
Iterative OPDD Based Signal Probability Calculation

Avijit Dutta and Nur A. Touba

Computer Engineering Research Center
University of Texas, Austin, TX 78712

Abstract

This paper presents an improved method to
accurately estimate signal probabilities using ordered
partial decision diagrams (OPDDs) [Kodavarti 93] for
partial representation of the functions at the circuit
lines. OPDDs which are limited to a certain maximum
number of nodes are built iteratively with different
variable orderings to efficiently explore different
regions of the function. Signal probability bounds
(upper and lower) are computed from the OPDDs.
From each OPDD, information is extracted to tighten
the signal probability bound and guide the variable
ordering for the next OPDD. By restricting the size of
each OPDD to a small number of nodes, they can be
constructed and processed quickly to obtain a fast and
accurate estimate of signal probabilities. Experimental
results demonstrate the effectiveness of the approach
compared with existing methods.

1. Introduction

The signal probability of a net in a combinational
circuit is the probability that a randomly generated
input vector will produce a logic value of 1 on this net.
There are a number of important applications where
calculating signal probabilities in a circuit are
necessary. Originally signal probability was studied in
the context of pseudo-random testing to determine
detection probabilities for faults. Given the detection
probabilities for faults in a circuit, it is possible to
compute the expected fault coverage for a particular
pseudo-random pattern test length and to identify
random pattern resistant faults [McCluskey 88]. More
recently, as soft errors in logic circuits have become an
important issue, signal probability is also needed in this
context for determining the probability of a single event
upset (SEU) propagating to a latch. Knowing the soft
error susceptibility of nodes in a circuit allows better
insertion of soft error protection schemes and better
selection of error detecting codes.

For circuits that do not have reconvergent fanout,
signal probabilities can be computed exactly in linear
time. However, in the general case where reconvergent
fanout exists, computing signal probabilities is NP-hard
[Parker 75]. A wide variety of techniques have been
developed for estimating signal probabilities which

provide varying degrees of accuracy and runtime. A
fast and simple approach, used in COP [Brglez 84], is
to assume all signals in the circuit are independent,
however, this can lead to large inaccuracies due to
correlations between signals from reconvergent fanout.
COP can be improved by estimating the impact of
correlations using cofactors [Al-Kharji 97] and first
order Taylor expansion [Uchino 95]. Partitioning the
circuit into “supergates” which totally enclose
reconvergent fanout can be used to speedup signal
probability calculations [Seth 85, 89], [Chakravarty
90]. Another approach for estimating signal
probabilities is to use sampling simulation [Jain 85],
[Wunderlich 85], [Rejimon 05].

One class of techniques computes signal probability
bounds (upper and lower) which has the nice property
of not only estimating signal probability, but also
bounding the maximum error in the estimate. One such
technique is the “cutting algorithm” [Savir 80] which
cuts fanout lines in the circuit to make it fanout-free and
then assigns a probability bound of [0,1] to the cut-
lines. Techniques for tightening the bounds obtained
with the cutting algorithm include [Markowsky 87]
which uses a blocking heuristic to reduce the number of
cuts, [Savir 90] which combines it with the Parker-
McCluskey method [Parker 75], and [Kapur 92] which
uses conditional probabilities to tighten the initial
bounds on the cut lines. Another technique for
computing signal probability bounds is to use ordered
partial decision diagrams (OPDDs) as described in
[Kodavarti 93]. If the full BDD [Bryant 86] was
known, then exact signal probabilities could be
computed by counting the paths that go to the terminal
1 node [Zeng 03]. However, constructing a full BDD
can be exponential in the number of inputs and thus is
not practical in many cases. The idea in [Kodavarti 93]
is to construct an OPDD which is limited to a certain
maximum number of nodes (thereby limiting both time
and memory). A bound on the signal probability is then
obtained from the OPDD which contains the efficiently
obtainable implicants (which typically includes the
largest ones). By using a few different variable
orderings and saving the best upper and lower bound
seen for any ordering, it was shown in [Kodavarti 93]
that the signal probability could be computed accurately
in very short time.

Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE
Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE

This paper presents a new method for using OPDDs
to estimate signal probability that gives significantly
tighter bounds than the method in [Kodavarti 93].
There are two key ideas in the proposed method. The
first is to constructively combine information obtained
in one OPDD with the next. In [Kodavarti 93], the
probability bounds are computed independently for
each OPDD and then the best upper bound across all
OPDDs is combined with the best lower bound across
all OPDDs to form the final bound. In the proposed
method, the implicants from each OPDD are extracted
and combined together when computing the final upper
and lower bound. Double counting is avoided by
making the implicants disjoint. The second key idea is
to use the information from previous OPDDs to guide
the selection of the variable ordering for the next
OPDD. Here a heuristic algorithm for selecting the
variable orderings to efficiently explore the unknown
space is presented. The proposed variable ordering
algorithm uses information about the implicants found
so far to help in finding new implicants to tighten the
bounds further. Experimental results are shown which
demonstrate the effectiveness of the proposed method.

Note that there has been some work in the domain of
model-checking that uses over-approximating and
under-approximating of BDDs [Ravi 98]. However,
this is fundamentally different than what is done here
because it involves first building the full BDD and then
compressing it by discarding nodes in a deterministic
manner. What is done here is to avoid building a full
BDD, but rather iteratively build small limited-size
partial BDDs that can be processed very quickly with
no risk of “blowing up.”

2. Combining Information Across OPDDs

OPDDs are a variant of ordered binary decision
diagrams (OBDD) introduced in [Brayant 86]. Partial
information is obtained by restricting the number of
nodes when building the graph to a constant k. The
missing information is represented by an UNKNOWN
(U) terminal node. Figure 1 shows the full OBDD
representing the function: ab’+ac’+b’c. The 0-arcs are
represented with dashed lines and the 1-arcs are
represented with solid lines. Figure 2 through 4 shows
corresponding OPDDs for various variable orderings.
An OPDD can have 3 terminal nodes namely the 0-
node, 1-node, and U-node. Variable ordering plays an
important role in the amount of information that can be
gathered from an OPDD. OPDDs can be built with
different variable orderings to explore different regions
of the function. From an OPDD, the 0-probability, 1-
probability, or U-probability can be computed as
described in [Kodavarti 93]:

1) Initialize the sum Sr of the root node nr to Sr = 1.

2) Initialize the sum Si of all nodes ni, for all i ≠ r, to Si = 0.
3) Associate a line probability (pi) for each circuit input xi, for

all i.
4) At every non-terminal node ni, representing input variable

xi, perform two operations (during breadth first traversal
of the OPDD):

 Add (1-pi)*Si into the sum of the 0-arc child
 Add pi*Si into sum of the 1-arc child
5) Calculate the lower bound of the signal probability from

the final value of the sum, S1, at the ONE terminus, and
the upper bound including the sum, SU, at the
UNKNOWN terminus.

 Lower bound = S1

 Upper bound = S1+SU

One limitation of the approach in [Kodavarti 93] is
that the information is not retained across the OPDDs.
The proposed algorithm maintains a global disjoint
cube cover across different OPDDs to obtain tighter
bounds on the signal probability.

Note that for the rest of the paper, 1-path, 0-path,
and U-path will denote paths terminating at 1-terminus,
0-terminus, and U-terminus, respectively. The
corresponding cubes will be denoted as 1-cube, 0-cube,
and U-cube, respectively. The 1-paths in the OPDD
encode cubes covering some part of the ON-set of the
function represented at the root node. The 0-paths do
the same for the OFF-set. By construction of the OPDD
these cubes are disjoint. By constructing OPDDs with
different variable orderings, different regions of the
function can be explored. From each OPDD, disjoint
cubes are collected and a global list of such cubes is
maintained both for the OFF-set (g0-cov) and the ON-
set (g1-cov). The cube list is maintained as a sorted list
in decreasing order of the cube sizes. The larger the
number of don’t cares (X’s), the larger is the cube and
the larger is its contribution to the signal probability of
the line. While adding a new cube to the current global
cube cover, three things are checked:

1) If it is contained in one of the existing cubes then it is not
added. This is checked by iterating over all the bits of the
cubes. If the smaller cube matches with the larger cube at
all the specified bit positions then it is contained in the
larger cube.

