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Abstract 

This paper presents an improved method to 
accurately estimate signal probabilities using ordered 
partial decision diagrams (OPDDs) [Kodavarti 93] for 
partial representation of the functions at the circuit 
lines. OPDDs which are limited to a certain maximum 
number of nodes are built iteratively with different 
variable orderings to efficiently explore different 
regions of the function.  Signal probability bounds 
(upper and lower) are computed from the OPDDs. 
From each OPDD, information is extracted to tighten 
the signal probability bound and guide the variable 
ordering for the next OPDD.  By restricting the size of 
each OPDD to a small number of nodes, they can be 
constructed and processed quickly to obtain a fast and 
accurate estimate of signal probabilities. Experimental 
results demonstrate the effectiveness of the approach 
compared with existing methods. 

1. Introduction 

The signal probability of a net in a combinational 
circuit is the probability that a randomly generated 
input vector will produce a logic value of 1 on this net. 
There are a number of important applications where 
calculating signal probabilities in a circuit are 
necessary.  Originally signal probability was studied in 
the context of pseudo-random testing to determine 
detection probabilities for faults.  Given the detection 
probabilities for faults in a circuit, it is possible to 
compute the expected fault coverage for a particular 
pseudo-random pattern test length and to identify 
random pattern resistant faults [McCluskey 88].  More 
recently, as soft errors in logic circuits have become an 
important issue, signal probability is also needed in this 
context for determining the probability of a single event 
upset (SEU) propagating to a latch.  Knowing the soft 
error susceptibility of nodes in a circuit allows better 
insertion of soft error protection schemes and better 
selection of error detecting codes. 

For circuits that do not have reconvergent fanout, 
signal probabilities can be computed exactly in linear 
time.  However, in the general case where reconvergent 
fanout exists, computing signal probabilities is NP-hard 
[Parker 75].  A wide variety of techniques have been 
developed for estimating signal probabilities which 

provide varying degrees of accuracy and runtime.  A 
fast and simple approach, used in COP [Brglez 84], is 
to assume all signals in the circuit are independent, 
however, this can lead to large inaccuracies due to 
correlations between signals from reconvergent fanout. 
COP can be improved by estimating the impact of 
correlations using cofactors [Al-Kharji 97] and first 
order Taylor expansion [Uchino 95].  Partitioning the 
circuit into “supergates” which totally enclose 
reconvergent fanout can be used to speedup signal 
probability calculations [Seth 85, 89], [Chakravarty 
90].  Another approach for estimating signal 
probabilities is to use sampling simulation [Jain 85], 
[Wunderlich 85], [Rejimon 05]. 

One class of techniques computes signal probability 
bounds (upper and lower) which has the nice property 
of not only estimating signal probability, but also 
bounding the maximum error in the estimate.  One such 
technique is the “cutting algorithm” [Savir 80] which 
cuts fanout lines in the circuit to make it fanout-free and 
then assigns a probability bound of [0,1] to the cut-
lines.  Techniques for tightening the bounds obtained 
with the cutting algorithm include [Markowsky 87] 
which uses a blocking heuristic to reduce the number of 
cuts, [Savir 90] which combines it with the Parker-
McCluskey method [Parker 75], and [Kapur 92] which 
uses conditional probabilities to tighten the initial 
bounds on the cut lines.  Another technique for 
computing signal probability bounds is to use ordered 
partial decision diagrams (OPDDs) as described in 
[Kodavarti 93].  If the full BDD [Bryant 86] was 
known, then exact signal probabilities could be 
computed by counting the paths that go to the terminal 
1 node [Zeng 03].  However, constructing a full BDD 
can be exponential in the number of inputs and thus is 
not practical in many cases.  The idea in [Kodavarti 93] 
is to construct an OPDD which is limited to a certain 
maximum number of nodes (thereby limiting both time 
and memory).  A bound on the signal probability is then 
obtained from the OPDD which contains the efficiently 
obtainable implicants (which typically includes the 
largest ones).  By using a few different variable 
orderings and saving the best upper and lower bound 
seen for any ordering, it was shown in [Kodavarti 93] 
that the signal probability could be computed accurately 
in very short time. 
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This paper presents a new method for using OPDDs 
to estimate signal probability that gives significantly 
tighter bounds than the method in [Kodavarti 93].  
There are two key ideas in the proposed method.  The 
first is to constructively combine information obtained 
in one OPDD with the next.  In [Kodavarti 93], the 
probability bounds are computed independently for 
each OPDD and then the best upper bound across all 
OPDDs is combined with the best lower bound across 
all OPDDs to form the final bound.  In the proposed 
method, the implicants from each OPDD are extracted 
and combined together when computing the final upper 
and lower bound.  Double counting is avoided by 
making the implicants disjoint.  The second key idea is 
to use the information from previous OPDDs to guide 
the selection of the variable ordering for the next 
OPDD.  Here a heuristic algorithm for selecting the 
variable orderings to efficiently explore the unknown 
space is presented. The proposed variable ordering 
algorithm uses information about the implicants found 
so far to help in finding new implicants to tighten the 
bounds further.  Experimental results are shown which 
demonstrate the effectiveness of the proposed method. 

