
Increasing Output Compaction in Presence of Unknowns using an X-Canceling
MISR with Deterministic Observation

Ritesh Garg1, Richard Putman1,2, and Nur A. Touba1

1Computer Engineering Research Center
Dept. of Electrical and Computer Engineering

University of Texas, Austin, TX 78712
{rgarg2,touba}@ece.utexas.edu

2Cirrus Logic, Inc.
2901 Via Fortuna, Suite 100

Austin, TX 78746
Richard.Putman@cirrus.com

Abstract
Recently, an X-canceling MISR methodology was

proposed in [Touba 07] which was based on providing
very high probabilistic error coverage by canceling out
X's in MISR signatures. This paper investigates a new
methodology for using the X-canceling MISR architecture
based on deterministically observing scan cells. The two
main advantages of the proposed approach are (1) it can
provide a higher amount of compaction, and (2) it is
effective for larger percentages of X's in the output
response. Also, this paper investigates a hybrid approach
that combines X-masking with an X-canceling MISR.
Experimental results indicate that significant amounts of
output compression can be achieved with no loss of fault
coverage.

1. Introduction
There are many sources of unknown ‘X’ values that

commonly arise during simulation, for example
uninitialized memory elements, bus contention, floating
tri-states, etc. Output response compaction in the presence
of X values is a major issue for test compression and BIST.
X’s corrupt the final signature making it unknown. There
are three basic approaches for handling X’s. One is to do
X-bounding which involves inserting design-for-testability
(DFT) hardware into the CUT to prevent X’s from
propagating to scan cells in the first place [Wang 06]. A
second approach, which does not require modifying the
CUT, is to use X-masking. This involves masking out the
X’s at the input to the compactor. Mask data is required to
specify which scan chain outputs should be masked in
each clock cycle. A number of techniques have been
developed for designing the masking hardware and
compressing the amount of mask data that is required
[Barnhart 01], [Wohl 01, 03, 04], [Pomeranz 02], [Naruse
03], [Chickermane 04], [Vokerink 05], [Chao 05], [Tang
06], [Rajski 06a]. A third approach is to use an X-tolerant
compactor that can compact an output stream that contains
X’s. A number of X-tolerant compactors have been
proposed including X-Compact [Mitra 04a], convolutional
compactors [Rajski 05], low fanin compactors [Wohl 03b],

X-MISR [Mitra 04b], X-Filter [Sharma 05], and modular
compactors [Rajski 06b]. Recent work has also begun
looking at ways for tolerating higher densities of X’s. In
[Wohl 07], selective X-masking is combined with a
combinational compactor to tolerate higher X densities.

An X-canceling MISR methodology was proposed in
[Touba 07] which is based on providing very high
probabilistic error coverage by canceling out X’s in MISR
signatures. The error coverage can be made arbitrarily
high and match that of using a conventional MISR to
compact output responses without X’s. This approach is
highly efficient when the percentage of X’s is low (e.g.,
1% or less). It becomes less efficient for larger
percentages of X’s. This paper investigates two
approaches for handling larger percentages of X’s using an
X-canceling MISR. The first is based on deterministically
observing scan cells, and the second is based on using a
hybrid approach that combines X-masking with an X-
canceling MISR.

The first approach is a new methodology for using the
X-canceling MISR architecture which is based on
deterministically observing scan cells. It is effective for
larger percentages of X’s in the output response and can
provide greater amounts of compression than probabilistic
error detection. It can cancel out all X’s and
deterministically provide observation of any subset of non-
X values. By having the automatic test pattern generator
(ATPG) procedure record the subset of scan cells that
must be observed to detect the necessary faults for a
particular test pattern, the proposed method can then be
used to deterministically observe those scan cells. By so
doing, it can preserve the fault coverage of a test set in the
presence of any distribution of X’s.

