
Multiple Bit Upset Tolerant Memory Using a Selective Cycle Avoidance
Based SEC-DED-DAEC Code

Avijit Dutta and Nur A. Touba

Computer Engineering Research Center
University of Texas, Austin, TX 78712

Abstract
Conventional error correcting code (ECC) schemes

used in memories and caches cannot correct double bit
errors caused by a single event upset (SEU). As memory
density increases, multiple bit upsets in nearby cells
become more frequent. A methodology is proposed here
for deriving an error correcting code through heuristic
search that can detect and correct the most likely double
bit errors in a memory while minimizing the
miscorrection probability of the unlikely double bit
errors. A key feature of the proposed ECC is that it uses
the same number of check bits as the conventional single
error correcting/double error detecting (SEC-DED)
codes commonly used, and has nearly identical syndrome
generator/encoder area and timing overhead. Hence,
there is very little additional cost to using the proposed
ECC. The proposed ECC can be used instead of or in
addition to bit interleaving to provide greater flexibility
for optimizing a memory layout and/or provide better
protection from multiple bit upsets. It is also useful for
small memories, e.g., content addressable memory or
register files, where interleaving is not possible.

1. Introduction

Ionizing radiation from high-energy neutrons and
alpha particles can cause a single-event upset (SEU) that
may alter the state of the system resulting in a soft error.
Memories, which occupy a large percentage of the area of
a chip, are especially sensitive to SEUs. Constant
technology process improvement has resulted in very
dense memory cells that store information with less
capacitance and lower voltage. Consequently, less charge
is required to produce one or more soft errors in
memories. Recent studies characterizing different bit
errors arising from an SEU suggest that 1–5% of the
SEUs can cause multiple bit upsets (MBUs) [Maiz 03].
Depending on the underlying technology and the incident
particle, several types of multiple-bit errors are possible
[Satoh 00], [Makihara 00], [Kawakami 04]. It has been
shown that incident neutron particles can react with the
die contaminants and generate secondary particles with
enough energy to create multiple errors. The distance
between the bits in error depends on the initial angle of
incidence, die contaminant types, and the scattering angle
for the secondary particles. Based on this, the probability

of adjacent double bit errors is much higher than other
multiple bit errors.

A SEC-DED code [Hamming 50] is capable of
correcting one error and detecting all possible double
errors. It is commonly used in memories and caches, but
cannot correct more than a 1-bit error in a word. In order
to correct the most commonly occurring MBUs, this
paper proposes a low cost ECC methodology to correct
double adjacent bit errors. It involves constructing a
single-error-correcting, double-error-detecting, double-
adjacent-error-correcting (SEC-DED-DAEC) code by
selectively avoiding certain types of linear dependencies
in the parity check matrix. A key feature of the proposed
SEC-DED-DAEC code is that it uses the same number of
check bits and has nearly identical syndrome
generator/encoder area and timing overhead as the
conventional SEC-DED codes. Consequently, there is
very little additional cost to using it. Specific H-matrices
for 16, 32 and 64-bit data words are given in the paper,
and their properties are directly compared with commonly
used SEC-DED codes published elsewhere.

While the focus in the paper is on SEC-DED-DAEC
codes, the proposed methodology is flexible and can be
used to construct codes for correcting any subset of
double errors.

2. Related Work

A number of approaches for extending the basic SEC-
DED Hamming code [Hamming 50] have been previously
proposed. A special class of SEC-DED codes known as
Hsiao codes [Hsiao 70] was proposed to improve the
speed, cost, and reliability of the decoding logic. The
codes constructed in the proposed methodology can be
thought of as a special class of Hsiao codes. Another
class of SEC-DED codes [Reddy 78], [Chen 83] was
proposed to detect any number of errors affecting a single
byte. These codes are known as single-error-correcting
double-error-detecting single-byte-error-detecting (SEC-
DED-SBD) codes. For protecting byte-organized
memories, SEC-DED-SBD codes are more suitable than
the conventional SEC-DED code.

To provide byte error correction capability, single-
byte-error-correcting, double-byte-error-detecting (SBC-
DBD) codes [Berlekamp 68], [Reed 60], [Wolf 69],
[Bossen 70] [Chen 96] were proposed. These codes
perform at a higher order Galois field and consequently
the encoding and decoding are more complex. Moreover,

25th IEEE VLSI Test Symmposium (VTS'07)
0-7695-2812-0/07 $20.00 © 2007

they require more check bits thereby increasing the size of
the memory.

