
Combining Linear and Non-Linear Test Vector Compression
Using Correlation-Based Rectangular Encoding

Jinkyu Lee and Nur A. Touba

Computer Engineering Research Center
University of Texas, Austin, TX 78712

Abstract
A technique is presented here for improving the

compression achieved with any linear decompressor by
adding a small non-linear decoder that exploits bit-wise
and pattern-wise correlation present in test vectors. The
proposed non-linear decoder has a regular and compact
structure and allows continuous-flow decompression.
It has a very important feature which is that its design
does not depend on the test data. This simplifies the
design flow and allows the decoder to be reused when
testing multiple cores on a chip. Experimental results
show that combining a linear decompressor with the
small non-linear decoder proposed here significantly
improves the overall compression.

1. Introduction
A special class of test vector compression schemes

involves using a linear decompressor which uses only
linear operations to decompress the test vectors. This
includes techniques based on LFSR reseeding and
combinational linear expansion circuits consisting of
XOR gates. Linear compression schemes are very
efficient at exploiting don’t care values in the test cubes
to achieve large amounts of compression.

The amount of compression that can be achieved
with linear compression schemes depends directly on
the number of specified bits in the test cubes. While
linear decompressors are very efficient at exploiting
don’t cares in the test set, they cannot exploit
correlations in the test cubes, and hence they cannot
compress the test data to less than the total number of
specified bits in the test data. Non-linear decompressors
on the other hand can exploit correlations in the test
cubes, but are not as efficient as linear decompressors in
exploiting don’t cares. Because test data is typically
only 1-5% specified with the rest as don’t cares, linear
decompressors are generally more effective overall.
This fact coupled with the simple and compact design
of linear decompressors are the main reasons why they
are used in commercial tools.

The approach taken in this paper is to combine linear
and non-linear compression together to get the
advantages of both. A non-linear decompressor is used
to exploit correlations in the specified bits to reduce the
number of specified bits that the linear decompressor

has to produce. Since the amount of compression
achieved with a linear decompressor depends on the
number of specified bits it needs to produce, this
approach results in much greater compression than what
the linear decompressor could achieve by itself.

Linear
Decompressor

From
Tester

Rectangular
Decoder

Scan Chain 1

Scan Chain 2

Scan Chain n

b n

Figure 1. Diagram of Proposed Scheme

A block diagram of the proposed scheme is shown in
Fig. 1. A rectangular decoder (which is a sequential
non-linear decompressor) is placed between the linear
decompressor and the scan chains. The rectangular
decoder exploits bit-wise and pattern-wise correlations
in the test cubes to reduce the number of specified bits.
Consequently, the input data to the rectangular decoder
has many fewer specified bits than the test cubes
themselves. This makes the job of the linear
decompressor easier since it now needs to produce
significantly fewer specified bits. The number of bits
required to be stored on the tester and transferred to the
linear decompressor basically goes down linearly with
the number of specified bits that it needs to produce as
can be seen in the data reported in [Rajski 02] and
[Krishna 01, 04].

There has been some previous work that has also
combined linear and non-linear coding together, but in
fundamentally different ways than what is done here. In
[Krishna 02], the inputs to the linear decompressor were
encoded using a non-linear code. The objective in
[Krishna 02] was to select the seeds for the LFSR in
such a way that they could be effectively compressed by
a non-linear code. In the proposed scheme, the inputs
to the scan chains are encoded with a non-linear code.
The objective here is to reduce the number of specified
bits that need to be produced by the linear
decompressor. Whereas the method in [Krishna 02] is
only applicable for LFSR reseeding where the seed is
periodically loaded, the proposed scheme is applicable
for any linear decompressor including combinational
and sequential continuous-flow decompressors (for
which the method in [Krishna 02] cannot be used). In

Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE
Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE

[Sun 04], dictionary coding and LFSR reseeding are
combined such that either one or the other is used to
load each scan slice. In the proposed method,
rectangular coding is combined with a linear
decompressor and both are used together for all scan
bit-slices enabling a continuous-flow decompression
with greater efficiency. In [Ward 05], a combinational
statistical decoder is combined with linear
decompression. The proposed method uses a sequential
decoder that can exploit correlations across scan slices
as well as across patterns. Note that [Liang 01] also
combines linear and non-linear coding, but it is for a
hybrid BIST application in which many more patterns
are applied to the circuit-under-test (CUT) than the
number of patterns in a deterministic test set.