2) If it is mutually disjoint with each of the existing cubes,
then it is simply added to the list and the sorted order is
maintained. This can be easily checked by looking for a
conflict in any of the specified bit position of the cube to
be added with each of the existing cubes in the cover.

3) If the cube to be added overlaps with one or more of the
existing cubes in the cover then the cube is made disjoint
and added to the list. This is done the following way. If
two cubes have overlap then the cubes are traversed bit by
bit and for the first bit position where one of the cubes has
a specified bit and the other cube is unspecified, the

Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE
Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE

unspecified bit is specified with the opposite value of the
specified bit value of the other cube.

At the end of all the iterations, the final lower bound
on the 1-probability is computed directly from the
global disjoint cube cover (g1-cov) by simply adding
the probabilities of the individual disjoint cubes. Since
they are disjoint, the probabilities are independent and
can simply be summed together. The ambiguity u is
computed as [u=1 − (g0+g1)] where g0 and g1 are the
probabilities computed from the g0-cov and g1-cov
respectively. The final upper bound is equal to the
lower bound plus the ambiguity u. Accuracy versus
runtime can easily be traded off in selecting the OPDD
size limit as well as the number of OPDDs that are
built. The proposed approach can be used with any set
of OPDDs derived with any variable ordering.
However, in the next section, a heuristic approach for
guiding the selection of the variable ordering to find
better cubes for the global cover is described.

The example in Figs. 2-4 illustrates the proposed
approach on a very small example. Figure 1 shows the
OBDD representation of the function ab’+ac’+b’c.
The complete ON-set and OFF-set of the function are
shown on a Karnaugh map. Figure 2 shows the OPDD
with variable ordering <a,b,c> where the bound on the
maximum number of non-terminal nodes is 3. After the
first OPDD, g0-cov contains {01x} and g1-cov contains
{10x}. The bound on signal probability computed from
the OPDD in Fig. 2 using the method in [Kodavarti 93]
is [.25,.75]. The OPDD in Fig. 3 uses the variable
ordering <b,a,c>. No new cubes are added to either
g0-cov or g1-cov as the cubes found are already present
in the respective sets. The third iteration uses the
variable ordering <a,c,b>. After the third iteration, one
new 1-cube (1x0) is found. This is made disjoint with
the existing cube in g1-cov and is added to g1-cov. The
contents of g1-cov after this iteration is {10x,110}. The
probability computed from this set is (.25+.125) =
.375. Similarly the contents of g0-cov after the third
iteration is {01x,000}. The probability computed from
g0-cov is (.25+.125) = .375. The ambiguity after third
iteration is computed as [1 – (.375+.375)] = .250. So
finally the estimated signal probability bound after the
third iteration would be [g1,g1+u] = [.375,.625]. The
actual signal probability in this case is 0.5. Note that if
we don’t use the global cube covers to learn across
multiple OPDDs then the best bound that can be
obtained after third iteration under the same variable
orderings is [.25,.75].

Figure 1. Binary Decision Diagram and Karnaugh Map

Figure 2. OPDD with variable ordering <a,b,c>

Figure 3. OPDD with variable ordering <b,a,c>

Figure 4. OPDD with variable ordering <a,c,b>

 0

a

bb

c c

 1

0 1 0 0

1 1 0 1

a
 0

 1

 bc
 00 01 11 10

a

cc

U 1

0 1 0 0

1 1 0 1

 a
 0

 1

0

bc
 00 01 11 10

1-low .25
1-high .75
g1-cov
10x
1x0 110
g1 .25+.125=.375
g0-cov
01x
0x0 000
g0 .25+.125=.375
u = (1 – (g0+g1))=.250
bound = g1,g1+u]=[.375,.625]

b

aa

U 01

1-low .25
1-high .75
g1-cov
10x
g1 .25
g0-cov
01x
g0 .25

a

bb

U 1

1-low .25
1-high .75
g1-cov
10x
g1 .25
g0-cov
01x
g0 .25

0

Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE
Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE

