium (VTS’05) 
1093-0167/05 $ 20.00 IEEE



In the second phase, these initial partitions are further 

refined by using a local-search refinement technique. 

Local search is a method of perturbing a solution so as to 

help it go out of potential local minima. We use a variant 

of local search where a series of local refinements are 

performed by considering each output in turn. The local 

refinement considers removing each output from its 

current partition and placing it in a new partition, and the 

resulting power reduction is calculated. For a given 

output, it finds the movement that gives the maximum 

power reduction, and the output is removed from the old 

partition and merged with the new partition. Every output 

is considered in turn for this local refinement step, and the 

process is continued iteratively until no more movements 

give further power reduction. In the end, the outputs in 

every partition form a parity group. 

Since both these phases are computationally efficient, 

they can be applied to do a non-greedy search over all 

possible values of k from 1 to n, thereby exploring the 

exponential-size space of all possible parity groupings 

more effectively. The value of k that gives the best overall 

reduction in power and area is used as the number of 

parity groups, and the corresponding k-partitioning is used 

to synthesize the parity prediction and function logic 

circuits.

4. Experimental Results 

For our experiments, the proposed algorithm was run 

on combinational circuits from the MCNC benchmark 

suite. The k-way partitioning, local search, and structure-

constrained logic optimization algorithms were 

implemented in SIS-1.2 [Sentovich 92]. The internal BDD 

power simulator in SIS-1.2 was used to do power 

simulation using a zero-delay model. Power was 

measured by the weighted switching probabilities of all 

the nodes of the circuit with CED, where the weight for 

the switching probability of a node corresponds to the 

capacitive load of that node. We used two area estimates –

the total number of factored form literal counts and the 

cell area of the circuit with CED after structure-

constrained logic synthesis. The mapping was performed 

using 2-input cells from the mcnc.genlib library and the 

cell area numbers are given in units of 1000λ2
, where λ is 

the minimum size in the technology.  

 In the first experiment, we used the 2-phase algorithm 

for parity code selection with the proposed cost function 

that considers power reduction. Table 1 shows that our 

proposed 2-phase scheme of k-partitioning and local 

search refinement reduces power by as much as 34% on 

the benchmark circuits. As seen in Table 2, running the 2-

phase algorithm with the power cost function also reduces 

area for all the benchmark circuits by as much as 35% as 

both area and power are correlated to some degree. The 

results in Table 1 also show that for some of the 

benchmark circuits the number of parity groups selected 

Input: Logic circuit with n outputs. 

Output: Number of parity groups and parity grouping 

of the logic outputs corresponding to the optimal-

power parity check code. 

Algorithm: 

1. Initialize 

               best_power = 0 

               best_num_groups = 0 
               best_grouping = NIL 

2. For k = 1 to n

3.     Initialize k partitions using farthest_first_init(k) 

4.     Assign outputs to the initial partitions using 

nearest_neighbor_assign(k)

5.     Refine the partitioning obtained using   

        local_search_refine(k), store resulting  

        partitioning in current_grouping 

6.     If total power reduction power_reduced in steps  

        3 and 4 is more than best_power, update 

                best_power = power 

                best_num_groups = k 
                best_grouping = current_grouping 

7. Return best_num_groups and  best_grouping 

Subroutines:

 farthest_first_init(k)
1.  Initialize k partitions with k logic outputs 

     chosen using the farthest-first heuristic, using    

     1/power_reduced(a,b) as measure of distance    

     between a and b

 nearest_neighbor_assign(k)
1.  for i = 1 to n

2.      If output i is not already assigned to one of the   

          k initial partitions, then assign output i to the  

          partition that is nearest to it, i.e., has the  

          maximum power reduction on merging 

local_search_refine(k)

 1.  for i = 1 to n

2. Initialialize best_reduction = 0

 3.     for j = 1 to k

4. current_reduction = power reduced by  

            moving output i from its current partition to   

            the new partition j

5.         If current_reduction > best_reduction

                  best_reduction = current_reduction 

                  best_new_partition = j 

  6.    Move output i to partition  best_new_partition
  7.  Return if best_reduction = 0 for all outputs, else 

       repeat steps 1-6 

Figure 2. 2-phase algorithm for parity code selection 
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by our algorithm is different from that chosen by the 

greedy scheme in [Touba 97], demonstrating that the 2-

phase algorithm is able to reach a better parity check code 

by a more effective search of the space of all possible 

parity groups. 

