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Abstract 
A technique is presented here for improving the 

compression achieved with any linear decompressor by 
adding a small non-linear decoder that exploits bit-wise 
and pattern-wise correlation present in test vectors. The 
proposed non-linear decoder has a regular and compact 
structure and allows continuous-flow decompression.  
It has a very important feature which is that its design 
does not depend on the test data.  This simplifies the 
design flow and allows the decoder to be reused when 
testing multiple cores on a chip.  Experimental results 
show that combining a linear decompressor with the 
small non-linear decoder proposed here significantly 
improves the overall compression. 

1. Introduction 
A special class of test vector compression schemes 

involves using a linear decompressor which uses only 
linear operations to decompress the test vectors.  This 
includes techniques based on LFSR reseeding and 
combinational linear expansion circuits consisting of 
XOR gates.  Linear compression schemes are very 
efficient at exploiting don’t care values in the test cubes 
to achieve large amounts of compression. 

The amount of compression that can be achieved 
with linear compression schemes depends directly on 
the number of specified bits in the test cubes.  While 
linear decompressors are very efficient at exploiting 
don’t cares in the test set, they cannot exploit 
correlations in the test cubes, and hence they cannot 
compress the test data to less than the total number of 
specified bits in the test data. Non-linear decompressors 
on the other hand can exploit correlations in the test 
cubes, but are not as efficient as linear decompressors in 
exploiting don’t cares.  Because test data is typically 
only 1-5% specified with the rest as don’t cares, linear 
decompressors are generally more effective overall.  
This fact coupled with the simple and compact design 
of linear decompressors are the main reasons why they 
are used in commercial tools.  

The approach taken in this paper is to combine linear 
and non-linear compression together to get the 
advantages of both.  A non-linear decompressor is used 
to exploit correlations in the specified bits to reduce the 
number of specified bits that the linear decompressor 

has to produce.  Since the amount of compression 
achieved with a linear decompressor depends on the 
number of specified bits it needs to produce, this 
approach results in much greater compression than what 
the linear decompressor could achieve by itself. 
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Figure 1.  Diagram of Proposed Scheme 

A block diagram of the proposed scheme is shown in 
Fig. 1.  A rectangular decoder (which is a sequential 
non-linear decompressor) is placed between the linear 
decompressor and the scan chains.  The rectangular 
decoder exploits bit-wise and pattern-wise correlations 
in the test cubes to reduce the number of specified bits.  
Consequently, the input data to the rectangular decoder 
has many fewer specified bits than the test cubes 
themselves.  This makes the job of the linear 
decompressor easier since it now needs to produce 
significantly fewer specified bits.  The number of bits 
required to be stored on the tester and transferred to the 
linear decompressor basically goes down linearly with 
the number of specified bits that it needs to produce as 
can be seen in the data reported in [Rajski 02] and 
[Krishna 01, 04]. 

There has been some previous work that has also 
combined linear and non-linear coding together, but in 
fundamentally different ways than what is done here.  In 
[Krishna 02], the inputs to the linear decompressor were 
encoded using a non-linear code.  The objective in 
[Krishna 02] was to select the seeds for the LFSR in 
such a way that they could be effectively compressed by 
a non-linear code.  In the proposed scheme, the inputs 
to the scan chains are encoded with a non-linear code.  
The objective here is to reduce the number of specified 
bits that need to be produced by the linear 
decompressor.  Whereas the method in [Krishna 02] is 
only applicable for LFSR reseeding where the seed is 
periodically loaded, the proposed scheme is applicable 
for any linear decompressor including combinational 
and sequential continuous-flow decompressors (for 
which the method in [Krishna 02] cannot be used).  In 
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[Sun 04], dictionary coding and LFSR reseeding are 
combined such that either one or the other is used to 
load each scan slice.  In the proposed method, 
rectangular coding is combined with a linear 
decompressor and both are used together for all scan 
bit-slices enabling a continuous-flow decompression 
with greater efficiency.  In [Ward 05], a combinational 
statistical decoder is combined with linear 
decompression.  The proposed method uses a sequential 
decoder that can exploit correlations across scan slices 
as well as across patterns.  Note that [Liang 01] also 
combines linear and non-linear coding, but it is for a 
hybrid BIST application in which many more patterns 
are applied to the circuit-under-test (CUT) than the 
number of patterns in a deterministic test set. 