In addition to the differences mentioned above, there
are two additional key features that distinguish the
proposed scheme from earlier work. The most important
is that the design of the decoder for the proposed
scheme is independent of the test set. In all of the earlier
test vector compression schemes that combine linear
and non-linear compression, the design of the non-linear
decoder is customized for the test set. Having a fixed
independent design for the non-linear decoder is a
major advantage as it simplifies the design flow, allows
for late engineering changes to the test set, and allows
the decoder to be reused when testing multiple cores on
a chip. The second distinguishing feature of the
proposed scheme is that unlike the earlier techniques
which use a combinational non-linear decoder, the
proposed scheme uses a sequential non-linear decoder
that is able to exploit correlations across scan slices and
across patterns thereby making it more effective.

2. Rectangular Encoding
One well-known characteristic of test data is that

certain bit positions in test cubes tend to be correlated
across many patterns. This arises from the fact that
many faults in the circuit require similar input
assignments to detect. A number of BIST schemes
exploit this characteristic of test data including
weighted pattern testing, STAR-BIST [Tsai 00], [Rajski
03], and folding counters [Hellebrand 00]. In weighted
pattern testing, each weight set targets a subset of the
test cubes that have highly correlated values in a subset
of the bit positions. If one represents the test set as a
test matrix in which each row corresponds to a test cube
and each column corresponds to a bit position, then the
correlations tend to exist in rectangles in this matrix.
The idea with rectangular encoding is to encode these
rectangles with a small number of specified bits and
then have a simple decoder that decodes them. Since
the rectangles have a regular structure, the decoder
design is simple and independent of the test data.

2.1 Overview
The first step in rectangular encoding is to partition

the test cubes into clusters such that pattern-wise
correlation within a cluster is maximized. This is done
using a clustering algorithm that will be described in
Sec. 2.4. Each cluster is then encoded as one unit. If
there are n scan chains, then each scan slice consists of
the n bits that are shifted into the n scan chains in a
clock cycle. A test cube with m bits consists of m/n
scan slices. In rectangular encoding, the scan slices for
a test cube are partitioned into a sequence of variable-
length rectangles. All the test cubes within each test
cube cluster are partitioned identically. So in effect, the
entire test matrix is partitioned into rectangles where the
height of each rectangle is determined by the number of
test cubes in the test cube cluster it belongs to, and the
width is determined by the scan slice partitioning for the
test cube cluster it belongs to. A heuristic procedure
will be described in Sec. 2.2 for partitioning the scan
slices to maximize compression.

Within each rectangle, the largest set of scan chains
that has compatible values is identified. This set of scan
chains must have either a 1(0) or X for every scan slice
across the width of the rectangle and every test cube
across the height of the rectangle. A chain select mask
is then defined for the rectangle which identifies which
scan chains should be loaded from the linear decom-
pressor and which scan chains should be filled with a
specified fill value (1 or 0). So the information that is
needed to decode each rectangle in a particular test cube
cluster consists of three things. The width of the
rectangle, the chain select mask, and the fill value. This is
illustrated in the small example shown in Figs. 2 and 3.

In Fig. 2, there are 7 scan slices (columns) and 4
scan chains (rows). The bit compatibility for a test cube
cluster is shown where a value of X indicates all the test
cubes in the cluster have X for that scan cell, a value of
1(0) indicates that they all have either 1(0) or X for that
scan cell, and a value of C indicates a conflict where
both 1 and 0 are present. The scan slices are partitioned
into 3 rectangles.

