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Abstract 
Conventional error correcting code (ECC) schemes 

used in memories and caches cannot correct double bit 
errors caused by a single event upset (SEU). As memory 
density increases, multiple bit upsets in nearby cells 
become more frequent. A methodology is proposed here 
for deriving an error correcting code through heuristic 
search that can detect and correct the most likely double 
bit errors in a memory while minimizing the 
miscorrection probability of the unlikely double bit 
errors. A key feature of the proposed ECC is that it uses 
the same number of check bits as the conventional single 
error correcting/double error detecting (SEC-DED) 
codes commonly used, and has nearly identical syndrome 
generator/encoder area and timing overhead.  Hence, 
there is very little additional cost to using the proposed 
ECC. The proposed ECC can be used instead of or in 
addition to bit interleaving to provide greater flexibility 
for optimizing a memory layout and/or provide better 
protection from multiple bit upsets. It is also useful for 
small memories, e.g., content addressable memory or 
register files, where interleaving is not possible. 

 
 

1. Introduction 
 

Ionizing radiation from high-energy neutrons and 
alpha particles can cause a single-event upset (SEU) that 
may alter the state of the system resulting in a soft error. 
Memories, which occupy a large percentage of the area of 
a chip, are especially sensitive to SEUs.  Constant 
technology process improvement has resulted in very 
dense memory cells that store information with less 
capacitance and lower voltage.  Consequently, less charge 
is required to produce one or more soft errors in 
memories. Recent studies characterizing different bit 
errors arising from an SEU suggest that 1–5% of the 
SEUs can cause multiple bit upsets (MBUs) [Maiz 03]. 
Depending on the underlying technology and the incident 
particle, several types of multiple-bit errors are possible 
[Satoh 00], [Makihara 00], [Kawakami 04]. It has been 
shown that incident neutron particles can react with the 
die contaminants and generate secondary particles with 
enough energy to create multiple errors. The distance 
between the bits in error depends on the initial angle of 
incidence, die contaminant types, and the scattering angle 
for the secondary particles. Based on this, the probability 

of adjacent double bit errors is much higher than other 
multiple bit errors.  

A SEC-DED code [Hamming 50] is capable of 
correcting one error and detecting all possible double 
errors. It is commonly used in memories and caches, but 
cannot correct more than a 1-bit error in a word. In order 
to correct the most commonly occurring MBUs, this 
paper proposes a low cost ECC methodology to correct 
double adjacent bit errors. It involves constructing a 
single-error-correcting, double-error-detecting, double-
adjacent-error-correcting (SEC-DED-DAEC) code by 
selectively avoiding certain types of linear dependencies 
in the parity check matrix. A key feature of the proposed 
SEC-DED-DAEC code is that it uses the same number of 
check bits and has nearly identical syndrome 
generator/encoder area and timing overhead as the 
conventional SEC-DED codes.  Consequently, there is 
very little additional cost to using it.  Specific H-matrices 
for 16, 32 and 64-bit data words are given in the paper, 
and their properties are directly compared with commonly 
used SEC-DED codes published elsewhere. 

While the focus in the paper is on SEC-DED-DAEC 
codes, the proposed methodology is flexible and can be 
used to construct codes for correcting any subset of 
double errors. 

 

2. Related Work 
 

A number of approaches for extending the basic SEC-
DED Hamming code [Hamming 50] have been previously 
proposed. A special class of SEC-DED codes known as 
Hsiao codes [Hsiao 70] was proposed to improve the 
speed, cost, and reliability of the decoding logic. The 
codes constructed in the proposed methodology can be 
thought of as a special class of Hsiao codes.  Another 
class of SEC-DED codes [Reddy 78], [Chen 83] was 
proposed to detect any number of errors affecting a single 
byte. These codes are known as single-error-correcting 
double-error-detecting single-byte-error-detecting (SEC-
DED-SBD) codes. For protecting byte-organized 
memories, SEC-DED-SBD codes are more suitable than 
the conventional SEC-DED code. 

To provide byte error correction capability, single-
byte-error-correcting, double-byte-error-detecting (SBC-
DBD) codes [Berlekamp 68], [Reed 60], [Wolf 69], 
[Bossen 70] [Chen 96] were proposed. These codes 
perform at a higher order Galois field and consequently 
the encoding and decoding are more complex.  Moreover, 
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they require more check bits thereby increasing the size of 
the memory. 