To provide complete double error correction
capability, a double-error-correcting triple-error-detecting
(DEC-TED) code may be used at the cost of much larger
overhead in terms of both the check bits and more
complex hardware to implement the error correction and
detection [Lin 83], [Berlekamp 68], [Lala 78].

The Reed-Solomon (RS) code and Bose-Chaudhuri-
Hocquenghem (BCH) codes are able to detect and correct
multiple bytes of errors with very low overhead in terms
of additional check bits required. However, these codes
typically work at the block level and are applied to
multiple words at a time. Other similar codes include the
extended Hamming code [Bossen 70] which performs at a
higher order Galois field GF (2K) and can correct up to
k-bit burst errors. Other multiple error correcting codes
include the optimal rectangular code (ORC), adaptive
cross-parity code (APX) code, and others. The general
drawbacks with these methods are latency and speed.
Most of these codes require several cycles to correct the
first error. Moreover, the encoding and decoding are
much more complex and require several table lookups for
multiplication in higher order fields.

Another class of multiple error-correcting approaches
combines coding with circuit level techniques to sense
multiple errors in a memory. In [Vargas 94] and [Calin
95], an asynchronous built in current sensor (BICS) on the
vertical power lines of a memory along with a parity bit
per memory word is used. A conventional SEC-DED
code and the BICS approach are combined in [Gill 05] to
detect multiple bit upsets affecting the same memory
word.

Even though several powerful error correcting codes
exist, the SEC-DED code has remained an attractive
choice mainly because of its fast and simple encoding/
decoding and low hardware overhead. One of the most
commonly used techniques to minimize the probability of
multiple bit upsets in a single word is bit interleaving
[Maiz 04] which is a memory layout architecture in which
physically adjacent bits are assigned to different logical
words. For k-way interleaving, k adjacent failing bits
appear as k single bit errors in k different logical words
rather than as a k-bit error in a single logical word. A
simple SEC-DED code can be used along with bit
interleaving to help protect from multiple bit upsets.
However, there can be some limitations/drawbacks for bit
interleaving. In some cases, it may negatively impact
floorplanning, access time, and/or power consumption.
The proposed SEC-DED-DAEC code requires very little
overhead and can be used instead of or in addition to bit
interleaving to provide greater flexibility for optimizing a
memory design. For a fixed depth of interleaving, a larger
physical distance between cells in error can be tolerated
using the proposed code, or to tolerate a fixed physical
distance of cells in error, the required depth of

interleaving can be reduced. The proposed methodology
places an additional tool in the hands of a memory
designer for optimizing a memory layout. Moreover, for
small memories, e.g., content addressable memory or
register files, interleaving may not be feasible. The
proposed coding methodology is particularly useful in this
case to provide protection from MBUs.

A class of systematic SEC-DED-DAEC codes was
proposed much earlier in [Abramson 59]. However, it was
not targeted for memories. Its encoding and decoding are
not as efficient as conventional SEC-DEC codes. One
check bit is dedicated to differentiate between single and
double bit errors. This check bit computes the parity of
the entire message and hence incurs a lot of decoding
delay and large decoder overhead. Moreover, the
encoding and decoding involve the use of a linear finite
state machine (LFSM) and hence the latency is increased.
Some extensions of the basic code in [Abramson 59] have
been suggested. In [Elspas 60], the SEC-DED-DAEC
code was extended to higher order fields GF (2K), and in
[Bernstein 63], the code was modified for arithmetic
operations.

The ECC methodology proposed in this paper
constructs a different SEC-DED-DAEC code from the
ones described in [Abramson 59], [Elspas 60], and
[Bernstein 63]. The proposed SEC-DED-DAEC codes
are targeted for memories and have the same number of
check bits and nearly identical encoding and decoding
latency as conventional SEC-DED codes. The proposed
codes are constructed by selectively avoiding certain type
of cycles in the parity check matrix. Moreover it tries to
minimize the miscorrection (non-adjacent double error
mistaken as an adjacent double error) probability.