The second approach described in this paper combines
X-masking with an X-canceling MISR. The benefit of this
hybrid approach is that the X-masking hardware can target
only the easy to mask X’s and can let the rest of the X’s go
through to the X-canceling MISR to be canceled there.
This added flexibility allows for much greater
compression of the masking control data without loss of
fault coverage. One particular masking technique is
proposed which can exploit the added flexibility.

26th IEEE VLSI Test Symposium

1093-0167/08 $25.00 © 2008 IEEE
DOI 10.1109/VTS.2008.42

35

26th IEEE VLSI Test Symposium

1093-0167/08 $25.00 © 2008 IEEE
DOI 10.1109/VTS.2008.42

35

2. Overview of X-Canceling MISR

This section gives an overview of an X-canceling
MISR and describes the new idea of how to use it for
deterministic observation.

Consider the output response that has been captured in
the scan chains after applying a test vector. Let the value
in each scan cell be represented by a symbol (as illustrated
in Fig. 1). Symbolic simulation can be performed to
obtain the final state of the MISR in terms of the symbols
after the output response has been shifted in to the MISR.
Each bit of the MISR will be equal to a linear combination
of the scan cells. This is shown in Fig. 1 where, for
example, the final value of the top bit of the MISR will be
equal to X1� O3� D8�O13.

 In Fig. 1, assume each symbol Xi has an X value and
each symbol Di and Oi has a non-X value. Moreover,
assume each symbol Di corresponds to a scan cell that
needs to be observed to ensure detection of the necessary
faults for this particular test vector. In [Touba 07], only
the X dependence was considered and all non-X values
were observed probabilistically. In this work, the D
dependence is also taken into consideration to ensure that
the all D’s are deterministically observed.

Without loss of generality, assume all the Oi values in
the output response are 0 so that each MISR bit is now
simply equal to the linear combination of the X and D
values. The X and D dependence of the MISR bits in this
case are as shown in Fig. 2. The linear equations for each
MISR bit can be represented as a matrix where each row
corresponds to a MISR bit and each column corresponds
to an X or D. Each entry in the matrix is a 1 if the MISR
bit corresponding to the row depends on the X or D
corresponding to the column. This is illustrated in Fig. 2.
For example, in Fig. 2, the second row of the matrix
corresponds to M2, and the 1’s in the first three columns
indicate dependence on X1, X2, and X3, respectively.

Gauss-Jordan elimination [Cullen 97] can be performed
on the matrix in Fig. 2. Gauss-Jordan elimination involves
performing rows operations that transform a set of
columns into an identity matrix. Fig. 3 shows the matrix
in Fig. 2 after Gauss-Jordan elimination has been
performed. As was shown in [Touba 07], as long as the
number of bits in the MISR is larger than the number of
X’s compacted in the MISR, it is always possible to obtain
rows after Gauss-Jordan elimination that have no
dependence on the X’s. In Fig. 3, it can be seen that the
last two rows have no dependence on the X’s. Looking at
the last row, for example, if MISR bits M3, M4, and M5 are
XORed together, all the X’s cancel out and the resulting
value will have no dependence on the X’s. This value can
be compared with its fault-free value to detect errors in the
non-X values that it depends on. Any combination of
MISR bits can be XORed together using a programmable
XOR as shown in Fig. 4. Since each XOR combination of
MISR bits will depend on roughly half of the non-X