To provide complete double error correction 
capability, a double-error-correcting triple-error-detecting 
(DEC-TED) code may be used at the cost of much larger 
overhead in terms of both the check bits and more 
complex hardware to implement the error correction and 
detection [Lin 83], [Berlekamp 68], [Lala 78]. 

The Reed-Solomon (RS) code and Bose-Chaudhuri-
Hocquenghem (BCH) codes are able to detect and correct 
multiple bytes of errors with very low overhead in terms 
of additional check bits required. However, these codes 
typically work at the block level and are applied to 
multiple words at a time. Other similar codes include the 
extended Hamming code [Bossen 70] which performs at a 
higher order Galois field GF (2K) and can correct up to 
k-bit burst errors. Other multiple error correcting codes 
include the optimal rectangular code (ORC), adaptive 
cross-parity code (APX) code, and others. The general 
drawbacks with these methods are latency and speed. 
Most of these codes require several cycles to correct the 
first error. Moreover, the encoding and decoding are 
much more complex and require several table lookups for 
multiplication in higher order fields.  

Another class of multiple error-correcting approaches 
combines coding with circuit level techniques to sense 
multiple errors in a memory. In [Vargas 94] and [Calin 
95], an asynchronous built in current sensor (BICS) on the 
vertical power lines of a memory along with a parity bit 
per memory word is used. A conventional SEC-DED 
code and the BICS approach are combined in [Gill 05] to 
detect multiple bit upsets affecting the same memory 
word. 

Even though several powerful error correcting codes 
exist, the SEC-DED code has remained an attractive 
choice mainly because of its fast and simple encoding/ 
decoding and low hardware overhead. One of the most 
commonly used techniques to minimize the probability of 
multiple bit upsets in a single word is bit interleaving 
[Maiz 04] which is a memory layout architecture in which 
physically adjacent bits are assigned to different logical 
words. For k-way interleaving, k adjacent failing bits 
appear as k single bit errors in k different logical words 
rather than as a k-bit error in a single logical word. A 
simple SEC-DED code can be used along with bit 
interleaving to help protect from multiple bit upsets. 
However, there can be some limitations/drawbacks for bit 
interleaving.  In some cases, it may negatively impact 
floorplanning, access time, and/or power consumption. 
The proposed SEC-DED-DAEC code requires very little 
overhead and can be used instead of or in addition to bit 
interleaving to provide greater flexibility for optimizing a 
memory design. For a fixed depth of interleaving, a larger 
physical distance between cells in error can be tolerated 
using the proposed code, or to tolerate a fixed physical 
distance of cells in error, the required depth of 

interleaving can be reduced.  The proposed methodology 
places an additional tool in the hands of a memory 
designer for optimizing a memory layout. Moreover, for 
small memories, e.g., content addressable memory or 
register files, interleaving may not be feasible. The 
proposed coding methodology is particularly useful in this 
case to provide protection from MBUs.  

A class of systematic SEC-DED-DAEC codes was 
proposed much earlier in [Abramson 59]. However, it was 
not targeted for memories. Its encoding and decoding are 
not as efficient as conventional SEC-DEC codes. One 
check bit is dedicated to differentiate between single and 
double bit errors. This check bit computes the parity of 
the entire message and hence incurs a lot of decoding 
delay and large decoder overhead. Moreover, the 
encoding and decoding involve the use of a linear finite 
state machine (LFSM) and hence the latency is increased. 
Some extensions of the basic code in [Abramson 59] have 
been suggested. In [Elspas 60], the SEC-DED-DAEC 
code was extended to higher order fields GF (2K), and in 
[Bernstein 63], the code was modified for arithmetic 
operations. 

The ECC methodology proposed in this paper 
constructs a different SEC-DED-DAEC code from the 
ones described in [Abramson 59], [Elspas 60], and 
[Bernstein 63].  The proposed SEC-DED-DAEC codes 
are targeted for memories and have the same number of 
check bits and nearly identical encoding and decoding 
latency as conventional SEC-DED codes.  The proposed 
codes are constructed by selectively avoiding certain type 
of cycles in the parity check matrix. Moreover it tries to 
minimize the miscorrection (non-adjacent double error 
mistaken as an adjacent double error) probability. 