In addition to the differences mentioned above, there 
are two additional key features that distinguish the 
proposed scheme from earlier work. The most important 
is that the design of the decoder for the proposed 
scheme is independent of the test set. In all of the earlier 
test vector compression schemes that combine linear 
and non-linear compression, the design of the non-linear 
decoder is customized for the test set.  Having a fixed 
independent design for the non-linear decoder is a 
major advantage as it simplifies the design flow, allows 
for late engineering changes to the test set, and allows 
the decoder to be reused when testing multiple cores on 
a chip.  The second distinguishing feature of the 
proposed scheme is that unlike the earlier techniques 
which use a combinational non-linear decoder, the 
proposed scheme uses a sequential non-linear decoder 
that is able to exploit correlations across scan slices and 
across patterns thereby making it more effective. 

2. Rectangular Encoding 
One well-known characteristic of test data is that 

certain bit positions in test cubes tend to be correlated 
across many patterns.  This arises from the fact that 
many faults in the circuit require similar input 
assignments to detect.  A number of BIST schemes 
exploit this characteristic of test data including 
weighted pattern testing, STAR-BIST [Tsai 00], [Rajski 
03], and folding counters [Hellebrand 00].  In weighted 
pattern testing, each weight set targets a subset of the 
test cubes that have highly correlated values in a subset 
of the bit positions.  If one represents the test set as a 
test matrix in which each row corresponds to a test cube 
and each column corresponds to a bit position, then the 
correlations tend to exist in rectangles in this matrix.  
The idea with rectangular encoding is to encode these 
rectangles with a small number of specified bits and 
then have a simple decoder that decodes them.  Since 
the rectangles have a regular structure, the decoder 
design is simple and independent of the test data. 

2.1 Overview 
The first step in rectangular encoding is to partition 

the  test cubes into clusters such that pattern-wise 
correlation within a cluster is maximized.  This is done 
using a clustering algorithm that will be described in 
Sec. 2.4.  Each cluster is then encoded as one unit.  If 
there are n scan chains, then each scan slice consists of 
the n bits that are shifted into the n scan chains in a 
clock cycle.  A test cube with m bits consists of m/n
scan slices.  In rectangular encoding, the scan slices for 
a test cube are partitioned into a sequence of variable-
length rectangles.  All the test cubes within each test 
cube cluster are partitioned identically.  So in effect, the 
entire test matrix is partitioned into rectangles where the 
height of each rectangle is determined by the number of 
test cubes in the test cube cluster it belongs to, and the 
width is determined by the scan slice partitioning for the 
test cube cluster it belongs to.  A heuristic procedure 
will be described in Sec. 2.2 for partitioning the scan 
slices to maximize compression. 

Within each rectangle, the largest set of scan chains 
that has compatible values is identified.  This set of scan 
chains must have either a 1(0) or X for every scan slice 
across the width of the rectangle and every test cube 
across the height of the rectangle.  A chain select mask
is then defined for the rectangle which identifies which 
scan chains should be loaded from the linear decom-
pressor and which scan chains should be filled with a 
specified fill value (1 or 0).  So the information that is 
needed to decode each rectangle in a particular test cube 
cluster consists of three things.  The width of the 
rectangle, the chain select mask, and the fill value. This is
illustrated in the small example shown in Figs. 2 and 3. 

In Fig. 2, there are 7 scan slices (columns) and 4 
scan chains (rows).  The bit compatibility for a test cube 
cluster is shown where a value of X indicates all the test 
cubes in the cluster have X for that scan cell, a value of 
1(0) indicates that they all have either 1(0) or X for that 
scan cell, and a value of C indicates a conflict where 
both 1 and 0 are present.  The scan slices are partitioned 
into 3 rectangles.   