O3O9O15

X2O10D16

+

O5O11O17

O6O12X4 +

+

+

M3 = O2�X3 �O5 �O10�O15

M4 = X1�O6�O11�D16

M5= X1�O2�X3�O12�O17

M6 = O2�X3�X4

+

+O2O14

X1O13

D8

X3

M2 = X1�O2�X2�X3�O9�O14

M1 = X1�O3�D8�O13

Figure 1. Example of Symbolic Simulation of MISR

M3 = X3

M4 = X1�D16

M5 = X1�X3

M6 = X3�X4

M2 = X1�X2�X3

M1 = X1�D8 M1

M2

M3

M4

M5

M6�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

00

00

10

00

00

01

1100

0101

0001

0100

0111

0001

X1 X2 X3 X4 D8 D16

Figure 2. Linear Equations for MISR in Fig. 1

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

10

01

00

00

00

00

0000

0000

1000

0100

0010

0001 M3�M5

M2�M5

M3

M3�M6

M1�M3�M5

M3�M4�M5

X1 X2 X3 X4 D8 D16

Figure 3. Gauss-Jordan Reduction of MISR Equations

3636

values, it was shown in [Touba 07] that checking q such
combinations of MISR bits would give an error coverage
approximately equal to 1-2-q. By simply checking a
sufficient number of X-canceled combinations of MISR
bits, a high probabilistic error coverage could be obtained.
For example, by checking 7 X-canceled combinations,
over 99% error coverage can be obtained. This is very
efficient when the percentage of X’s is around 1% or less.
However, it becomes less efficient for larger percentages
of X’s.

The idea in this paper is that rather than checking a
larger number of combinations to ensure a high
probabilistic error coverage of all non-X values, a
deterministic procedure could be used to ensure that the
necessary to observe values (i.e., the D’s) are checked in a
small number of combinations. Since checking each
combination using the architecture in Fig. 4 requires m bits
be supplied by the tester where m is the number of bits in
the MISR, if the number of combinations that need to be
checked can be reduced, then the data stored on the tester
can be reduced resulting in greater test data compression.

To observe the D’s deterministically, it is necessary to
include them in the dependency matrix as is done in Fig. 2.
Then when Gauss-Jordan elimination is performed, it not
only processes the X columns, but also the D columns so
that there is a single 1 in every row and column as shown
in Fig. 3. The number of X’s and D’s compacted should
be limited so that it is always possible to obtain such a
matrix after Gauss-Jordan elimination. Generally that
means that each MISR signature can compact up to a total
number of X’s plus D’s equal to m, the size of the MISR,
so that the number of columns does not exceed the number
of rows in the dependency matrix. After Gauss-Jordan
elimination, the rows that depend only on the D’s (i.e., not
on the X’s) are all XORed together to form one MISR bit
combination that depends on all the D’s. In the example in
Fig. 3, this means that the last two rows are XORed
together resulting in the MISR bit combination equal to:

(M1�M3�M5)� (M3�M4�M5) = M1�M4

The MISR bit combination M1� M4 will not depend on
any X’s, but will depend on all the D’s. This can be seen
by looking back at Fig. 1, and computing:
 M1�M4 = (X1�O3�D8�O13)� (X1�O6�O11�D16)

 = O3�O6�D8�O11�O13�D16

As long as the number of X’s plus the number of D’s
compacted by the MISR is less than or equal to m, and the
Gauss-Jordan elimination produces a single 1 in every row
and column, it is always possible to find a MISR bit
combination that will depend on all the D’s.

Checking a MISR bit combination that depends on all
the D’s still does not ensure that all errors in the D’s will
be detected. If an even number of D’s have errors, the
errors will cancel out in the MISR bit combination and not
be detected. So it is still necessary to check more than one
combination. So then the question becomes what is the
advantage of deterministically considering the D’s versus
just using probabilistic error coverage as in [Touba 07].
When using just a single large MISR, there may not be
much advantage to doing this. However, as will be shown
in the next section, if the large MISR is replaced by
multiple smaller MISRs, then deterministically
considering the D’s can provide a significant advantage
over probabilistic error coverage for equivalent aggregate
MISR sizes. One specific scheme is described in Sec. 4
which uses a total of 16 MISRs each of size 16 bits with
deterministic consideration of the D’s, and it is shown to
provide almost a factor of 3 better compression in
comparison to using a single MISR of size 256 with
probabilistic error coverage.

3. Using Multiple MISRs

As was shown in the previous section, even with
deterministic consideration of the D’s, it is not sufficient to
observe only one MISR bit combination because an even
number of errors may cancel out. Assuming all error
combinations are equally likely, then the error coverage
for the D’s would only be 50%. To reduce the probability
of error canceling, it is necessary to observe a larger

M
I
S
R

&

&

&

XOR

m-bit Selection Reg.