Figure 3(a) shows the format for rectangular control
data, and Fig. 3(b) shows the specific values for the
three rectangles in Fig. 2. The width of the rectangle in
terms of scan slices is encoded as a binary number. The
maximum width of a rectangle is a user-defined
parameter and determines the number of bits allocated
for specifying the width (experimental data for different
maximum widths is discussed in Sec. 4). The chain
select mask contains one bit for each scan chain to
indicate if the scan chain should be loaded from the
linear decompressor or loaded with the fill value. The
last bit indicates the fill value (either 1 or 0). In the
second rectangle, rect2, all the bits in sc1, sc3, and sc4

Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE
Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE

can be filled with 1 (this is not the case for sc2 because
there is a conflict in scan slice 6). As can be seen in
Fig. 3(b), the chain select mask in this case would be
1011 which would load all the scan chains except sc2
with the fill value of 1 (sc2 would be loaded from the
linear decompressor). In rect1, all the scan chains
except sc3 can be loaded with the fill value. Moreover,
in this case sc4 has only X values and thus it doesn’t
matter whether it is loaded with the fill value or from
the linear decompressor, and therefore the chain select
mask is 110X in this case. The last rectangle, rect3, is
only one scan slice wide. For very narrow rectangles, it
is generally more efficient to simply load them from the
linear decompressor and not bother specifying a chain
select mask and fill value. For this reason, if the width
of a rectangle is below some user-defined minimum
threshold, the chain select mask is simply ignored and
all the scan chains are filled with from linear
decompressor. The advantage of this is that as can be
seen in Fig. 3, the chain select mask and fill value are
simply don’t cares for rect3.

011xxxxsc4

11xxcx0sc3

xc0x00xsc2

x1110x0sc1

b7b6b5b4b3b2b1

011xxxxsc4

11xxcx0sc3

xc0x00xsc2

x1110x0sc1

b7b6b5b4b3b2b1

rect 2rect 1

width

rect 3

Figure 2. Example of Rectangles

width chain select mask bit fill value

(a) Data format

xxxxx10rect 3

1110111rect 2

0x01111rect 1

xxxxx10rect 3

1110111rect 2

0x01111rect 1

(b) Control data for three rectangles

Figure 3. Format for Rectangular Control Data

2.2 Partitioning Scan Slices into Rectangles
The reduction in the number of specified bits that

the linear decompressor has to produce (and hence the
amount of compression achieved) for each rectangle
depends on the number of control bits that need to be
specified for decoding the rectangle versus the number
of specified bits in the test cubes that get covered with
the fill value (and hence do not need to be generated by
the linear decompressor). The goal in partitioning the
scan slices for a test cube cluster into rectangles is to
achieve the greatest overall reduction in the number of
specified bits. A greedy heuristic procedure for this is
described in this subsection.

The first step is to generate a compatibility cube for
the test cube cluster. This is illustrated in Fig. 2 and has
been explained earlier. From the compatibility cube,
the rectangle which provides the largest reduction in
specified bits is identified. This is done by considering
each scan slice as a starting point for a rectangle and
considering all possible rectangle widths (up to the
user-defined maximum rectangle width) from that
starting point. Once the best rectangle is identified, it is
marked as selected and the procedure repeats taking
into consideration that rectangles cannot overlap.
Rectangles continue to be selected in a greedy manner
until all scan slices have been included in a rectangle.

2.3 Reducing Size of Chain Select Mask
The amount of control data that needs to be

specified for decoding the rectangles is typically
dominated by the bits for the chain select mask. One
way to reduce this data is that instead of using one bit in
the chain select mask for each scan chain, one bit can
be used per k scan chains. This reduces some of the
flexibility since now all k scan chains controlled by the
same bit in the chain select mask need to be compatible
in order to use the fill value. However, it generally
provides greater compression since he control data is
significantly reduced. Experimental results are shown
in Sec. 4 for different values of k.