3. Binary Linear block codes

The proposed SEC-DED-DAEC code falls into the
category of systematic binary linear block codes. A binary
(n, k) linear block code is a k-dimensional subspace of a
binary n-dimensional vector space. An n-bit codeword of
the code contains r=(n-k) check bits and k data bits. The
(r× n) parity-check matrix (H-matrix) completely defines
the code. C is a codeword of the code if and only if

 H.CT = 0 (1)
where CT is the transpose of the codeword C. The H-
matrix corresponds to a systematic code if it can be
represented as

 H=[Pr× k,Ir× r] (2)
where I is the r×r identity matrix. For a systematic code,
the first k-bits of the codeword can be designated as the
data bits and the last r bits can be designated as the check
bits. For the targeted application, only systematic codes
are useful. For a systematic code with a parity check
matrix of the form given by Eqn. 2, the generator matrix
can be simply obtained as

 G=[IK× K,PT] (3)

25th IEEE VLSI Test Symmposium (VTS'07)
0-7695-2812-0/07 $20.00 © 2007

The H-matrix represents a set of linear equations
involving the bits of the message. The syndrome is
defined as the r-bit vector obtained upon multiplying the
received n-bit message with the H-matrix in GF (2). In the
error free case, the syndrome is the all-zero vector. An
error vector is defined as an r-bit vector where the bits
that are in error have the value 1 and all the other bits are
0. An erroneous message Ve can be represented as

 Ve = V + E (4)
where E is the error vector and V is the error free message
(i.e., codeword).
 S = H.Ve = H.(V+E) =H.V + H.E = H.E (5)
where S is the syndrome for the particular message Ve. In
the next section, we will discuss the proposed linear
systematic block code.

4. Proposed Code

The proposed SEC-DED-DAEC code has the
following properties:
1) All single bit errors can be corrected
2) All double bit errors can be detected
3) All adjacent double bit errors can be corrected
4) The miscorrection probability for non-adjacent double

errors is reduced
The characteristics of a linear block code are

completely determined by its H-matrix. To detect all
single bit errors, the corresponding error syndromes
should be unique. Note that the syndrome for a single bit
error at the bit position p is the same as the p-th column of
the H-matrix. To uniquely identify all the single bit errors,
all the columns of the H-matrix must be unique.

To detect all the double bit errors, the corresponding
syndromes should be different from all the single bit error
syndromes. The syndrome for a double bit error is given
by the exclusive-or (XOR) of the corresponding columns
of the H-matrix. So there cannot be any 3-cycle in the H-
matrix. A k-cycle refers to a set of k linearly dependent
columns of the parity check matrix, i.e., when XORed
together, the output is an all-zero column. To be able to
correct all the adjacent double bit errors, the syndromes
for the adjacent double bit errors should be different from
each other and also different from all the single-error
syndromes. Next we define the conditions that must be
satisfied by the H-matrix for the proposed code:
1) No all 0 columns.
2) All columns are distinct
3) No linear dependency involving 3 or less columns i.e.,

no 2-cycle and 3-cycle are allowed.
4) No linear dependency involving columns Ci,Cj,Ck,Cm

where m>k>j>i, such that j=i+1 and m=k+l.
5) Moreover the code tries to minimize the number of 4-

cycles involving Ci,Cj,Ck,Cm where m>k>j>i, such
that j=i+1 or k=j+l or m=k+1.
 Condition 1 ensures that no single bit error case match

the error free case.

Condition 2 ensures that all the single error syndromes
are unique. Every single error syndrome matches one of
the columns of the H-matrix. Since all the columns of the
H-matrix are distinct, the single bit errors are uniquely
identifiable and hence correctable. Additionally this
condition ensures that there are no pairs of double errors
of the form (i,j) and (j,k) such that the corresponding
syndromes are the same. Assume that such double errors
exist, then (Ci⊕Cj)⊕(Cj⊕Ck)=0, i.e., (Ci⊕Ck)=0 but that
contradicts the fact that all the columns of the H-matrix
are distinct. This ensures that syndromes for adjacent
errors of the form (i,i+1) and (i+1,i+2) are different.