Figure 3(a) shows the format for rectangular control 
data, and Fig. 3(b) shows the specific values for the 
three rectangles in Fig. 2.  The width of the rectangle in 
terms of scan slices is encoded as a binary number.  The 
maximum width of a rectangle is a user-defined 
parameter and determines the number of bits allocated 
for specifying the width (experimental data for different 
maximum widths is discussed in Sec. 4).  The chain 
select mask contains one bit for each scan chain to 
indicate if the scan chain should be loaded from the 
linear decompressor or loaded with the fill value.  The 
last bit indicates the fill value (either 1 or 0).  In the 
second rectangle, rect2, all the bits in sc1, sc3, and sc4
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can be filled with 1 (this is not the case for sc2 because 
there is a conflict in scan slice 6).  As can be seen in 
Fig. 3(b), the chain select mask in this case would be 
1011 which would load all the scan chains except sc2
with the fill value of 1 (sc2 would be loaded from the 
linear decompressor).  In rect1, all the scan chains 
except sc3 can be loaded with the fill value.  Moreover, 
in this case sc4 has only X values and thus it doesn’t 
matter whether it is loaded with the fill value or from 
the linear decompressor, and therefore the chain select 
mask is 110X in this case.  The last rectangle, rect3, is 
only one scan slice wide.  For very narrow rectangles, it 
is generally more efficient to simply load them from the 
linear decompressor and not bother specifying a chain 
select mask and fill value. For this reason, if the width 
of a rectangle is below some user-defined minimum 
threshold, the chain select mask is simply ignored and 
all the scan chains are filled with from linear 
decompressor.  The advantage of this is that as can be 
seen in Fig. 3, the chain select mask and fill value are
simply don’t cares for rect3.

011xxxxsc4

11xxcx0sc3

xc0x00xsc2

x1110x0sc1

b7b6b5b4b3b2b1

011xxxxsc4

11xxcx0sc3

xc0x00xsc2

x1110x0sc1

b7b6b5b4b3b2b1

rect 2rect 1

width

rect 3

Figure 2.  Example of Rectangles 

width chain select mask bit fill value

(a) Data format 

xxxxx10rect 3

1110111rect 2

0x01111rect 1

xxxxx10rect 3

1110111rect 2

0x01111rect 1

(b) Control data for three rectangles 

Figure 3.  Format for Rectangular Control Data 

2.2 Partitioning Scan Slices into Rectangles 
The reduction in the number of specified bits that 

the linear decompressor has to produce (and hence the 
amount of compression achieved) for each rectangle 
depends on the number of control bits that need to be 
specified for decoding the rectangle versus the number 
of specified bits in the test cubes that get covered with 
the fill value (and hence do not need to be generated by 
the linear decompressor).  The goal in partitioning the 
scan slices for a test cube cluster into rectangles is to 
achieve the greatest overall reduction in the number of 
specified bits.  A greedy heuristic procedure for this is 
described in this subsection. 

The first step is to generate a compatibility cube for 
the test cube cluster.  This is illustrated in Fig. 2 and has 
been explained earlier.  From the compatibility cube, 
the rectangle which provides the largest reduction in 
specified bits is identified.  This is done by considering 
each scan slice as a starting point for a rectangle and 
considering all possible rectangle widths (up to the 
user-defined maximum rectangle width) from that 
starting point. Once the best rectangle is identified, it is 
marked as selected and the procedure repeats taking 
into consideration that rectangles cannot overlap.  
Rectangles continue to be selected in a greedy manner 
until all scan slices have been included in a rectangle. 

2.3 Reducing Size of Chain Select Mask
The amount of control data that needs to be 

specified for decoding the rectangles is typically 
dominated by the bits for the chain select mask.  One 
way to reduce this data is that instead of using one bit in 
the chain select mask for each scan chain, one bit can 
be used per k scan chains.   This reduces some of the 
flexibility since now all k scan chains controlled by the 
same bit in the chain select mask need to be compatible 
in order to use the fill value.  However, it generally 
provides greater compression since he control data is 
significantly reduced.  Experimental results are shown 
in Sec. 4 for different values of k.

2.4 Forming Test Cube Clusters 
In rectangular encoding, the test cubes are 

partitioned into clusters and each cluster is then divided 
into rectangles.  Some nice algorithms for this type of 
clustering were described in [Alleyne 94].  A similar 
approach is taken here, but using a different benefit 
function to maximize correlation within a cluster and 
also minimize the number of clusters. 