2.4 Forming Test Cube Clusters
In rectangular encoding, the test cubes are

partitioned into clusters and each cluster is then divided
into rectangles. Some nice algorithms for this type of
clustering were described in [Alleyne 94]. A similar
approach is taken here, but using a different benefit
function to maximize correlation within a cluster and
also minimize the number of clusters.

In order to maximize the compression achieved for
each rectangle, it is important that the test cubes in each
cluster have many bit positions with compatible values.
As more test cubes are added to a cluster, the height of
each rectangle increases. This has the benefit of
amortizing the control bits required for decoding each
rectangle over more test cubes, but there is a tradeoff as
more bit positions are likely to have conflicts (thereby
increasing the number of C’s in the compatibility cube)
and thus reducing the effectiveness of each rectangle. A
greedy clustering procedure that takes this tradeoff into
consideration is described here.

One test cube is used as a seed for the cluster. All
other test cubes are then considered as candidates to add
to the cluster. The heuristic that is used to measure the
optimality of a cluster is the total number of specified
bits that are present in each compatible bit position of
the cluster. This value forms a benefit function for the
cluster. It is computed by considering each compatible

Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE
Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE

bit position and adding up the number of test cubes that
have a specified value in that bit position. Consider the
test cubes in Fig. 4. A cluster consisting of test cubes t1,
t2, and t3, is compatible in the first 3 bit positions and
the total number of specified bits in those 3 bit positions
is 7 (the X’s are not counted). The change in this benefit
function is computed for adding each candidate test cube.
The one that gives the greatest improvement in the
benefit function is added to the cluster. This continues
until a point is reached where no positive improvement
in the benefit function can be obtained by adding
another test cube to the cluster. For example, in Fig. 4,
if test cube t4 was added to the cluster, then the benefit
function would actually decrease because bit position 3
would no longer be compatible. Since the final cluster
is very dependent on the initial seed, all test cubes are
used as seeds and the best resulting cluster is selected.
This process is repeated iteratively for the remaining
test cubes until all test cubes are members of a cluster.

Note that while a greedy clustering procedure is
described here, any clustering procedure can be used to
maximize the benefit function defined above.

x1x0t4
x0x0t3
100xt2
000xt1

x1x0t4
x0x0t3
100xt2
000xt1

Figure 4. Example of Clustering

3. Rectangular Decoder

Decoding the rectangles is done with a sequential
non-linear decoder that is placed between a linear
decompressor and the scan chains. A block diagram for
the rectangular decoder is shown in Fig. 5. It consists
of a controller which is a small finite state machine, a
RAM that stores the rectangular control data, a RAM
address pointer that points to the control data for the
next rectangle, a width counter, and a rectangular
control register that stores the control data for the
current rectangle (rectangle width, chain select mask,
and fill value). Note that a RAM that is present for
functional purposes can be utilized in the rectangular
decoder (it is not necessary to add an extra RAM). A
MUX is placed in front of each scan chain. The select
line to the MUX is the bit in the chain select mask that
corresponds to that scan chain. Note that if k>1, then
one bit in the chain select mask will fan out to k MUXes.
Depending on the corresponding value in the chain
select mask, each scan chain will either be loaded with
the fill value or be loaded from the linear decompressor.
Note that if the rectangle width is below the user-
defined threshold, then the scan chain is loaded from
the linear decompressor regardless of the value of the
chain select mask. This is implemented by adding

another MUX whose select line comes from a less-than
comparator that checks the value of rectangle width.
Note that this is not shown in Fig. 5 for sake of
readability.

Width
Counter

Fill
Val.

Chain Select
Mask Bits

Rect.
Width

Fill
Val.