Scan Chain

Phase
Shifter

Scan Chain

Scan Chain

m-bit

X-Canceled
Combination

Figure 4. X-Canceling MISR

3737

number of MISR bit combinations. However, if only a
single large m-bit MISR is used, then checking each
combination requires m bits to be stored on the tester.
If two combinations are checked where each
combination depends on 50% of the D’s, then the error
coverage for the D’s would be 75% (the probability
that there is an even number of errors in each
combination is 0.5, so the probability that both have
even errors is 0.25). So with a single m-bit MISR,
obtaining 75% coverage of the D’s requires 2m bits be
stored on the tester. Now consider replacing the single
m-bit MISR with two m/2-bit MISRs each of which
compact half of the scan chains. For each of the two
m/2-bit MISRs, a combination of MISR bits can be
found using the procedure described in Sec. 2 such that
it depends on all the D’s captured by that MISR. If
half the D’s propagate to each MISR, then by checking
one MISR bit combination for each of the m/2-bit
MISRs, the same error coverage for the D’s (i.e., 75%)
can be obtained as checking two MISR bit
combinations of the m-bit MISR. However, checking
each of the combinations for the m/2-bit MISRs
requires only m/2 bits, so in this case 75% coverage of
the D’s is obtained with storing only m bits on the
tester which is a factor of 2 improvement.

There are two drawbacks to using the two m/2-bit
versus using one m-bit MISR:

1. The compaction must stop when either of the two
MISRs captures a total number of X’s plus D’s
equal to m/2. If the X’s and D’s are exactly evenly
distributed between the two m/2-bit MISRs, then
this would still happen at the same point as when a
single m-bit MISR would capture a total number of
X’s plus D’s equal to m. However, in reality, it is
unlikely that the X’s and D’s would be exactly
evenly distributed, so in general one of the m/2-bit
MISRs would fill up sooner than the other and thus
the total number of X’s plus D’s compacted for
each signature with two m/2-bit MISRs would be
less than it would for a single m-bit MISR.

2. If the D’s are not evenly distributed between the
two m/2-bit MISRs, then the error coverage will be
lower than for a single m-bit MISR.

One approach to mitigate both of these drawbacks
would be to use two pairs of m/2-bit MISRs (4 MISRs
altogether) in the following way. Divide the scan
chains into four evenly sized groups G1, G2, G3, and
G4. Have one MISR capture from G1 and G2 and
another MISR capture from G3 and G4. Then for the
other pair of MISRs, have one capture from G1 and G3

and the other from G2 and G4. For each signature,
there is now a choice of using one or the other pair of
MISRs. If one pair of MISR is highly skewed in the
distribution of X’s or D’s, then the other pair can be
used. This helps to smooth out the distributions so that
the performance of the m/2-bit MISRs in terms of error

coverage and number of scan slices compacted per
signature will not significantly lag that of an m-bit
MISR while still enjoying a factor of 2 reduction in
storage requirements on the tester. The cost of using
two pairs of m/2-bit MISRs versus only a single pair is
of course the additional overhead of adding more
MISRs plus one extra bit needs to be stored on the
tester per signature to dynamically select which pair of
MISRs to use for each signature.

This approach of replacing an m-bit MISR with two
pairs of m/2-bit MISRs can be used recursively. Each
of the four m/2-bit MISR could be replaced by two
pairs of m/4-bit MISRs. The total number of MISRs
would now be 16. A single signature in the m-bit
MISR is now replaced with signatures from 4 of the
m/4-bit MISRs. This would give an error coverage for
the D’s close to that of checking 4 combinations in the
m-bit MISR which is (1-2-4 = 93.75%), and a reduction
in tester storage of almost a factor of 4. Note that now
3 bits must be stored on the tester per signature to
select which pairs of m/4-bit MISRs are used.