3. Unknown Space Exploration

While building an OPDD, whenever the number of
nodes exceeds the predefined bound on the number of
the nodes, the unknown U terminus is created and all
paths are directed to it. The number of paths and the
length of paths ending at the U terminus determine the
size of the unknown space and hence the ambiguity in
the signal probability. The variable ordering used when
building an OPDD has a big impact on the resulting
composition of the unknown space. The proposed
method involves iteratively building multiple OPDDs
and extracting collective information, and thus the goal
in selecting the variable ordering for each additional
OPDD is to try to explore the unknown space from the
previous set of OPDDs. Note that the OPDDs are built
for each signal. The gate input orderings corresponding
to a variable ordering are computed once for the whole
circuit.

One common approach for variable ordering is to
perform a depth first search (DFS) of the circuit from
primary outputs (POs) to primary inputs (PIs) and
append a PI to the ordering as soon as it is traversed.
When performing a DFS, a decision has to be made at
each gate as to in what order its inputs should be
traversed. A number of different heuristics have been
developed for making this decision (e.g., [Malik 88]
and [Fujita 93]). The conventional heuristics for
guiding the DFS are targeting the problem of
minimizing the overall size of a full BDD. These
conventional heuristics are very useful in forming the
first two OPDDs as they are likely to result in
identifying the largest implicants (in our experiments
the heuristic in [Fujita 93] was used). However, after
information has been extracted from the first two
OPDDs using the proposed methodology, the
usefulness of the conventional heuristics for variable
ordering when building subsequent OPDDs diminishes
because they are more likely to explore the space of the
function that has already been explored in the previous
OPDDs. Here we propose a new heuristic to guide the
DFS so that it will lead to a variable ordering that more
effectively explores the unknown space.

The idea behind the proposed heuristic is to try to
measure how much of the unknown space has been
explored with respect to each variable across all the
OPDDs built so far, and then direct the DFS towards
the variables for which the unknown space has been
least explored. The U-effect of a variable is defined as
the sum of all the U-paths in which the variable appears
in either complemented or uncomplemented form
weighted by the size of the corresponding U-cube for
the U-path. Thus, the U-effect of a variable is
computed as (2n-ki) for each U-path i in which the

variable appears, where ki is the number of nodes along
the path, and n is the number of primary inputs of the
circuit. The U-effect of the variables for the OPDD in
Fig. 2 is shown in Table 1. There are two U-paths each
of which include variables a and b. The size of the U-
cube corresponding to each path is 2, and thus the U-
effect for a and b is 4. Since variable c does not appear
on any U-paths, its U-effect is 0.

Table 1. U-Effect for OPDD in Fig. 2

Variable U-Effect
A 2+2=4
B 2+2=4
C 0

As each new OPDD is constructed, the U-effect for
each variable is computed and added to the U-effect of
the previous OPDDs. Thus, a running total of the U-
effect over all the OPDDs is maintained for each
variable. The running total of the U-effect over the
three OPDDs in Figs. 2-4 is shown in Table 2.

Table 2. Cumulative U-Effect for OPDDs in Figs. 2-4

Variable U-Effect
A 12
B 8
C 4

The cumulative U-effect for a set of OPDDs gives a
rough measure of how well the unknown space has been
explored with respect to each variable. This is then used
as a heuristic to direct the DFS towards the variables
that have the lowest U-effect. This helps to explore the
least explored region of the function and hopefully
construct an OPDD in which new implicants can be
obtained to further reduce ambiguity in the signal
probability calculations. This is illustrated in the small
example in Fig. 5 where using the U-effects from Table
2 result in a new ordering <c,b,a> for which the OPDD
built as shown in Fig. 5. For the OPDD in Fig. 5, the U-
space vanishes and the exact probabilities are obtained.