Chain Select
Mask Bits

Rect.
Width

Rectangular Control Reg.L
i
n
e
a
r

D
e
c
o
m
p Scan Chain 2

Scan Chain 1

Controller

Rectangular Decoder

Addr. Ptr.

RAM

=

Figure 5. Block Diagram for Rectangular Decoder

The RAM holding the rectangular control data can
be loaded from the tester either all at the beginning of
the test session or incrementally during the test session.
If it is all loaded at the beginning, the entire rectangular
control data is transferred either directly from the tester
or through the linear decompressor to the RAM. In this
case, the RAM must be large enough to store all the
rectangular control data. The other option is to
incrementally load the rectangular control data each
time a new test cube cluster is started. In this case, only
the rectangular control data for one cluster needs to be
stored on-chip at a time. Thus, the required RAM size
would only depend on the maximum number of
rectangles in any cluster.

The test set is ordered so that all the test cubes in a
cluster come in succession. An extra clock cycle is
added at the start of each test cube in which the linear
decompressor generates one specified bit to tell the
controller whether or not this is the start of a new test
cube cluster. If it is not the start of a new cluster, then
the same rectangular data that was used for the previous
test cube is used for this one (the RAM pointer is
simply reset back to the first rectangle for this cluster).
If it is the start of a new cluster then there are two cases.
If the rectangular control data is to be loaded
incrementally, it is done at this point (only the data
needed for this cluster). If the rectangular control data
was all loaded into the RAM at the start, then the RAM
address pointer is incremented to point to the start of the
rectangular control data for this new cluster.

After this, each rectangle is decoded one at a time as
the test cube is shifted into the scan chains. For each
rectangle, the controller loads the rectangular control
data from the RAM into the rectangular control register,

Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE
Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE

Table 1. Results for Proposed Rectangular Encoding Scheme
Rect. Control Circuit Test

Cubes
Original

Spec. Bits
Num.

Clusters
Scan

Chains
Num.
Rect. W C T

Data Spec.
Bits

Control
Spec. Bits

Total
Spec. Bits

Reduction
(%)

RAM
(bits)

10 86 4 5 10 5774 1126 6900 26.5 130
20 75 4 10 15 5665 1391 7056 24.8 150

s13207 266 9389 8

30 54 4 15 20 6217 1346 7563 19.5 180
10 75 4 5 10 5707 1019 6726 38.5 100
20 56 4 10 15 6190 1109 7335 33.0 135

s15850 269 10944 9

30 49 4 15 20 6602 1249 7851 28.3. 160
20 107 4 10 15 19880 1981 21861 28.7 255
30 71 4 15 20 19306 1796 21102 31.2 280

s38417 376 30669 7

40 64 4 20 25 19735 1976 21711 29.2 250
20 135 3 10 15 19331 2321 21652 17.3 300
30 108 3 15 20 19693 2348 21941 16.2 320

s38584 296 26185 8

40 101 3 20 25 19508 2720 22228 15.1 375

the width counter is reset to 0. As each scan slice is
loaded into the scan chains, the width counter is
incremented. When it becomes equal to the rectangle
width, then the next rectangle is loaded from the RAM
into the rectangular control register and the RAM
pointer is incremented. This process repeats until the
entire test cube has been shifted in.

As can be seen, the rectangular decoder is simple,
compact, and regular. A very nice feature is that it does
not depend on the actual test data. It can be designed so
that it is capable of decoding any set of rectangles. This
simplifies the design flow since there is no need to have
the test data when implementing the decoder.