4. Multiple MISR Design Example

Using this approach of splitting a larger MISR into
multiple smaller MISRs as described in Sec. 3, one
particular design example is described here.

Consider the design example shown in Fig. 5. A
single 64-bit MISR is replaced with 16 MISRs each of
size 16. The 16-bit MISRs compact output response
data scan slice by scan slice until a point is reached
where compacting an additional slice would make it no
longer possible to solve for all the D’s using signatures
from 4 of the MISRs. At this point, 4 of the MISR
signatures are processed. Gauss-Jordan reduction is
performed on the linear equations for those MISRs as
described in Sec. 2. In order to ensure high error
coverage of the D’s, two linear combinations are
checked for each MISR signature. Each of the two
linear combinations per signature are formed by
XORing together half of the rows in the Gauss-Jordan
reduced matrix that depend only on D’s. This evenly
divides the D’s between the two combinations. The
end result is that 8 linear combinations are checked
(two combinations for each of the 4 MISRs). Every D
is included in exactly one of the linearly dependent
combinations. The best case is if the D’s are evenly
distributed among all 4 MISRs. In that case, the error
coverage for the D’s where all error combinations are
equally likely would be approximately 1-2-8=99.6%.
All odd errors in the D’s would be guaranteed to be
detected since at least one of the 8 combinations must
have an odd number of errors. The error coverage for
all other non-X bits would be 1-2-2=75%. In general,
the error coverage would be slightly lower due to
variance in the distribution of D’s. Experiments
indicate the average error coverage for the D’s is
greater than 98% and as high as 99.5%.

3838

M
I
S
R

X-Free

(Optional)

X-Canceling
MISR

Scan Group 3
Scan Group 8

X-Canceling
MISR

Scan Group 1
Scan Group 6

X-Canceling
MISR

Scan Group 3
Scan Group 7

X-Canceling
MISR

Scan Group 1
Scan Group 5

X-Canceling
MISR

Scan Group 5
Scan Group 7

X-Canceling
MISR

Scan Group 1
Scan Group 3

X-Canceling
MISR

Scan Group 5
Scan Group 6

X-Canceling
MISR

Scan Group 1
Scan Group 2

8-to-1
MUX

16-Bit Combination
Select2

3-Bit MISR
Select

X-Canceling
MISR

Scan Group 4
Scan Group 7

X-Canceling
MISR

Scan Group 2
Scan Group 5

X-Canceling
MISR

Scan Group 4
Scan Group 8

X-Canceling
MISR

Scan Group 2
Scan Group 6

X-Canceling
MISR

Scan Group 6
Scan Group 8

X-Canceling
MISR

Scan Group 2
Scan Group 4

X-Canceling
MISR

Scan Group 7
Scan Group 8

X-Canceling
MISR

Scan Group 3
Scan Group 4

8-to-1
MUX

16-Bit Combination
Select1

Figure 5. 16 X-Canceling MISRs Each of Size 16-
Bits Compacting Scan Chains Divided Evenly into

8 Groups

The storage requirements for using a single 64-bit
MISR checking 8 combinations would be (8*64)=512
bits per signature, and each signature could compact a
total of 64 X’s plus D’s. So the cost is 512/64=8 bits of
storage per X and per D. Going to a 256-bit MISR
would also still require 8 bits per X and per D. The
probabilistic approach in [Touba 07] would require 8
bits of storage per X (it doesn’t depend on D’s) for
99.6% error coverage, so it would actually be better.
Now compare this to using the multiple MISR design
in Fig. 5. For the multiple MISR design, each
signature can compact 64 X’s plus D’s, and requires
generating 2 linear combinations of four 16-bit MISRs
where each linear combination requires 3-bits to select
which MISR and 16-bits to select the combination. So
the storage requirement per signature as shown in the
figure is 4*(16+16+3) = 140 bits. The cost is 140/64
=2.1875 bits of storage per X and per D. Consider a
test set with 1% X’s and 2% D’s, in this case the