In order to maximize the compression achieved for 
each rectangle, it is important that the test cubes in each 
cluster have many bit positions with compatible values.  
As more test cubes are added to a cluster, the height of 
each rectangle increases.  This has the benefit of 
amortizing the control bits required for decoding each 
rectangle over more test cubes, but there is a tradeoff as 
more bit positions are likely to have conflicts (thereby 
increasing the number of C’s in the compatibility cube) 
and thus reducing the effectiveness of each rectangle.  A 
greedy clustering procedure that takes this tradeoff into 
consideration is described here. 

One test cube is used as a seed for the cluster.  All 
other test cubes are then considered as candidates to add 
to the cluster.  The heuristic that is used to measure the 
optimality of a cluster is the total number of specified 
bits that are present in each compatible bit position of 
the cluster.  This value forms a benefit function for the 
cluster.  It is computed by considering each compatible 
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bit position and adding up the number of test cubes that 
have a specified value in that bit position.  Consider the 
test cubes in Fig. 4.  A cluster consisting of test cubes t1,
t2, and t3, is compatible in the first 3 bit positions and 
the total number of specified bits in those 3 bit positions 
is 7 (the X’s are not counted). The change in this benefit 
function is computed for adding each candidate test cube.  
The one that gives the greatest improvement in the 
benefit function is added to the cluster.  This continues 
until a point is reached where no positive improvement 
in the benefit function can be obtained by adding 
another test cube to the cluster.  For example, in Fig. 4, 
if test cube t4 was added to the cluster, then the benefit 
function would actually decrease because bit position 3 
would no longer be compatible.  Since the final cluster 
is very dependent on the initial seed, all test cubes are 
used as seeds and the best resulting cluster is selected.  
This process is repeated iteratively for the remaining 
test cubes until all test cubes are members of a cluster. 

Note that while a greedy clustering procedure is 
described here, any clustering procedure can be used to 
maximize the benefit function defined above. 

x1x0t4
x0x0t3
100xt2
000xt1

x1x0t4
x0x0t3
100xt2
000xt1

Figure 4. Example of Clustering 

3. Rectangular Decoder 

Decoding the rectangles is done with a sequential 
non-linear decoder that is placed between a linear 
decompressor and the scan chains.  A block diagram for 
the rectangular decoder is shown in Fig. 5.  It consists 
of a controller which is a small finite state machine, a 
RAM that stores the rectangular control data, a RAM 
address pointer that points to the control data for the 
next rectangle, a width counter, and a rectangular 
control register that stores the control data for the 
current rectangle (rectangle width, chain select mask,
and fill value).  Note that a RAM that is present for 
functional purposes can be utilized in the rectangular 
decoder (it is not necessary to add an extra RAM).  A 
MUX is placed in front of each scan chain.  The select 
line to the MUX is the bit in the chain select mask that 
corresponds to that scan chain.  Note that if k>1, then 
one bit in the chain select mask will fan out to k MUXes.  
Depending on the corresponding value in the chain 
select mask, each scan chain will either be loaded with 
the fill value or be loaded from the linear decompressor.  
Note that if the rectangle width is below the user-
defined threshold, then the scan chain is loaded from 
the linear decompressor regardless of the value of the 
chain select mask.  This is implemented by adding 

another MUX whose select line comes from a less-than 
comparator that checks the value of rectangle width.  
Note that this is not shown in Fig. 5 for sake of 
readability. 
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Figure 5. Block Diagram for Rectangular Decoder 

The RAM holding the rectangular control data can 
be loaded from the tester either all at the beginning of 
the test session or incrementally during the test session.  
If it is all loaded at the beginning, the entire rectangular 
control data is transferred either directly from the tester 
or through the linear decompressor to the RAM.  In this 
case, the RAM must be large enough to store all the 
rectangular control data.  The other option is to 
incrementally load the rectangular control data each 
time a new test cube cluster is started.  In this case, only 
the rectangular control data for one cluster needs to be 
stored on-chip at a time.  Thus, the required RAM size 
would only depend on the maximum number of 
rectangles in any cluster. 