Figure 5. OPDD with variable ordering <c,b,a>

When searching the unknown space using the U-
effect heuristic, the DFS is modified so that the decision
as to which order in which to traverse the inputs of a

c

ba

01

Order <c,a,b>
1-low .5
1-high .5
g1-cov
10x
110
001
g1 .5
g0-cov
01x
000
111
g0 .5

Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE
Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE

gate are made based on the support set for each input.
The support set for an input is the set of PIs (variables)
that it depends on. The U-effect of each variable in the
support set is summed together, and the inputs of the
gate are traversed in reverse order of their total U-effect.

So the overall strategy for iteratively building the
OPDDs is the following. Conventional heuristics for
variable ordering are used to build the first two OPDDs
to identify large implicants, and then the proposed
heuristic of using the U-effect is used when building
subsequent OPDDs to more effectively search the
unknown space.

4. Runtime Complexity Analysis
In this section, the runtime complexity for the

proposed method is analyzed and compared with
[Kodavarti 93]. The complexity is described below in
terms of the following: number of gates in the circuit
(G), number of primary inputs in the circuit (N), limit
on the maximum number of nodes in the OPDD (B),
and number of iterations used (I) where one OPDD is
built in each iteration. Note that B and I are actually
constants that do not scale with circuit size. They are
shown in the equations below just for completeness.

Compute Variable Ordering – Initially this is done
with conventional heuristics which is the same as for
[Kodavarti 93]. The complexity depends on which
heuristics are used, but good results for DFS based
methods can be obtained in linear time in the number of
gates. Thus the overall complexity is O(GI) since it
needs to be done for each OPDD iteration. In the
proposed method, after the first two OPDDs, then the
U-effect heuristic described in Sec. 3 is used. The U-
effect for each variable can be computed by traversing
each OPDD which is O(BI) and then it needs to be
sorted which is O(Nlog(N)I). The support set for each
line in the circuit can be obtained in O(G) and needs to
be computed only once and stored. So the overall
complexity for DFS with the U-effect heuristic is
O(BI+Nlog(N)I +G).

Build OPDDs – Building the OPDDs is O(GB2I)
which is the same as for [Kodavarti 93].

Construct Global Disjoint Cover – This is unique to
the proposed method. Note that the number of cubes
cannot be larger than the number of nodes in the
OPDDs. Hence this can be done in O(NGB2I2). Note
that these are very fast bitwise comparison operations.

Calculate Signal Probability Range – This is just a
matter of adding the size of all the disjoint cubes. For
both [Kodavarti 93] and the proposed method, this is
O(GBI).

As mentioned before, B which is the node limit for
the OPDDs and I which is the number of iterations are
constants that do not scale with circuit size. So if only

the factors that scale with circuit size are considered,
then the overall complexity for the proposed method is
O(NG) compared with O(G) for [Kodavarti 93]. For
realistic industrial circuits, the extra N factor is not very
significant for two reasons. One is that while in the
worst case the number of inputs in the largest cone of
logic could theoretically be equal to N, typically it is
relatively small and doesn’t scale up much for larger
designs (it depends mostly on the function being
implemented), and the other reason is that the extra
complexity is coming from the bitwise comparison
operations for the cubes which can be done very
quickly. Consequently, the actual runtimes for the two
methods are very similar. Note that when processing a
large hierarchical design, the design can be easily
partitioned and spread over multiple processors.

5. Experimental Results
The proposed approach is specifically useful for

large circuits where building the full BDD is not
possible. However, for comparison with previously
published results, experiments were performed on the
ISCAS-85 benchmark circuits even though it is
practical to build a full BDD for most of those circuits
with 4000 nodes. In [Kodavarti 93], results were
reported for using a limit of 500 nodes in the OPDDs
with 4 iterations (i.e., building 4 OPDDs with different
variable orderings). These results from [Kodavarti 93]
are shown in Table 2 along with the results reported in
[Kodavarti 93] for the cutting algorithm which are
shown in Table 1. Experiments were performed using
the proposed method with the same parameters, namely
a 500 node limit for each OPDD and 4 iterations. The
results for the proposed method are shown in Table 3.
In each of these tables, the number of lines with
different ranges of ambiguity between 0% and 100%
are shown. As can be seen from the results, the
proposed method is able to reduce the amount of
ambiguity in the signal probability ranges considerably
in all the circuits compared with [Kodavarti 93].