Note that there has been some work in the domain of 
model-checking that uses over-approximating and 
under-approximating of BDDs [Ravi 98].  However, 
this is fundamentally different than what is done here 
because it involves first building the full BDD and then 
compressing it by discarding nodes in a deterministic 
manner.  What is done here is to avoid building a full 
BDD, but rather iteratively build small limited-size 
partial BDDs that can be processed very quickly with 
no risk of “blowing up.” 

2. Combining Information Across OPDDs 

OPDDs are a variant of ordered binary decision 
diagrams (OBDD) introduced in [Brayant 86]. Partial 
information is obtained by restricting the number of 
nodes when building the graph to a constant k. The 
missing information is represented by an UNKNOWN 
(U) terminal node. Figure 1 shows the full OBDD 
representing the function: ab’+ac’+b’c. The 0-arcs are 
represented with dashed lines and the 1-arcs are 
represented with solid lines. Figure 2 through 4 shows 
corresponding OPDDs for various variable orderings. 
An OPDD can have 3 terminal nodes namely the 0-
node, 1-node, and U-node. Variable ordering plays an 
important role in the amount of information that can be 
gathered from an OPDD. OPDDs can be built with 
different variable orderings to explore different regions 
of the function. From an OPDD, the 0-probability, 1-
probability, or U-probability can be computed as 
described in [Kodavarti 93]: 

1) Initialize the sum Sr of the root node nr to Sr = 1.

2) Initialize the sum Si of all nodes ni, for all i ≠ r, to Si = 0.
3) Associate a line probability (pi) for each circuit input xi, for 

all i.
4) At every non-terminal node ni, representing input variable 

xi, perform two operations (during breadth first traversal 
of the OPDD): 

  Add (1-pi)*Si into the sum of the 0-arc child 
  Add pi*Si into sum of the 1-arc child 
5) Calculate the lower bound of the signal probability from 

the final value of the sum, S1, at the ONE terminus, and 
the upper bound including the sum, SU, at the 
UNKNOWN terminus. 

  Lower bound = S1

  Upper bound = S1+SU

One limitation of the approach in [Kodavarti 93] is 
that the information is not retained across the OPDDs. 
The proposed algorithm maintains a global disjoint 
cube cover across different OPDDs to obtain tighter 
bounds on the signal probability.  

Note that for the rest of the paper, 1-path, 0-path, 
and U-path will denote paths terminating at 1-terminus, 
0-terminus, and U-terminus, respectively. The
corresponding cubes will be denoted as 1-cube, 0-cube, 
and U-cube, respectively. The 1-paths in the OPDD 
encode cubes covering some part of the ON-set of the 
function represented at the root node. The 0-paths do 
the same for the OFF-set. By construction of the OPDD
these cubes are disjoint. By constructing OPDDs with 
different variable orderings, different regions of the 
function can be explored. From each OPDD, disjoint 
cubes are collected and a global list of such cubes is 
maintained both for the OFF-set (g0-cov) and the ON-
set (g1-cov). The cube list is maintained as a sorted list 
in decreasing order of the cube sizes. The larger the 
number of don’t cares (X’s), the larger is the cube and 
the larger is its contribution to the signal probability of 
the line. While adding a new cube to the current global 
cube cover, three things are checked: 

1) If it is contained in one of the existing cubes then it is not 
added. This is checked by iterating over all the bits of the 
cubes. If the smaller cube matches with the larger cube at 
all the specified bit positions then it is contained in the 
larger cube. 