Condition 3 ensures that the syndromes for all double
bit errors are different from that of the single bit errors.
The syndrome for a double bit error is determined by the
XOR of the columns corresponding to the erroneous bit
positions. If the H-matrix is free of 3-cycles then the XOR
of any two columns of the H-matrix is not identical to any
of the columns of the H-matrix. This ensures that the
syndromes of all the double bit errors are different from
the single bit error syndromes, and condition 2 ensures
that the double bit error syndromes are non-zero. Hence
all the double bit errors are detectable.

Condition 4 along with condition 2, ensures that a
syndrome for an adjacent double bit error is different
from all other adjacent double bit error syndromes. If we
assume that the only errors are single bit errors or
adjacent double bit errors, then with an H-matrix
satisfying conditions 1 through 4, we can uniquely
identify the syndromes for all single bit errors and
adjacent double bit errors and hence can correct all single
bit errors and all double adjacent bit errors and detect all
double bit errors.

However the syndromes for the adjacent bit errors are
shared with some non-adjacent double bit error
syndromes. This is because some 4-cycles are allowed in
order to reduce the check-bit overhead. So there is a
possibility that a non-adjacent double bit error will be
mistaken as an adjacent double bit error and hence will be
incorrectly corrected (although the probability of non-
adjacent double errors is much less than that of the
adjacent double errors). Condition 5 tries to minimize the
probability of such an event happening. We call the 4-
cycles of the type given by condition 4, forbidden 4-
cycles (4FC). We call the 4-cycles of the type Ci,Cj,Ck,Cm
where m>k>j>i, such that j=i+1 or k=j+l or m=k+1, bad
cycles (4BC), since their presence have a detrimental
effect on the capacity of the code. The number of non-
adjacent double bit errors is n

2C − (n − 1). For the double
errors that are caused by independent SEUs, all the double
errors are equally likely and the miscorrection probability
is given by:

Pr (miscorrection)=
)1n(C

BC4#
n
2 −−

 (6)

25th IEEE VLSI Test Symmposium (VTS'07)
0-7695-2812-0/07 $20.00 © 2007

By reducing the number 4BCs, the miscorrection
probability can be minimized.

5. Code Design Procedure

The design of the H-matrix is essentially a systematic
search process to satisfy all the conditions mentioned in
the previous section. For an (r×n) matrix, there are 2(r×n)
possible choices, so an exhaustive search approach is
ruled out for reasonably large values of r and n. Figure 1
shows a H-matrix for a (22,16) code. Even for this code,
an exhaustive search is not practical even if the domain of
columns considered is restricted. The weight of a column
of the H-matrix is defined as the number of 1’s in the
column. If we limit the H-matrix to only weight-3 and
weight-1 columns, then there are 6

3C = 20 choices out of

which 16 columns can be chosen in 20
16C = 4845 ways.

For each choice there are (16! > 2 × 1013) column
permutations which should be searched for the best code.
So an exhaustive search will have to search (4845 × 16! >
2 × 1013) matrices for the best code. The search space
increases further if arbitrary weighted columns are
allowed. Note that For the H-matrix in Fig. 1, no column
of weight two is allowed because any weight-2 column
will create a 3-cycle with two weight-1 columns.

Constructing the best H-matrix for a SEC-DED-
DAEC code that satisfies all of the conditions discussed
in Sec. 4 is NP-complete. A pseudo-greedy search
procedure can be used as shown in Fig. 3. The outer while
loop stops once a valid code is found or the maximum
backtrack limit is exceeded. The inner while loop finds a
set of valid columns (that does not introduce any
forbidden cycles) for the current column position. If no
valid column is found for the current column position,
then the last choice for a column has to be undone. This
corresponds to a backtrack. If multiple valid columns are
found for the current column position then the one that
minimizes the number of bad 4-cycles in the currently
constructed code space is chosen. Once an initial H-
matrix is found, a limited number of column permutations
are tried to avoid a local optimum and search for a better
H-matrix in terms of reduced miscorrection probability.