method in [Touba 07] would require around 8*1%=8%
whereas the proposed method would require around
(2.1875)(1%+2%) =6.56%. However, now consider a
design with 3% X’s and 2% D’s, in this case the
method in [Touba 07] would require around
8*3%=24% whereas the proposed method would
require around (2.1875)(3%+2%)=10.9375%. So the
bottom line is that for low percentages of X’s, the
method in [Touba 07] is very efficient. However, for
designs with larger percentages of X’s, the proposed
multiple MISR method is much more efficient.

5. Combining X-Masking and X-Canceling
To further improve the output compression

achieved by an X-canceling MISR on designs with
larger numbers of X’s, a hybrid approach that combines
X-masking with an X-canceling MISR can be used. X-
masking circuitry is added between the outputs of the
scan chains and the inputs to the X-canceling MISR.
The purpose of the X-masking circuitry, as well as the
ensuing methodology, is to mask as many X’s as
possible with the smallest amount of mask and control
data, such that the overall amount of data stored on the
ATE used to mask all of the X’s is less than it would
have been if the X-canceling MISR was used by itself.

The key advantage of using X-masking plus
X-canceling versus conventional X-masking only
approaches that is exploited here is that the same mask
can be reused for many scan slices since it is not
necessary to mask all X’s. This is taken advantage of
by using the X-masking architecture proposed in Fig. 6.

For m scan chains, the architecture in Fig. 6 consists
of a control signal, an m-bit masking register, an
interval counter, and two logic gates per internal scan
chain for a total of 2m logic gates. The control signal is
used to determine whether or not to apply the mask on
a per scan slice basis. If the control signal is a ‘1’, then
the mask is applied. If the control signal is a ‘0’, then
the mask data itself is blocked and cannot affect the
scan output response data. The mask register holds the
mask data, which can be applied to the current scan
slice. If the control signal is a ‘1’, and a given mask
data bit is also a ‘1’, then the corresponding output
response data bit is masked and forced to be a ‘1’. A
‘0’ in the mask data means no masking will occur on
the corresponding output response data bit even if the
mask control signal is ‘1’.

The interval counter counts down the number of
shift cycles (i.e., scan slices) the current mask can be
applied to before a new mask is loaded. A constant
value representing that number of scan slices is loaded
into the interval counter’s control logic one time at the
beginning of the scan test. Every time the interval
counter hits zero, including when it is reset at the
beginning of the scan test, a new mask is loaded into

3939

+

+

+

X-Canceling
MISR

Mask Register
& Control Logic

Scan Chain

Scan Chain

Scan Chain

D
ec

om
pr

es
so

r

Interval
Counter

b

bb

b Tester
Channels

& & &
Mask

Control

Figure 6. Proposed X-Masking Architecture for Use with X-Canceling MISR

the mask register, and the interval counter is loaded with
its preprogrammed value. If there are m internal scan
chains requiring m bits of mask data and b tester channels,
then it will take m/b clock cycles to fully load the mask
data at the beginning of each interval.

The goal of creating each mask is to make it applicable
to as many adjacent scan slices as possible and mask as
many X’s in those scan slices as possible, without masking
out any of the D’s for which observation must be ensured.
Also, it is desirable to minimize the number of non-X
values that are masked as they may be useful for detecting
unmodeled faults.

The mask is created by first determining the locations
of the D and X bits for each scan slice. Next, an interval of
n number of scan slices is chosen to be processed for each
new mask. Then an optimal mask is created for each
interval by determining which scan slices should not be
masked, as well as which scan slice bit position should be
masked.

The algorithm for creating all of the masks for the
entire pattern set, along with an example illustrated in Fig.
7, is as follows:

1) Select the next interval of n scan slices to process. In
the example in Fig. 7, the interval contains five scan
slices (shown as rows numbered 1 to 5).