2) If it is mutually disjoint with each of the existing cubes, 
then it is simply added to the list and the sorted order is 
maintained. This can be easily checked by looking for a 
conflict in any of the specified bit position of the cube to 
be added with each of the existing cubes in the cover. 

3) If the cube to be added overlaps with one or more of the 
existing cubes in the cover then the cube is made disjoint 
and added to the list. This is done the following way. If 
two cubes have overlap then the cubes are traversed bit by 
bit and for the first bit position where one of the cubes has 
a specified bit and the other cube is unspecified, the 
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unspecified bit is specified with the opposite value of the 
specified bit value of the other cube. 

At the end of all the iterations, the final lower bound 
on the 1-probability is computed directly from the 
global disjoint cube cover (g1-cov) by simply adding 
the probabilities of the individual disjoint cubes. Since 
they are disjoint, the probabilities are independent and 
can simply be summed together.  The ambiguity u is 
computed as [u=1 − (g0+g1)] where g0 and g1 are the 
probabilities computed from the g0-cov and g1-cov 
respectively. The final upper bound is equal to the 
lower bound plus the ambiguity u. Accuracy versus 
runtime can easily be traded off in selecting the OPDD 
size limit as well as the number of OPDDs that are 
built. The proposed approach can be used with any set 
of OPDDs derived with any variable ordering.  
However, in the next section, a heuristic approach for 
guiding the selection of the variable ordering to find 
better cubes for the global cover is described.   

The example in Figs. 2-4 illustrates the proposed 
approach on a very small example. Figure 1 shows the 
OBDD representation of the function ab’+ac’+b’c.
The complete ON-set and OFF-set of the function are 
shown on a Karnaugh map. Figure 2 shows the OPDD 
with variable ordering <a,b,c> where the bound on the 
maximum number of non-terminal nodes is 3. After the 
first OPDD, g0-cov contains {01x} and g1-cov contains 
{10x}. The bound on signal probability computed from 
the OPDD in Fig. 2 using the method in [Kodavarti 93] 
is [.25,.75]. The OPDD in Fig. 3 uses the variable 
ordering <b,a,c>. No new cubes are added to either 
g0-cov or g1-cov as the cubes found are already present 
in the respective sets. The third iteration uses the 
variable ordering <a,c,b>. After the third iteration, one 
new 1-cube (1x0) is found. This is made disjoint with 
the existing cube in g1-cov and is added to g1-cov.  The 
contents of g1-cov after this iteration is {10x,110}. The 
probability computed from this set is (.25+.125) = 
.375. Similarly the contents of g0-cov after the third 
iteration is {01x,000}.  The probability computed from 
g0-cov is (.25+.125) = .375.  The ambiguity after third 
iteration is computed as [1 – (.375+.375)] = .250.  So 
finally the estimated signal probability bound after the 
third iteration would be [g1,g1+u] = [.375,.625].  The 
actual signal probability in this case is 0.5. Note that if 
we don’t use the global cube covers to learn across 
multiple OPDDs then the best bound that can be 
obtained after third iteration under the same variable 
orderings  is [.25,.75].