1100110001110100100000
0001010011011001010000
1010100111100011001000
1001001110010110000100
0110101100001101000010
0111011000101010000001

Figure 1. H-matrix for proposed (22,16) code

 101110010101100001001010011100001000000
 010101001011000100011100011000010100000
 101010100110001010110000110000110010000
 010100011100010101100001100001110001000
 001001100000101101001011000011100000100
 100001001001011010010110100111000000010
 010010110010110010100101001110000000001

Figure 2. H-matrix for proposed (39,32) code

Input: n, maxIter, maxBacktrack, maxPermute
Output: H-matrix

avail_col = All 1-weight columns, followed by 3-weight
columns, followed by 5-weight columns, and so forth up to
the largest weight columns being considered
currentCol = 0; backtrack = 0
while (currentCol < n) {
 Iter = 0
 validColPool[currentCol] = {}
 while (iter < maxIter) {
 Iter++
 C = Untried least-weighted column from avail_col
 Check for existence of forbidden 4-cycles
 if (! 4FCfound) {
 validColPool[currentCol] =
 validColPool[currentCol] ∪ C
 }
 }
 if (empty(validColPool[currentCol])) {
 backtrack++
 if (backtrack > maxBacktrack) {
 return // no code found
 } else {
 currentCol--
 if (currentCol < 0) currentCol = 0;
 continue;
 }
 } else {
 sCol = selectMin4BC(validColPool[currentCol]))
 add sCol to H-matrix
 currentCol++
 backtrack=0;
 }
}
permuteC = 0; orig4BC=count4BC(H-matrix);
while (permuteC < maxPermute) {
 permuteC++
 permuteColumns()
 Check for existence of forbidden 4-cycles
 if ((!4FC)&&(count4BC(H-matrix)<orig4BC)) {
 H-matrix current H-matrix;
 }
}

Figure 3. Pseudo-greedy search algorithm

25th IEEE VLSI Test Symmposium (VTS'07)
0-7695-2812-0/07 $20.00 © 2007

100101011101011001010010010000101100010011001000110100001110000010000000
101110011000001010100100100001011000100110010001101000011100000101000000
011010101011101011001001000010110001001100100011010000111000001100100000
111101100101100110010010100101100010011001000110100001100000011100010000
100101100011110110100101001011000100110010001100000011010000111000001000
111011001111110111001010010110001001100000011001000110100001110000000100
011010110110111100010100101100000011000100110010001101000011100000000010
010111101110011100101001011000010110001001100100011010000111000000000001

Figure 4. H-matrix for proposed (72,64) code

Table 1. Comparison of proposed SEC-DED-DEAC code with other codes

(n,k)

Codes
2-Input
XOR
Gates

Max
Logic
Depth

Forbidden
4-Cycles

(4FC)

Total
4-Cycles

Bad
4-Cycles

(4BC)
SEC-DED (IBM system/3) 48 4 13 252 122
Hsiao Code [Hsiao 70] 48 4 8 252 120
SEC-DED-DAEC in [Abramson 59] 70 5 0 252 128

(22,16)

Proposed SEC-DEC-DAEC (Fig. 1) 48 4 0 251 118
SEC-DED (IBM 8130)(40,32) 96 4 82 776 254
Hsiao Code [Hsiao 70] 96 4 23 1363 425
SEC-DED-DAEC in [Abramson 59] 132 6 0 1343 386

(39,32)

Proposed SEC-DED-DAEC (Fig. 2) 96 4 0 1363 379
SEC-DED (IBM 3081) 256 6 230 8912 1292
Hsiao Code [Hsiao 70] 208 5 122 8392 1399
SEC-DED-DAEC in [Abramson 59] 296 7 0 8194 1335

(72,64)

Proposed SEC-DED-DAEC (Fig. 4) 224 5 0 8289 1316

The number of the 2-input XOR gates required for the
encoding/decoding can be computed from the H-matrix.
It is equal to ∑#rows (row weight − 1). The encoding and
decoding delays are determined by the maximum logic-
depth of the encoder and the decoder circuit which is
equal to log2 (max. 1’s in any row). Figure 2 shows an
H-matrix for the (39,32) code constructed using the
search process as discussed above using only weight-1
and weight-3 columns. Another H-matrix is shown for a
(72,64) code in Fig. 4. In this case, weight-1, weight-3,
and weight-5 columns are used.