4. Experimental Results
Experiments were performed on the four largest

ISCAS89 circuits. In Table 1, the number of test cubes
and the number of specified bits in deterministic test
sets are shown in the second and third column. The
fourth column shows the number of clusters obtained
with the pattern clustering algorithm described in Sec.
2.3. Results for the proposed method were generated
for three different numbers of scan chains. In the sixth
column, the number of total rectangles across all
clusters is shown. The next three columns show the size
of a rectangle control data required for each rectangle.
‘W’ is the number bits used for the rectangle width. ‘C’
is the number of chain select mask bits, and ‘T’ is the
number of total bits per rectangle (which is equal to
W+C plus 1 for the fill value). Note that in all cases,
k=2 (i.e., each chain select mask bit controlled two scan
chains), and thus C is equal to the number of scan
chains divided by 2 in all cases. Note that the graph on
the left side of Fig. 6 shows the total number of
specified bits with different k values for s38417. As can
be seen, the best result occurs for k=2. The graph on
the right side of Fig. 6 shows the total number of
specified bits using different numbers of bits for
specifying the rectangle width (i.e., using different
maximum rectangle widths) for s38417. The best result

is observed when using 4 bits for the width. In all of the
circuits except for s38584, the best result is observed
using 4 bits while for s38584 it is observed for 3 bits.

20000
22500

25000

27500

30000

1 2 3 4 5 6

Scan chains for 1 index bit

21500

22000

22500

23000

23500

1 2 3 4

Bits for width of rectangles

Figure 6. Specified bits vs. width and k value for s38417

The total number of specified bits that the linear
decompressor has to produce when using the proposed
non-linear decoder is shown in the tenth column (this
includes all the specified rectangular control data as
well as the extra bit for each test cube to indicate if it is
the start of a new cluster. The percentage reduction in
specified bits is shown in the next column. As can be
seen, the number of specified bits that the linear
decompressor has to produce is significantly reduced.
This reduction in the specified bits is a very powerful
result because it means that in most cases, up to an
additional 30% or more compression can be achieved
on top of the best possible compression that is currently
available for any linear decompression scheme. If the
test data bandwidth is held constant, this translates to an
equivalent reduction in test time. As the number of scan
chains increases, the number of specified bits required
for the proposed scheme increases slightly, but not much.
The last column shows the size (in number of bits) of
the RAM required to store the rectangular control data
if it is incrementally loaded. Note that it is very small.

Results for combining the proposed scheme with an
actual linear decompressor are shown in Table 2. The
number of test patterns in the test set and the number of
specified bits that need to be generated using the linear
decompressor in [Krishna 01] alone and using it with
the proposed scheme are shown in Table 2. As can be
seen, the reduction in test storage is very closely related

 1 2 3 5 6 10
Scan chains per chain select mask bit

 2 3 4 5
 Bits for width of rectangle

Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE
Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE

to the reduction in specified bits. Note that the proposed
scheme can be used with any linear decompressor.

Table 2. Results combined with partial reseeding
[Krishna 01] Proposed Circuit Test

Cube Specified Storage Specified Storage Reduction
s13207 266 9389 9872 7231 7678 22.2%
s15850 269 10944 11322 6726 7176 36.6%
s38417 376 30669 31245 21102 21780 30.3%
s38584 296 26185 28312 21652 22199 21.6%

Table 3. Results compared with [Ward 05]
Num. of Specified Bits

Circuit
[Ward 05] Proposed

s13207 7499 6900
s15850 8333 6726
s38417 22277 21102
s38584 23254 21652

We also compared the number of specified bits in
the proposed scheme to the number of specified bits in
[Ward 05] in Table 3. Note that [Ward 05] reports the
best tester storage results among compression schemes
that use both linear and non-linear techniques. In all the
cases shown in [Ward 05], the proposed scheme
reduces the number of specified bits more. Not only
does the proposed scheme provide greater compression
than previous schemes that combine linear and non-
linear compression techniques (i.e., [Krishna 02], [Sun
04], and [Ward 05]), it also allows continuous flow
decompression and the design of the decoder is
independent of the test data.