We performed another experiment to explore in detail 

the effectiveness of each phase in the proposed 2-phase 

algorithm. As shown by the results in Table 3, the first 

phase (i.e., k-way partitioning only) alone gave some 

reductions in power, but using the 2-phase algorithm (i.e., 

k-way partitioning and local search) increased the amount 

of power reduction. This demonstrates that each of the 2 

phases in the algorithm plays a significant role in 

selecting a low-power parity code. 

Circuit Information Greedy Algorithm [Touba 97] Proposed Algorithm Comparison 

Name PIs POs 

Number of 

Parity 

Groups 

Power 

Dissipated 

Number of 

Parity 

Groups 

Power 

Dissipated 

Reduction in 

Power (%) 

misex1 8 7 3 463 3 305 34.1 

wim 4 7 2 211 2 159 24.6 

rd53 5 3 1 247 1 171 30.6 

squar5 5 8 3 513 1 360 29.8 

dc1 4 7 3 396 2 285 28.0 

adr2 4 3 2 193 2 140 27.7 

b12 15 9 4 589 2 521 11.6 

rd73 7 3 1 716 1 518 27.7 

misex2 25 18 3 624 4 516 17.4 

bw 5 28 9 1375 2 1086 20.9 

alu2 10 6 5 1527 4 1482 3.0 

inc 7 9 2 740 2 573 22.5 

5xp1 7 10 3 921 1 827 10.2 

Circuit Information Greedy Algorithm [Touba 97] Proposed Algorithm Comparison 

Name PIs POs 
Number of 

Literals 
Cell Area 

Number of 

Literals 
Cell Area 

Reduction in 

Literals (%) 

Reduction in 

Cell Area (%) 

misex1 8 7 138 156 91 105 30.1 32.7 

wim 4 7 69 82 50 57 23.2 30.5 

rd53 5 3 55 73 35 47 27.4 35.6 

squar5 5 8 139 174 93 120 26.4 31.0 

dc1 4 7 101 117 65 78 30.8 33.3 

adr2 4 3 48 56 30 37 32.1 33.9 

b12 15 9 174 209 153 159 10.0 23.9 

rd73 7 3 158 196 121 135 18.9 31.1 

misex2 25 18 296 355 255 319 11.5 10.1 

bw 5 28 442 548 362 426 14.6 22.3 

alu2 10 6 417 512 409 469 1.6 8.4 

inc 7 9 215 253 169 197 18.2 22.1 

5xp1 7 10 247 289 211 240 12.5 17.0 

Table 1. Comparison of power reduction of proposed 2-phase algorithm with greedy algorithm in [Touba 97]  

Table 2. Comparison of area reduction of proposed 2-phase algorithm with greedy algorithm in [Touba 97]  
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5. Conclusions 

This paper presents a new 2-phase algorithm for 

synthesis of low-power concurrent error-detecting 

circuits based on parity codes, which outperforms a 

previously known parity-code selection technique. 

Along with reducing the power of benchmark circuits 

with CED by as much as 34%, the 2-phase algorithm is 

also able to simultaneously reduce their area by as much 

as 35%. 
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[Touba 97] 
After phase 1 After phase 2 Comparison 

Name PIs POs 
Power 

Dissipated 

Power 

Dissipated 

Power 

Dissipated 

Power Reduction 

after phase 1 (%) 

Power Reduction 

after phase 2 (%) 

misex1 8 7 463 326 305 29.6 34.1 

wim 4 7 211 166 159 21.3 24.6 

rd53 5 3 247 187 171 24.2 30.6 

squar5 5 8 513 399 360 22.1 29.8 

dc1 4 7 396 298 285 24.9 28.0 

adr2 4 3 193 140 140 27.7 27.7 

b12 15 9 589 551 521 6.5 11.6 

rd73 7 3 716 564 518 21.2 27.7 

misex2 25 18 624 546 516 12.5 17.4 

bw 5 28 1375 1108 1086 19.4 20.9 

alu2 10 6 1527 1489 1482 2.4 3.0 

inc 7 9 740 577 573 22.1 22.5 

5xp1 7 10 921 882 827 4.3 10.2 

Table 3. Breakdown on power reduction for each phase of proposed 2-phase algorithm  
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