Table 1 shows the number of XOR gates and
maximum logic depth for the syndrome generator,
number of forbidden 4-cycles, total number of 4-cycles,
and the number of bad cycles (4BCs) for the (22, 16), (39,
32) and (72,64) codes for both the proposed code and the
SEC-DED-DAEC code described in [Abramson 59] as
well as some Hsiao codes and SEC-DED codes
commonly used in industry. Note that the SEC-DED code
and the Hsiao code cannot correct adjacent double bit
errors because of the existence of forbidden cycles
(4FCs). Using a random double error correcting (DEC)
code can increase the memory size considerably and
hence is not an attractive choice for memory ECC. For
example to protect a 32-bit word, a DEC code needs at
least 11 check bits and 14 check bits are needed to protect
a 64-bit word. The proposed code also has minimal logic
depth among the codes and also minimum check bit

overhead. The total number of bad 4-cycles is lower for
the proposed code than for [Abramson 59], and
consequently it has a lower miscorrection probability.

6. Encoding/Decoding Algorithm

The proposed code is systematic. During encoding, the
data bits can be directly copied and the check bits are
generated using an XOR network corresponding to the G-
matrix. The decoding algorithm is as follows:
1) Generate the syndrome using an XOR network

corresponding to the H-matrix.
2) If the syndrome is the all zero vector, then no error is

detected, otherwise one or more errors occurred.
3) If the syndrome matches any of the H-matrix columns,

then a single error is detected and the error position is
the corresponding column position. The corresponding
bit should be flipped to correct the error.

4) Else if the syndrome matches any of the n-1 adjacent
double error syndromes, then a double adjacent error
is detected and the corresponding bit positions are
generated using the error correction logic.

5) Else an uncorrectable error (UE) (i.e., a double non-
adjacent error or more than two errors) has occurred.
The only additional overhead with respect to a

conventional SEC-DED code comes from step 4 of the
decoding step. Figure 5 shows the basic error detection
and correction block diagram. If a non-zero syndrome is
encountered, then the OR gate flags an error indication. If
the syndrome matches any of the single error syndromes

25th IEEE VLSI Test Symmposium (VTS'07)
0-7695-2812-0/07 $20.00 © 2007

then the syndrome decoder generates a 1 in the erroneous
bit position. Otherwise, if the syndrome matches any of
the adjacent double error syndromes, then the decoder
generates 1’s at the erroneous adjacent bit positions.
Otherwise the output of the syndrome decoder is the all
zero output. The syndrome decoder consists of 3-input
OR gates whose inputs are driven by outputs of r-input
AND gates. The i-th output of the decoder is 1 if and only
if a single error occurred at the i-th bit or a double-
adjacent error occurred at <i,i+1> bits or <i-1,i> bits. The
outputs of the decoder are used to generate the corrected
word, by using n 2-input XOR gates. If the syndrome is
non-zero and does not match any of the single or double-
adjacent error syndromes, then the UE signal is flagged.

7. Conclusions

The ECC methodology described in this paper adds the
ability to correct adjacent errors at very little cost over
conventional SEC-DED codes. The only drawback is the
possibility of miscorrection for a small subset of multiple
errors, however MBUs caused by a single SEU have a
much higher probability of occurring than having multiple
independent SEUs accumulating in the same word (this is
especially the case if memory scrubbing is used). While
bit interleaving is commonly relied upon to protect
memories from MBUs, the proposed methodology
provides another tool for a memory designer to use. In
some instances, it may be an attractive alternative to bit
interleaving to allow for a more optimized memory
layout, or it can be used in addition to bit interleaving to
provide an additional layer of protection from MBUs.

Acknowledgements

This research was supported in part by the National
Science Foundation under Grant No. CCR-0426608.

References

[Abramson 59] Abramson N. M., ”A Class of Systematic Codes for
Non-Independent Errors”, Proc. IRE Trans. on Information
Theory, Vol. IT-5, pp. 150-157, Dec. 1959.

[Bernstein 63] Bernstein, A., and W. Kim,”Single and Double Adjacent
Error-correcting codes for arithmetic Units”, IEEE Tran. on
Information Theory, Vol. 9, pp. 209-210, Mar. 1963.

[Berlekamp 68] Berlekamp, E. R., Algebraic Coding Theory, McGraw-
Hill, New York, 1968.

[Bossen 70] Bossen, D. C.,”b-Adjacent Error Correction”, IBM Journal
of Research and Development, Vol. 14, pp. 402-408, Jul. 1970.