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

#iterations

to
ta

l
am

b
ig

u
it

y

Figure 6. Total Ambiguity (Normalized) vs. Number
of Iterations for C880 (200 Node Limit)

Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE
Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE

Further experiments were performed to see how the
results varied with the number of iterations. Fig. 6
shows results for C880 where the total ambiguity
normalized with respect to the first iteration is shown
on the y-axis and the number of iterations is shown on
the x-axis. A 200 node limit was used for the OPDDs.
As the number of iterations increases, the ambiguity
decreases. There tends to be a diminishing marginal
return, however, and the amount of improvement from
one iteration to the next can vary due to the fact that
heuristics are used.

Table 1. Ambiguity for Cutting Algorithm
Circuit Ambiguity Ranges (in %)
Name Total

Lines
0 > 0

≤ 30
>30
≤ 50

> 30
≤ 50

> 30
≤ 50

> 30
≤ 50

100

C432 160 27 27 27 0 0 6 73
C499 202 13 0 7 20 5 18 139
C880 383 19 9 45 23 0 0 287

C1355 546 9 1 30 8 0 0 498
C1908 880 52 0 37 4 0 0 787
C2670 1269 154 6 136 38 5 55 878
C3540 1669 53 0 53 14 1 0 1548
C5315 2307 137 5 154 28 0 0 1893
C6288 2416 3 0 58 1 0 0 2354
C7552 3513 120 5 190 91 0 0 3107

Table 2. Ambiguity for [Kodavarti 93] with 500 Nodes
and 4 Iterations

Circuit Ambiguity Ranges (in %)
Name Total

Lines
0 > 0

≤ 30
>30
≤ 50

> 30
≤ 50

> 30
≤ 50

> 30
≤ 50

100

C432 160 94 31 14 16 5 0 0
C499 202 137 33 32 0 0 0 0
C880 383 354 29 0 0 0 0 0

C1355 546 338 143 64 0 1 0 0
C1908 880 731 149 0 0 0 0 0
C2670 1269 1237 24 2 6 0 0 0
C3540 1669 1261 119 80 179 28 2 0
C5315 2307 2227 66 6 6 0 0 0
C6288 2416 1281 394 36 231 100 310 64
C7552 3513 3387 112 8 6 0 0 0

Table 3. Ambiguity for Proposed Approach with 500
Nodes and 4 Iterations

Circuit Ambiguity Ranges (in %)
Name Total

Lines
0 > 0

≤ 30
>30
≤ 50

> 30
≤ 50

> 30
≤ 50

> 30
≤ 50

100

C432 160 158 2 0 0 0 0 0
C499 202 193 7 2 0 0 0 0
C880 383 360 23 0 0 0 0 0

C1355 546 436 102 8 0 0 0 0
C1908 880 816 64 0 0 0 0 0
C2670 1269 1240 21 8 0 0 0 0
C3540 1669 1484 87 98 0 0 0 0
C5315 2307 2297 10 0 0 0 0 0
C6288 2416 1292 383 68 224 114 272 63
C7552 3513 3408 99 2 4 0 0 0

5. Conclusions

The proposed approach provides a means to obtain
tighter signal probability ranges by extracting more
information from OPDDs. It can be used in estimating
soft error susceptibility and random pattern testability.

Acknowledgements
This research was supported in part by the National

Science Foundation under Grant No. CCR-0426608.

References
[Al-Kharji 97] Al-Kharji, M.A., S.A. Al-Arian, “A New Heuristic

Algorithm for Estimating Signal and Detection Probabilities,”
Proc. of Great Lakes Symposium on VLSI, pp. 26-31, 1997.

[Brglez 84] Brglez, F., “On Testability Analysis of Combinational
Networks,” Proc. Symp Circuits and Sys., pp. 221-225, 1984.

[Bryant 86] Bryant, R. E. “Graph Based Algorithms for Boolean
Function Manipulation,“ IEEE Trans. on Computers, Vol C-
35, No. 8, pp. 677-691, Aug. 1986.