 

3. Binary Linear block codes 
 

The proposed SEC-DED-DAEC code falls into the 
category of systematic binary linear block codes. A binary 
(n, k) linear block code is a k-dimensional subspace of a 
binary n-dimensional vector space. An n-bit codeword of 
the code contains r=(n-k) check bits and k data bits. The 
(r× n) parity-check matrix (H-matrix) completely defines 
the code.  C is a codeword of the code if and only if 

                    H.CT = 0                    (1) 
where CT is the transpose of the codeword C. The H-
matrix corresponds to a systematic code if it can be 
represented as 

                          H=[Pr× k,Ir× r]               (2) 
where I is the r×r identity matrix. For a systematic code, 
the first k-bits of the codeword can be designated as the 
data bits and the last r bits can be designated as the check 
bits. For the targeted application, only systematic codes 
are useful. For a systematic code with a parity check 
matrix of the form given by Eqn. 2, the generator matrix 
can be simply obtained as 

                         G=[IK× K,PT]               (3) 
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The H-matrix represents a set of linear equations 
involving the bits of the message.  The syndrome is 
defined as the r-bit vector obtained upon multiplying the 
received n-bit message with the H-matrix in GF (2). In the 
error free case, the syndrome is the all-zero vector. An 
error vector is defined as an r-bit vector where the bits 
that are in error have the value 1 and all the other bits are 
0. An erroneous message Ve can be represented as 

                          Ve = V + E                            (4) 
where E is the error vector and V is the error free message 
(i.e., codeword). 
             S = H.Ve = H.(V+E) =H.V + H.E = H.E        (5) 
where S is the syndrome for the particular message Ve. In 
the next section, we will discuss the proposed linear 
systematic block code. 
  

4. Proposed Code 
 

The proposed SEC-DED-DAEC code has the 
following properties: 
1) All single bit errors can be corrected 
2) All double bit errors can be detected 
3) All adjacent double bit errors can be corrected 
4) The miscorrection probability for non-adjacent double 

errors is reduced 
The characteristics of a linear block code are 

completely determined by its H-matrix. To detect all 
single bit errors, the corresponding error syndromes 
should be unique. Note that the syndrome for a single bit 
error at the bit position p is the same as the p-th column of 
the H-matrix. To uniquely identify all the single bit errors, 
all the columns of the H-matrix must be unique. 

To detect all the double bit errors, the corresponding 
syndromes should be different from all the single bit error 
syndromes. The syndrome for a double bit error is given 
by the exclusive-or (XOR) of the corresponding columns 
of the H-matrix. So there cannot be any 3-cycle in the H-
matrix. A k-cycle refers to a set of k linearly dependent 
columns of the parity check matrix, i.e., when XORed 
together, the output is an all-zero column. To be able to 
correct all the adjacent double bit errors, the syndromes 
for the adjacent double bit errors should be different from 
each other and also different from all the single-error 
syndromes. Next we define the conditions that must be 
satisfied by the H-matrix for the proposed code: 
1) No all 0 columns. 
2) All columns are distinct 
3) No linear dependency involving 3 or less columns i.e., 

no 2-cycle and 3-cycle are allowed. 
4) No linear dependency involving columns Ci,Cj,Ck,Cm 

where m>k>j>i, such that j=i+1 and m=k+l. 
5) Moreover the code tries to minimize the number of 4-

cycles involving Ci,Cj,Ck,Cm where m>k>j>i, such 
that j=i+1 or k=j+l or m=k+1. 
 Condition 1 ensures that no single bit error case match 

the error free case. 

Condition 2 ensures that all the single error syndromes 
are unique. Every single error syndrome matches one of 
the columns of the H-matrix. Since all the columns of the 
H-matrix are distinct, the single bit errors are uniquely 
identifiable and hence correctable. Additionally this 
condition ensures that there are no pairs of double errors 
of the form (i,j) and (j,k) such that the corresponding 
syndromes are the same. Assume that such double errors 
exist, then (Ci⊕Cj)⊕(Cj⊕Ck)=0, i.e., (Ci⊕Ck)=0 but that 
contradicts the fact that all the columns of the H-matrix 
are distinct. This ensures that syndromes for adjacent 
errors of the form (i,i+1) and (i+1,i+2) are different. 