[Calin 95] Calin, Th., F. L. Vargas, and M. Nicolaidis,”Upset Tolerant
CMOS Using Current Monitoring: Prototype and Test
Experiments”, Proc. Int. Test Conference, pp. 45-53, 1995.

[Chen 68] Chen, C. L.,” Error Correcting Codes with Byte Error
Detection Capability”, IEEE Trans. On Computers, Vol. C-32, pp.
615-621, May 1983.

[Chen 96] Chen, C. L.,”Symbol Error Correcting Codes for Memory
Applications”, Proc. of Fault Tolerant Computing Systems, pp.
200-207, 1996.

[Elspas 60] Elspas, B.,”A Note on p-nary Adjacent-error-correcting
Codes”, IEEE Trans. on Information Theory, Vol. 6, Mar. 1960.

Figure 5. Error detection and correction block diagram

[Gill 05] Gill, B., M. Nicolaidis, and C. Papachristou,” Radiation
Induced Single-Word Multiple-bit Upsets Correction in SRAM”,
Proc. of Int. Online Test Symposium, pp. 266-271, Jul. 2005.

[Hamming 50] Hamming, R.W., ”Error Correcting and Error Detecting
Codes”, Bell Sys. Tech. Journal, Vol. 29, pp. 147-160, Apr. 1950.

[Hsiao 70] Hsiao, M. Y., ”A Class of Optimal Minimum Odd-weight-
column SEC-DED codes”, IBM Journal of Research and
Development, Vol. 14, pp. 395-401, 1970.

[Kawakami 04] Kawakami, Y., et al., ”Investigation of Soft Error Rate
Including Multi-Bit Upsets in Advanced SRAM Using Neutron
Irradiation Test and 3D Mixed-mode Device Simulation”, Proc. of
IEEE Int’l Electronic Device Meeting, pp. 945-948, Dec. 2004.

[Lala 78] Lala, P. K.,“ An Adaptive Double Error Correction Scheme for
Semiconductor Memory Systems,” Digital Processes, Vol. 4, pp.
237-243, 1978.

[Lin 83] Lin, S., and D. J. Costello, Jr., Error Control Coding:
Fundamentals and Applications, Prentice-Hall, 1983.

[Maiz 03] Maiz, J., S. Hareland, K. Zhang, and P. Armstrong,
“Characterization of Multibit Soft Error Events in Advanced
SRAMs”, Proc. of IEEE Int’l Electronic Device Meeting, pp. 519-
522, Dec. 2003.

[Makihara 00] Makihara, A., et al., “Analysis of Single-Ion Multiple-Bit
Upset in High-Density DRAMS”, IEEE Trans. on Nuclear
Science, Vol. 47, No. 6, Dec. 2000.

[Reddy 78] Reddy, S.M., “A Class of Linear Codes for Error Control in
Byte-per-Package Organized Memory Systems”, IEEE Trans. On
Computers, Vol. C-27, pp. 455-458, May. 1978.

[Reed 60] Reed, I. S., and G. Solomon,”Polynomial Codes Over Certain
Fields”,J. Soc. Ind. Appl. Mat., Vol. 8, pp. 300-304, Jun. 1960.

[Satoh 00] Satoh, S., Y. Tosaka, S.A. Wender, ”Geometric Effect of
Multiple-bit Soft Errors Induced by Cosmic-ray Neutrons on
DRAMs”, Proc. of IEEE Int’l Electronic Device Meeting, pp. 310-
312, Jun. 2000.

[Vargas 94] Vargas, F. L., and M. Nicolaidis,” SEU-Tolerant SRAM
Design Based On Current Monitoring”, Proc. Int. Symposium on
Fault Tolerant Computing, pp. 106-115, June 1994.

[Wolf 69] Wolf, J. K.,” Adding Two Information Symbols to Certain
Non-Binary BCH Codes and Some Applications”, Bell Systems
Technical Journal, Vol. 48, pp. 2405-2424, 1969.

 r-bit Syndrome

 1 2 ….. r

 Syndrome
Decoder

OR

N
O
R

A
N
D

 Word Corrected
 Read Word

(n 2-input xor gates)

Error
Detected

UE

 1 2 ….. n

 <i-1,i> i <i,i+1>

 i-th
output

 & & &

 +

25th IEEE VLSI Test Symmposium (VTS'07)
0-7695-2812-0/07 $20.00 © 2007