Figure 1. Binary Decision Diagram and Karnaugh Map 

Figure 2. OPDD with variable ordering <a,b,c>

Figure 3. OPDD with variable ordering <b,a,c>

Figure 4. OPDD with variable ordering <a,c,b>
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3. Unknown Space Exploration 

While building an OPDD, whenever the number of 
nodes exceeds the predefined bound on the number of 
the nodes, the unknown U terminus is created and all 
paths are directed to it. The number of paths and the 
length of paths ending at the U terminus determine the 
size of the unknown space and hence the ambiguity in 
the signal probability. The variable ordering used when 
building an OPDD has a big impact on the resulting 
composition of the unknown space.  The proposed 
method involves iteratively building multiple OPDDs 
and extracting collective information, and thus the goal 
in selecting the variable ordering for each additional 
OPDD is to try to explore the unknown space from the 
previous set of OPDDs. Note that the OPDDs are built 
for each signal. The gate input orderings corresponding 
to a variable ordering are computed once for the whole 
circuit. 

One common approach for variable ordering is to 
perform a depth first search (DFS) of the circuit from 
primary outputs (POs) to primary inputs (PIs) and 
append a PI to the ordering as soon as it is traversed.  
When performing a DFS, a decision has to be made at 
each gate as to in what order its inputs should be 
traversed.  A number of different heuristics have been 
developed for making this decision (e.g., [Malik 88] 
and [Fujita 93]).  The conventional heuristics for 
guiding the DFS are targeting the problem of 
minimizing the overall size of a full BDD.  These 
conventional heuristics are very useful in forming the 
first two OPDDs as they are likely to result in 
identifying the largest implicants (in our experiments 
the heuristic in [Fujita 93] was used).  However, after 
information has been extracted from the first two 
OPDDs using the proposed methodology, the 
usefulness of the conventional heuristics for variable 
ordering when building subsequent OPDDs diminishes 
because they are more likely to explore the space of the 
function that has already been explored in the previous 
OPDDs.  Here we propose a new heuristic to guide the 
DFS so that it will lead to a variable ordering that more 
effectively explores the unknown space. 

The idea behind the proposed heuristic is to try to 
measure how much of the unknown space has been 
explored with respect to each variable across all the 
OPDDs built so far, and then direct the DFS towards 
the variables for which the unknown space has been 
least explored. The U-effect of a variable is defined as 
the sum of all the U-paths in which the variable appears 
in either complemented or uncomplemented form 
weighted by the size of the corresponding U-cube for 
the U-path.  Thus, the U-effect of a variable is 
computed as (2n-ki) for each U-path i in which the 

variable appears, where ki is the number of nodes along 
the path, and n is the number of primary inputs of the 
circuit. The U-effect of the variables for the OPDD in 
Fig. 2 is shown in Table 1.  There are two U-paths each 
of which include variables a and b. The size of the U-
cube corresponding to each path is 2, and thus the U-
effect for a and b is 4.  Since variable c does not appear 
on any U-paths, its U-effect is 0. 

Table 1.  U-Effect for OPDD in Fig. 2 

Variable U-Effect 
A 2+2=4
B 2+2=4
C 0

As each new OPDD is constructed, the U-effect for 
each variable is computed and added to the U-effect of 
the previous OPDDs.  Thus, a running total of the U-
effect over all the OPDDs is maintained for each 
variable.  The running total of the U-effect over the 
three OPDDs in Figs. 2-4 is shown in Table 2. 

Table 2.  Cumulative U-Effect for OPDDs in Figs. 2-4 

Variable U-Effect 
A 12
B 8
C 4

The cumulative U-effect for a set of OPDDs gives a 
rough measure of how well the unknown space has been 
explored with respect to each variable. This is then used 
as a heuristic to direct the DFS towards the variables 
that have the lowest U-effect.  This helps to explore the 
least explored region of the function and hopefully 
construct an OPDD in which new implicants can be 
obtained to further reduce ambiguity in the signal 
probability calculations.  This is illustrated in the small 
example in Fig. 5 where using the U-effects from Table 
2 result in a new ordering <c,b,a> for which the OPDD 
built as shown in Fig. 5. For the OPDD in Fig. 5, the U-
space vanishes and the exact probabilities are obtained. 