0

10

20

30

40

1 11 21 31
B (%)

R
ed

uc
ti

on
 o

f
sp

ec
. b

it
s

(%
)

Figure 7. Results for test set having few specified bits

The percentage of specified bits in the test sets for
the ISCAS89 circuits (around 5-20%) is typically much
higher than what is reported for industrial circuits.
Experiments were performed to see how effective the
proposed scheme would be with much lower
percentages of specified bits. A test set that has 2%
specified bits was randomly generated with different
degrees of correlation. The amount of correlation was
controlled by a variable B% which determines both the
bit-wise correlation and the pattern-wise correlation.
Each bit has a 2% probability of being specified and
98% probability of being a don’t-care. If a bit is
specified, then it has B% chance of having the same

specified value as the previous specified bit in the test
cube. Pattern-wise correlation is generated in the
following way. If the previous test cube was specified
in some bit position, then there is a 50% chance for the
current test cube to also be specified in the same bit
position and a B% chance of having the same specified
value as the previous test cube. Figure 7 shows how the
percentage reduction in the number of specified bits
varies with the amount of correlation. Test sets
typically have quite a bit of correlation, so this data
suggests the proposed method can be quite effective.

5. Conclusions
The proposed scheme harnesses the power of linear

and non-linear decompression together using a simple
and compact decoder whose design is independent of
the test set. Note that the compression could be
significantly improved if scan chain reordering was
employed along with the proposed scheme to increase
bit-wise correlation.

Acknowledgements
This material is based on work supported in part by

the National Science Foundation under Grant No. CCR-
0306238.

References
[Alleyne 94] Alleyne, R., “Clustering of Test Cubes: A Procedure for

the Efficient Encoding of Complete Test Sets Based on the
Intelligent Reseeding of LFSRs”, Masters Thesis, McGill
University, 1994.

[Hellebrand 00] Hellebrand, S., H.-G. Liang, and H.-J. Wunderlich,
“A Mixed-Mode BIST Scheme Based on the Reseeding of
Folding Counters,” Proc. of Int. Test Conf., pp. 778-784, 2000.

[Krishna 01] Krishna, C.V., A. Jas, and N.A. Touba, "Test Vector
Encoding Using Partial LFSR Reseeding", Proc. of IEEE
International Test Conference, pp. 885-893, 2001.

[Krishna 02] Krishna, C.V., and N.A. Touba, "Reducing Test Data
Volume Using LFSR Reseeding with Seed Compression ", Proc.
of IEEE International Test Conference, pp. 321-330, 2001.

[Krishna 04] Krishna, C.V., and N.A. Touba, “3-Stage Variable
Length Continuous-Flow Scan Vector Decompression Scheme”,
Proc. of IEEE VLSI Test Symposium, pp. 79-86, 2004.

[Liang 01] Liang, H.-G., S. Hellebrand, and H.-J. Wunderlich, “Two-
Dimensional Test Data Compression for Scan-Based
Deterministic BIST,” Proc. Int. Test Conf., pp. 894-902, 2001.

[Rajski 02] Rajski, J., et al., “Embedded Deterministic Test for Low
Cost Manufacturing Test,” Proc. of Int. Test Conf., pp. 301-
310, 2002.

[Rajski 03] Rajski, J., “Method for Clustered Test Pattern
Generation”, US. Patent No. 6,662,327, Dec. 9, 2003.

[Sun 04] Sun, X., L. Kinney, and B. Vinnakota, “Combining
Dictionary Coding and LFSR Reseding for Test Data
Compression,” Proc. Design Autom. Conf., pp. 944-947, 2004.

[Tsai 00] Tsai, K.-H., J. Rajski, and M. Marek-Sadowska, “Star Test:
The Theory and Its Applications,” IEEE Trans. on Computer-
Aided Design, Vol. 19, Issue 9, pp. 1052-1064, Sep. 2000.

[Ward 05] Ward. I. S., Schattauer, C., and N. A. Touba, “Using
Statistical Transformations to Improve Compression for Linear
Decompressors,” Proc. Defect Fault Tol. Symp., pp. 42-50, 2005.

Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE
Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