Condition 3 ensures that the syndromes for all double 
bit errors are different from that of the single bit errors. 
The syndrome for a double bit error is determined by the 
XOR of the columns corresponding to the erroneous bit 
positions. If the H-matrix is free of 3-cycles then the XOR 
of any two columns of the H-matrix is not identical to any 
of the columns of the H-matrix. This ensures that the 
syndromes of all the double bit errors are different from 
the single bit error syndromes, and condition 2 ensures 
that the double bit error syndromes are non-zero. Hence 
all the double bit errors are detectable.  

Condition 4 along with condition 2, ensures that a 
syndrome for an adjacent double bit error is different 
from all other adjacent double bit error syndromes. If we 
assume that the only errors are single bit errors or 
adjacent double bit errors, then with an H-matrix 
satisfying conditions 1 through 4, we can uniquely 
identify the syndromes for all single bit errors and 
adjacent double bit errors and hence can correct all single 
bit errors and all double adjacent bit errors and detect all 
double bit errors. 

However the syndromes for the adjacent bit errors are 
shared with some non-adjacent double bit error 
syndromes. This is because some 4-cycles are allowed in 
order to reduce the check-bit overhead. So there is a 
possibility that a non-adjacent double bit error will be 
mistaken as an adjacent double bit error and hence will be 
incorrectly corrected (although the probability of non-
adjacent double errors is much less than that of the 
adjacent double errors). Condition 5 tries to minimize the 
probability of such an event happening. We call the 4-
cycles of the type given by condition 4, forbidden 4-
cycles (4FC). We call the 4-cycles of the type Ci,Cj,Ck,Cm 
where m>k>j>i, such that j=i+1 or k=j+l or m=k+1, bad 
cycles (4BC), since their presence have a detrimental 
effect on the capacity of the code. The number of non-
adjacent double bit errors is n

2C  − (n − 1). For the double 
errors that are caused by independent SEUs, all the double 
errors are equally likely and the miscorrection probability 
is given by:   

Pr (miscorrection)=
)1n(C

BC4#
n
2 −−

                  (6) 
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By reducing the number 4BCs, the miscorrection 
probability can be minimized. 

 

5. Code Design Procedure 
 

The design of the H-matrix is essentially a systematic 
search process to satisfy all the conditions mentioned in 
the previous section. For an (r×n) matrix, there are 2(r×n) 
possible choices, so an exhaustive search approach is 
ruled out for reasonably large values of r and n. Figure 1 
shows a H-matrix for a (22,16) code.  Even for this code, 
an exhaustive search is not practical even if the domain of 
columns considered is restricted.  The weight of a column 
of the H-matrix is defined as the number of 1’s in the 
column. If we limit the H-matrix to only weight-3 and 
weight-1 columns, then there are 6

3C = 20 choices out of 

which 16 columns can be chosen in 20
16C  = 4845 ways. 

For each choice there are (16! > 2 × 1013) column 
permutations which should be searched for the best code. 
So an exhaustive search will have to search (4845 × 16! > 
2 × 1013) matrices for the best code. The search space 
increases further if arbitrary weighted columns are 
allowed. Note that For the H-matrix in Fig. 1, no column 
of weight two is allowed because any weight-2 column 
will create a 3-cycle with two weight-1 columns.  

Constructing the best H-matrix for a SEC-DED-
DAEC code that satisfies all of the conditions discussed 
in Sec. 4 is NP-complete.  A pseudo-greedy search 
procedure can be used as shown in Fig. 3. The outer while 
loop stops once a valid code is found or the maximum 
backtrack limit is exceeded. The inner while loop finds a 
set of valid columns (that does not introduce any 
forbidden cycles) for the current column position. If no 
valid column is found for the current column position, 
then the last choice for a column has to be undone. This 
corresponds to a backtrack. If multiple valid columns are 
found for the current column position then the one that 
minimizes the number of bad 4-cycles in the currently 
constructed code space is chosen. Once an initial H-
matrix is found, a limited number of column permutations 
are tried to avoid a local optimum and search for a better 
H-matrix in terms of reduced miscorrection probability. 