Figure 5. OPDD with variable ordering <c,b,a>

When searching the unknown space using the U-
effect heuristic, the DFS is modified so that the decision 
as to which order in which to traverse the inputs of a 

c

ba

01

Order <c,a,b> 
1-low .5 
1-high .5 
g1-cov
10x 
110
001
g1 .5 
g0-cov
01x 
000
111
g0 .5 

Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06) 
0-7695-2514-8/06 $20.00 © 2006 IEEE 
Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06) 
0-7695-2514-8/06 $20.00 © 2006 IEEE 



gate are made based on the support set for each input.  
The support set for an input is the set of PIs (variables) 
that it depends on.  The U-effect of each variable in the 
support set is summed together, and the inputs of the 
gate are traversed in reverse order of their total U-effect. 

So the overall strategy for iteratively building the 
OPDDs is the following.  Conventional heuristics for 
variable ordering are used to build the first two OPDDs 
to identify large implicants, and then the proposed 
heuristic of using the U-effect is used when building 
subsequent OPDDs to more effectively search the 
unknown space.  

4. Runtime Complexity Analysis 
In this section, the runtime complexity for the 

proposed method is analyzed and compared with 
[Kodavarti 93].  The complexity is described below in 
terms of the following:  number of gates in the circuit 
(G), number of primary inputs in the circuit (N), limit 
on the maximum number of nodes in the OPDD (B),
and number of iterations used (I) where one OPDD is 
built in each iteration.  Note that B and I are actually 
constants that do not scale with circuit size.  They are 
shown in the equations below just for completeness. 

Compute Variable Ordering – Initially this is done 
with conventional heuristics which is the same as for 
[Kodavarti 93].  The complexity depends on which 
heuristics are used, but good results for DFS based 
methods can be obtained in linear time in the number of 
gates.  Thus the overall complexity is O(GI) since it 
needs to be done for each OPDD iteration.  In the 
proposed method, after the first two OPDDs, then the 
U-effect heuristic described in Sec. 3 is used.  The U-
effect for each variable can be computed by traversing 
each OPDD which is O(BI) and then it needs to be 
sorted which is O(Nlog(N)I).  The support set for each 
line in the circuit can be obtained in O(G) and needs to 
be computed only once and stored.  So the overall 
complexity for DFS with the U-effect heuristic is 
O(BI+Nlog(N)I +G).

Build OPDDs – Building the OPDDs is O(GB2I)
which is the same as for [Kodavarti 93]. 

Construct Global Disjoint Cover – This is unique to 
the proposed method.  Note that the number of cubes 
cannot be larger than the number of nodes in the 
OPDDs.  Hence this can be done in O(NGB2I2).  Note 
that these are very fast bitwise comparison operations. 

Calculate Signal Probability Range – This is just a 
matter of adding the size of all the disjoint cubes.  For 
both [Kodavarti 93] and the proposed method, this is 
O(GBI).

As mentioned before, B which is the node limit for 
the OPDDs and I which is the number of iterations are 
constants that do not scale with circuit size.  So if only 

the factors that scale with circuit size are considered, 
then the overall complexity for the proposed method is 
O(NG) compared with O(G) for [Kodavarti 93].  For 
realistic industrial circuits, the extra N factor is not very 
significant for two reasons.  One is that while in the 
worst case the number of inputs in the largest cone of 
logic could theoretically be equal to N, typically it is 
relatively small and doesn’t scale up much for larger 
designs (it depends mostly on the function being 
implemented), and the other reason is that the extra 
complexity is coming from the bitwise comparison 
operations for the cubes which can be done very 
quickly.  Consequently, the actual runtimes for the two 
methods are very similar.  Note that when processing a 
large hierarchical design, the design can be easily 
partitioned and spread over multiple processors. 