The test set is ordered so that all the test cubes in a 
cluster come in succession.  An extra clock cycle is 
added at the start of each test cube in which the linear 
decompressor generates one specified bit to tell the 
controller whether or not this is the start of a new test 
cube cluster.  If it is not the start of a new cluster, then 
the same rectangular data that was used for the previous 
test cube is used for this one (the RAM pointer is 
simply reset back to the first rectangle for this cluster).  
If it is the start of a new cluster then there are two cases.  
If the rectangular control data is to be loaded 
incrementally, it is done at this point (only the data 
needed for this cluster).  If the rectangular control data 
was all loaded into the RAM at the start, then the RAM 
address pointer is incremented to point to the start of the 
rectangular control data for this new cluster. 

After this, each rectangle is decoded one at a time as 
the test cube is shifted into the scan chains.  For each 
rectangle, the controller loads the rectangular control 
data from the RAM into  the rectangular control register,

Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06) 
0-7695-2514-8/06 $20.00 © 2006 IEEE 
Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06) 
0-7695-2514-8/06 $20.00 © 2006 IEEE 



Table 1.  Results for Proposed Rectangular Encoding Scheme 
Rect. Control Circuit Test 

Cubes 
Original 

Spec. Bits 
Num. 

Clusters 
Scan 

Chains 
Num. 
Rect. W C T 

Data Spec. 
Bits 

Control  
Spec. Bits

Total  
Spec. Bits 

Reduction 
(%) 

RAM 
(bits) 

10 86 4 5 10 5774 1126 6900 26.5 130 
20 75 4 10 15 5665 1391 7056 24.8 150 

s13207 266 9389 8 

30 54 4 15 20 6217 1346 7563 19.5 180 
10 75 4 5 10 5707 1019 6726 38.5 100 
20 56 4 10 15 6190 1109 7335 33.0 135 

s15850 269 10944 9 

30 49 4 15 20 6602 1249 7851 28.3. 160 
20 107 4 10 15 19880 1981 21861 28.7 255 
30 71 4 15 20 19306 1796 21102 31.2 280 

s38417 376 30669 7 

40 64 4 20 25 19735 1976 21711 29.2 250 
20 135 3 10 15 19331 2321 21652 17.3 300 
30 108 3 15 20 19693 2348 21941 16.2 320 

s38584 296 26185 8 

40 101 3 20 25 19508 2720 22228 15.1 375 

the width counter is reset to 0.  As each scan slice is 
loaded into the scan chains, the width counter is 
incremented.  When it becomes equal to the rectangle 
width, then the next rectangle is loaded from the RAM 
into the rectangular control register and the RAM 
pointer is incremented.  This process repeats until the 
entire test cube has been shifted in. 

As can be seen, the rectangular decoder is simple, 
compact, and regular.  A very nice feature is that it does 
not depend on the actual test data.  It can be designed so 
that it is capable of decoding any set of rectangles.  This 
simplifies the design flow since there is no need to have 
the test data when implementing the decoder. 

4. Experimental Results 
Experiments were performed on the four largest 

ISCAS89 circuits.  In Table 1, the number of test cubes 
and the number of specified bits in deterministic test 
sets are shown in the second and third column.  The 
fourth column shows the number of clusters obtained 
with the pattern clustering algorithm described in Sec. 
2.3.  Results for the proposed method were generated 
for three different numbers of scan chains.  In the sixth 
column, the number of total rectangles across all 
clusters is shown.  The next three columns show the size 
of a rectangle control data required for each rectangle.  
‘W’ is the number bits used for the rectangle width.  ‘C’
is the number of chain select mask bits, and ‘T’ is the 
number of total bits per rectangle (which is equal to 
W+C plus 1 for the fill value).  Note that in all cases, 
k=2 (i.e., each chain select mask bit controlled two scan 
chains), and thus C is equal to the number of scan 
chains divided by 2 in all cases.  Note that the graph on 
the left side of Fig. 6 shows the total number of 
specified bits with different k values for s38417.  As can 
be seen, the best result occurs for k=2.  The graph on 
the right side of Fig. 6 shows the total number of 
specified bits using different numbers of bits for 
specifying the rectangle width (i.e., using different 
maximum rectangle widths) for s38417.  The best result 

is observed when using 4 bits for the width.  In all of the 
circuits except for s38584, the best result is observed 
using 4 bits while for s38584 it is observed for 3 bits.  