 
1100110001110100100000 
0001010011011001010000 
1010100111100011001000 
1001001110010110000100 
0110101100001101000010 
0111011000101010000001 

 
Figure 1.  H-matrix for proposed (22,16) code 

    
     101110010101100001001010011100001000000 
     010101001011000100011100011000010100000 
     101010100110001010110000110000110010000 
      010100011100010101100001100001110001000 
     001001100000101101001011000011100000100 
     100001001001011010010110100111000000010 
     010010110010110010100101001110000000001 

 
Figure 2.  H-matrix for proposed (39,32) code 

 
Input:  n, maxIter, maxBacktrack, maxPermute 
Output:  H-matrix 
 
avail_col = All 1-weight columns, followed by 3-weight 
columns, followed by 5-weight columns, and so forth up to 
the largest weight columns being considered 
currentCol = 0;   backtrack = 0 
while ( currentCol < n ) { 
    Iter = 0 
    validColPool[currentCol] = {} 
    while ( iter < maxIter ) { 
       Iter++ 
       C = Untried least-weighted column from avail_col 
       Check for existence of forbidden 4-cycles 
       if ( ! 4FCfound ) { 
          validColPool[currentCol] = 
                  validColPool[currentCol] ∪ C 
       } 
    } 
    if ( empty(validColPool[currentCol]) ) { 
       backtrack++ 
       if ( backtrack > maxBacktrack ) { 
           return    // no code found 
       } else { 
           currentCol-- 
           if ( currentCol < 0 )  currentCol = 0; 
           continue; 
       } 
    } else { 
       sCol = selectMin4BC(validColPool[currentCol])) 
       add sCol to H-matrix 
       currentCol++ 
       backtrack=0; 
    } 
} 
permuteC = 0;  orig4BC=count4BC(H-matrix); 
while ( permuteC < maxPermute) { 
    permuteC++ 
    permuteColumns() 
    Check for existence of forbidden 4-cycles 
    if ( (!4FC)&&(count4BC(H-matrix)<orig4BC)) { 
        H-matrix  current H-matrix; 
    } 
} 

 

Figure 3.  Pseudo-greedy search algorithm 
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100101011101011001010010010000101100010011001000110100001110000010000000 
101110011000001010100100100001011000100110010001101000011100000101000000 
011010101011101011001001000010110001001100100011010000111000001100100000 
111101100101100110010010100101100010011001000110100001100000011100010000 
100101100011110110100101001011000100110010001100000011010000111000001000 
111011001111110111001010010110001001100000011001000110100001110000000100 
011010110110111100010100101100000011000100110010001101000011100000000010 
010111101110011100101001011000010110001001100100011010000111000000000001 

 

Figure 4.  H-matrix for proposed (72,64) code 
 

Table 1. Comparison of proposed SEC-DED-DEAC code with other codes 
 

(n,k) 
 

Codes 
2-Input 
XOR 
Gates 

Max 
Logic 
Depth 

Forbidden 
4-Cycles 

(4FC) 

Total 
4-Cycles 

Bad  
4-Cycles 

(4BC) 
SEC-DED (IBM system/3) 48 4 13 252 122 
Hsiao Code [Hsiao 70] 48 4 8 252 120 
SEC-DED-DAEC in [Abramson 59] 70 5 0 252 128 

 
 

(22,16) 

Proposed SEC-DEC-DAEC (Fig. 1) 48 4 0 251 118 
SEC-DED (IBM 8130)(40,32) 96 4 82 776 254 
Hsiao Code [Hsiao 70] 96 4 23 1363 425 
SEC-DED-DAEC in [Abramson 59] 132 6 0 1343 386 

 
 

(39,32) 

Proposed SEC-DED-DAEC (Fig. 2) 96 4 0 1363 379 
SEC-DED (IBM 3081) 256 6 230 8912 1292 
Hsiao Code [Hsiao 70] 208 5 122 8392 1399 
SEC-DED-DAEC in [Abramson 59] 296 7 0 8194 1335 

 
 
(72,64) 

Proposed SEC-DED-DAEC (Fig. 4) 224 5 0 8289 1316 
 

The number of the 2-input XOR gates required for the 
encoding/decoding can be computed from the H-matrix.  
It is equal to ∑#rows (row weight − 1). The encoding and 
decoding delays are determined by the maximum logic-
depth of the encoder and the decoder circuit which is 
equal to log2 (max. 1’s in any row). Figure 2 shows an 
H-matrix for the (39,32) code constructed using the 
search process as discussed above using only weight-1 
and weight-3 columns. Another H-matrix is shown for a 
(72,64) code in Fig. 4. In this case, weight-1, weight-3, 
and weight-5 columns are used. 