5. Experimental Results 
The proposed approach is specifically useful for 

large circuits where building the full BDD is not 
possible. However, for comparison with previously 
published results, experiments were performed on the 
ISCAS-85 benchmark circuits even though it is 
practical to build a full BDD for most of those circuits 
with 4000 nodes.  In [Kodavarti 93], results were 
reported for using a limit of 500 nodes in the OPDDs 
with 4 iterations (i.e., building 4 OPDDs with different 
variable orderings).  These results from [Kodavarti 93] 
are shown in Table 2 along with the results reported in 
[Kodavarti 93] for the cutting algorithm which are 
shown in Table 1. Experiments were performed using 
the proposed method with the same parameters, namely 
a 500 node limit for each OPDD and 4 iterations.  The 
results for the proposed method are shown in Table 3.  
In each of these tables, the number of lines with 
different ranges of ambiguity between 0% and 100% 
are shown. As can be seen from the results, the 
proposed method is able to reduce the amount of 
ambiguity in the signal probability ranges considerably 
in all the circuits compared with [Kodavarti 93]. 
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of Iterations for C880 (200 Node Limit)

Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06) 
0-7695-2514-8/06 $20.00 © 2006 IEEE 
Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06) 
0-7695-2514-8/06 $20.00 © 2006 IEEE 



Further experiments were performed to see how the 
results varied with the number of iterations.  Fig. 6 
shows results for C880 where the total ambiguity 
normalized with respect to the first iteration is shown 
on the y-axis and the number of iterations is shown on 
the x-axis.  A 200 node limit was used for the OPDDs.  
As the number of iterations increases, the ambiguity 
decreases. There tends to be a diminishing marginal 
return, however, and the amount of improvement from 
one iteration to the next can vary due to the fact that 
heuristics are used. 

Table 1.  Ambiguity for Cutting Algorithm 
Circuit Ambiguity Ranges (in %) 
Name Total 

Lines 
0 > 0 

≤ 30 
>30
≤ 50 

> 30 
≤ 50 

> 30 
≤ 50 

> 30 
≤ 50 

100

C432 160 27 27 27 0 0 6 73 
C499 202 13 0 7 20 5 18 139 
C880 383 19 9 45 23 0 0 287 

C1355 546 9 1 30 8 0 0 498 
C1908 880 52 0 37 4 0 0 787 
C2670 1269 154 6 136 38 5 55 878 
C3540 1669 53 0 53 14 1 0 1548 
C5315 2307 137 5 154 28 0 0 1893 
C6288 2416 3 0 58 1 0 0 2354 
C7552 3513 120 5 190 91 0 0 3107 

Table 2. Ambiguity for [Kodavarti 93] with 500 Nodes 
and 4 Iterations 

Circuit Ambiguity Ranges (in %) 
Name Total 

Lines 
0 > 0 

≤ 30 
>30
≤ 50 

> 30 
≤ 50 

> 30 
≤ 50 

> 30 
≤ 50 

100

C432 160 94 31 14 16 5 0 0 
C499 202 137 33 32 0 0 0 0 
C880 383 354 29 0 0 0 0 0 

C1355 546 338 143 64 0 1 0 0 
C1908 880 731 149 0 0 0 0 0 
C2670 1269 1237 24 2 6 0 0 0 
C3540 1669 1261 119 80 179 28 2 0 
C5315 2307 2227 66 6 6 0 0 0 
C6288 2416 1281 394 36 231 100 310 64 
C7552 3513 3387 112 8 6 0 0 0 

Table 3. Ambiguity for Proposed Approach with 500 
Nodes and 4 Iterations 

Circuit Ambiguity Ranges (in %) 
Name Total 

Lines 
0 > 0 

≤ 30 
>30
≤ 50 

> 30 
≤ 50 

> 30 
≤ 50 

> 30 
≤ 50 

100

C432 160 158 2 0 0 0 0 0 
C499 202 193 7 2 0 0 0 0 
C880 383 360 23 0 0 0 0 0 

C1355 546 436 102 8 0 0 0 0 
C1908 880 816 64 0 0 0 0 0 
C2670 1269 1240 21 8 0 0 0 0 
C3540 1669 1484 87 98 0 0 0 0 
C5315 2307 2297 10 0 0 0 0 0 
C6288 2416 1292 383 68 224 114 272 63 
C7552 3513 3408 99 2 4 0 0 0 

5. Conclusions 

The proposed approach provides a means to obtain 
tighter signal probability ranges by extracting more 
information from OPDDs.  It can be used in estimating 
soft error susceptibility and random pattern testability. 
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