[Chakravarty 90] Chakravarty, S., and H. Hunt III, “On Computing
Signal Probability and Detection Probability of Stuck-at Faults,”
IEEE Trans. on Comp., Vol. 39, pp. 1369-1377, Nov. 1990.

[Fujita 93] Fujita, M., H. Fujisawa, and Y. Matsunaga, “Variable
Ordering Algorithms for Ordered Binary Decision Diagrams and
Their Evalulation,” IEEE Trans. on CAD, pp. 6-12, Jan 1993.

[Jain 85] Jain S.K., and V.D. Agrawal, “Statistical Fault Analysis,”
IEEE Design & Test of Computers, pp. 38-45, 1985.

[Kapur 92] Kapur, R., and M.R. Mercer, “Bounding Signal
Probabilities for Testability Measurement using Conditional
Syndromes”, IEEE Trans. Comp., pp. 1580-1588, Dec. 1992.

[Kodavarti 93] Kodavarti, R., and D. Ross,” Signal Probability
Calculations Using Partial Functional Manipulations,” Proc. of
VLSI Test Symposium, pp. 194-200, 1993.

[Malik 88] Malik, S., A. Wang, R. Brayton, and A. Sangiovanni-
Vincentelli, “Logic Verification using Binary Decision
Diagrams in a Logic Synthesis Environment,” Proc. of Int.
Conf. on Computer Aided Design (ICCAD), pp. 6-9, 1988.

[Markowsky 87] Markowsky, G., “Bounding Signal probabilities in
Combinational Circuits,” IEEE Trans. on Computers, Vol C-
36, No. 10, pp. 1247-1251, Oct. 1987.

[McCluskey 88] McCluskey, E.J., S. Makar, S. Mourad, K. Wagner,
“Probability Models for Pseudorandom Test Sequences,” IEEE
Trans. on CAD, Vol. 7, No. 1, pp. 68-74, Jan. 1988.

[Parker 75] Parker, K. P., and E. J. McCluskey, “Probabilistic
Treatment of General Combinational Networks,” IEEE Trans.
on Computers, pp. 668-670, 1975.

[Ravi 98] Ravi, K., K.L. McMillan, T.R. Shiple and F. Somenzi.,
“Approximation and Decomposition of Binary Decision
Diagrams,” Proc. Design Autom. Conf., pp. 445-450, 1998.

[Rejimon 05] Rejimon, T., and S. Bhania, “Time and Space Efficient
Method for Accurate Computation of Error Detection
Probabilities in VLSI Circuits,” IEE Proc. of Computers, Vol.
152, Issue 5, pp. 679-685, Sep. 2005.

[Savir 80] Savir, J., G. S. Ditlow, P. H. Bardell, “Random Pattern
Testability,” IEEE Trans. Comp., pp. 79-90, Jan. 1984.

[Savir 90] Savir, J. “Improved Cutting Algorithm,” IBM Jour. of
Res. and Develop., Vol 34, pp. 40-75, March/May 1990.

[Seth 85] Seth, C., L. Pan and V. D. Agrawal, “PREDICT-
Probabilistic Estimation of Digital Circuit Testability,” Proc. of
Fault-Tolerant Computing Symposium, pp.220-225, 1985.

[Seth 89] Seth, C., V. D. Agrawal, “A New Model for Computation
of Probabilistic Observability,” Integration, the VLSI Journal,
Vol. 7, pp.49-75, 1989

[Uchino 95] Uchino, T., F. Minami, T. Mitsuhashi and N. Goto,”
Switching Activity Analysis using Boolean Approximation
Method,” Proc. Int. Conf. on CAD, pp.20-25, 1995.

[Wunderlich 85] Wunderlich, J., “PROTEST: A Tool for
Probabilistic Analysis,” Proc. of DAC, pp. 204-211, 1985.

[Zeng 03] Zeng, Z., Q. Zhang, I. Harris, and M. Ciesielski, “Fast
Computation of Data Correlation Using BDDs”, Proc. of
Design, Automation and Test in Europe, pp. 122-127, 2003.

Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE
Proceedings of the 24th IEEE VLSI Test Symposium (VTS’06)
0-7695-2514-8/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