Table 1 shows the number of XOR gates and 
maximum logic depth for the syndrome generator, 
number of forbidden 4-cycles, total number of 4-cycles, 
and the number of bad cycles (4BCs) for the (22, 16), (39, 
32) and (72,64) codes for both the proposed code and the 
SEC-DED-DAEC code described in [Abramson 59] as 
well as some Hsiao codes and SEC-DED codes 
commonly used in industry. Note that the SEC-DED code 
and the Hsiao code cannot correct adjacent double bit 
errors because of the existence of forbidden cycles 
(4FCs). Using a random double error correcting (DEC) 
code can increase the memory size considerably and 
hence is not an attractive choice for memory ECC. For 
example to protect a 32-bit word, a DEC code needs at 
least 11 check bits and 14 check bits are needed to protect 
a 64-bit word. The proposed code also has minimal logic 
depth among the codes and also minimum check bit 

overhead. The total number of bad 4-cycles is lower for 
the proposed code than for [Abramson 59], and 
consequently it has a lower miscorrection probability. 

 

6. Encoding/Decoding Algorithm 
 

The proposed code is systematic. During encoding, the 
data bits can be directly copied and the check bits are 
generated using an XOR network corresponding to the G-
matrix. The decoding algorithm is as follows: 
1) Generate the syndrome using an XOR network 

corresponding to the H-matrix. 
2) If the syndrome is the all zero vector, then no error is 

detected, otherwise one or more errors occurred. 
3) If the syndrome matches any of the H-matrix columns, 

then a single error is detected and the error position is 
the corresponding column position. The corresponding 
bit should be flipped to correct the error. 

4) Else if the syndrome matches any of the n-1 adjacent 
double error syndromes, then a double adjacent error 
is detected and the corresponding bit positions are 
generated using the error correction logic. 

5) Else an uncorrectable error (UE) (i.e., a double non-
adjacent error or more than two errors) has occurred. 
The only additional overhead with respect to a 

conventional SEC-DED code comes from step 4 of the 
decoding step. Figure 5 shows the basic error detection 
and correction block diagram. If a non-zero syndrome is 
encountered, then the OR gate flags an error indication. If 
the syndrome matches any of the single error syndromes 
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then the syndrome decoder generates a 1 in the erroneous 
bit position. Otherwise, if the syndrome matches any of 
the adjacent double error syndromes, then the decoder 
generates 1’s at the erroneous adjacent bit positions. 
Otherwise the output of the syndrome decoder is the all 
zero output. The syndrome decoder consists of 3-input 
OR gates whose inputs are driven by outputs of r-input 
AND gates. The i-th output of the decoder is 1 if and only 
if a single error occurred at the i-th bit or a double-
adjacent error occurred at <i,i+1> bits or  <i-1,i> bits. The 
outputs of the decoder are used to generate the corrected 
word, by using n 2-input XOR gates. If the syndrome is 
non-zero and does not match any of the single or double-
adjacent error syndromes, then the UE signal is flagged. 

 

7. Conclusions 
 

The ECC methodology described in this paper adds the 
ability to correct adjacent errors at very little cost over 
conventional SEC-DED codes.  The only drawback is the 
possibility of miscorrection for a small subset of multiple 
errors, however MBUs caused by a single SEU have a 
much higher probability of occurring than having multiple 
independent SEUs accumulating in the same word (this is 
especially the case if memory scrubbing is used).  While 
bit interleaving is commonly relied upon to protect 
memories from MBUs, the proposed methodology 
provides another tool for a memory designer to use.  In 
some instances, it may be an attractive alternative to bit 
interleaving to allow for a more optimized memory 
layout, or it can be used in addition to bit interleaving to 
provide an additional layer of protection from MBUs. 
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