20000
22500

25000

27500

30000

1 2 3 4 5 6

Scan chains for 1 index bit

21500

22000

22500

23000

23500

1 2 3 4

Bits for width of rectangles

Figure 6. Specified bits vs. width and k value for s38417 

The total number of specified bits that the linear 
decompressor has to produce when using the proposed 
non-linear decoder is shown in the tenth column (this 
includes all the specified rectangular control data as 
well as the extra bit for each test cube to indicate if it is 
the start of a new cluster.  The percentage reduction in 
specified bits is shown in the next column.  As can be 
seen, the number of specified bits that the linear 
decompressor has to produce is significantly reduced.  
This reduction in the specified bits is a very powerful 
result because it means that in most cases, up to an 
additional 30% or more compression can be achieved 
on top of the best possible compression that is currently 
available for any linear decompression scheme.  If the 
test data bandwidth is held constant, this translates to an 
equivalent reduction in test time.  As the number of scan 
chains increases, the number of specified bits required 
for the proposed scheme increases slightly, but not much.    
The last column shows the size (in number of bits) of 
the RAM required to store the rectangular control data 
if it is incrementally loaded.  Note that it is very small. 

Results for combining the proposed scheme with an 
actual linear decompressor are shown in Table 2.  The 
number of test patterns in the test set and the number of 
specified bits that need to be generated using the linear 
decompressor in [Krishna 01] alone and using it with 
the proposed scheme are shown in Table 2.  As can be 
seen, the reduction in test storage is very closely related 

      1      2        3        5        6       10 
Scan chains per chain select mask bit 

      2            3            4            5 
       Bits for width of rectangle 
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to the reduction in specified bits. Note that the proposed 
scheme can be used with any linear decompressor. 

Table 2.  Results combined with partial reseeding 
[Krishna 01] Proposed Circuit Test 

Cube Specified Storage Specified Storage Reduction
s13207 266 9389 9872 7231 7678 22.2% 
s15850 269 10944 11322 6726 7176 36.6% 
s38417 376 30669 31245 21102 21780 30.3% 
s38584 296 26185 28312 21652 22199 21.6% 

Table 3. Results compared with [Ward 05] 
Num. of Specified Bits 

Circuit 
[Ward 05] Proposed 

s13207 7499 6900 
s15850 8333 6726 
s38417 22277 21102 
s38584 23254 21652 

We also compared the number of specified bits in 
the proposed scheme to the number of specified bits in 
[Ward 05] in Table 3. Note that [Ward 05] reports the 
best tester storage results among compression schemes 
that use both linear and non-linear techniques.  In all the 
cases shown in [Ward 05], the proposed scheme 
reduces the number of specified bits more.  Not only 
does the proposed scheme provide greater compression 
than previous schemes that combine linear and non-
linear compression techniques (i.e., [Krishna 02], [Sun 
04], and [Ward 05]), it also allows continuous flow 
decompression and the design of the decoder is 
independent of the test data. 
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Figure 7. Results for test set having few specified bits 

The percentage of specified bits in the test sets for 
the ISCAS89 circuits (around 5-20%) is typically much 
higher than what is reported for industrial circuits.  
Experiments were performed to see how effective the 
proposed scheme would be with much lower 
percentages of specified bits.  A test set that has 2% 
specified bits was randomly generated with different 
degrees of correlation.  The amount of correlation was 
controlled by a variable B% which determines both the 
bit-wise correlation and the pattern-wise correlation.
Each bit has a 2% probability of being specified and 
98% probability of being a don’t-care.  If a bit is 
specified, then it has B% chance of having the same 

specified value as the previous specified bit in the test 
cube.  Pattern-wise correlation is generated in the 
following way.  If the previous test cube was specified 
in some bit position, then there is a 50% chance for the 
current test cube to also be specified in the same bit 
position and a B% chance of having the same specified 
value as the previous test cube.  Figure 7 shows how the 
percentage reduction in the number of specified bits 
varies with the amount of correlation.  Test sets 
typically have quite a bit of correlation, so this data 
suggests the proposed method can be quite effective. 

5. Conclusions 
The proposed scheme harnesses the power of linear 

and non-linear decompression together using a simple 
and compact decoder whose design is independent of 
the test set.  Note that the compression could be 
significantly improved if scan chain reordering was 
employed along with the proposed scheme to increase 
bit-wise correlation. 
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