2) All mask bits corresponding to scan chains in the
current interval that contain X’s and no D’s are set to
‘1’ indicating that those scan chains will be masked. In
Fig. 7, scan chain 6 is the only scan chain that this
applies to, so it’s mask bit is set to a ‘1’.

3) For each scan chain containing both X’s and D’s, the
only way to mask the scan chain is if the mask control
bit for the scan slices containing the D’s is set to 0.
Setting the mask control bit for a scan slice to 0
prevents masking any X’s in that scan slice. A benefit
function can be computed as the number of X’s that
can be masked in the scan chain minus the number of
X’s that cannot be masked for each of the scan slices
containing D’s for which the mask control bit would
need to be set to 0. For example, for scan chain 4, it

has three X’s and one D. The one D resides in scan
slice 2 which contains one X. So the benefit function
for scan chain 4 would be 3-1=2. The scan chain with
largest positive benefit function is selected first. It’s
mask bit is set to ‘1’ and the mask control bit for each
scan slice containing a D in that scan chain is set to ‘0’.
This is repeated in a greedy fashion until no more scan
chains exist whose benefit function is positive. In the
example in Fig. 7, there are two scan chains that have
both X’s and D’s, namely scan chains 4 and 5. Their
initial benefit functions are 2 and 0 respectively. So
only scan chain 4 has its mask bit set to ‘1’ and the
mask control bit for scan slice 2 is set to ‘0’ to prevent
masking the D in scan chain 4.

4) When the greedy mask selection procedure in step 3
completes, then all the beneficial scan chain mask bits
have been set to ‘1’ and all the necessary mask control
bits have been set to ‘0’. The procedure can now move
to the next interval of n scan slices.

s d s s s d s s s s
s s s s d s x s s s
s s s s s d s s s s
s d s s s x s s s s
s d s s s s s s s s

(a)

(b)

Mask
Cntrl.

Scan Chains
0 1 2 3 4 5 6 7 8 9

Mask 0 0 0 0 1 0 1 0 0 0

1 s d s s x d s s s s
0 s s s s d s x s s s
1 s s s s x d x s s s
1 s d s s s x s s s s
1 s d s s x s x s s s

Scan
Slice
1
2
3
4
5

Figure 7. (a) Example of Mask Data for Output
Response Interval; (b) Output Response after Masking

4040

For the example output response in Fig. 7, the
algorithm only masks scan chains 4 and 6 and disables
masking of scan slice 2. All but two of the X’s are
masked. The resulting masked output response data
(which is shown in Fig. 7b) is fed into the X-canceling
MISR.

By being able to reuse a carefully created mask for
multiple scan slices, without masking any D’s and
masking out a large percentage of X’s from the output
response data, the proposed X-masking approach, when
combined with a downstream X-canceling MISR, can
provide a significant improvement in output response data
compaction, especially in the presence of a large number
of unknowns.

6. Experimental Results

Experiments were performed using the compactor
design in Fig. 5 with 16 X-canceling MISRs each of size
16 for output streams with different percentages of X’s and
D’s. The results are shown in Table 1. The first column
shows the percentage of X’s in the output stream. The
remaining columns show the various compressions
achieved for different percentages of D’s corresponding to
the different X percentages. Experimental results
substantiate that the number of bits stored on the tester is
approximately 2.1875 bits for each X or D, as described in
Sec. 4. Thus, the amount of compression reduces as the
number of X’s plus D’s increases.

To obtain higher compression, X-masking can be
combined with X-canceling as described in Sec. 5.
Experiments were performed on 3 industrial designs from
Cirrus Logic. SynTest’s ATPG tool was used to generate
the tests and report a scan cell that each necessary fault
propagated an error to. These scan cells were marked as
D’s in the output response. Table 2 reports the results.
The second and third column shows the percentage of X’s
and D’s present in the corresponding designs. Experiments

were performed for 3 different numbers of scan chains
which are shown in the fourth column. The output
response of all the three designs was compacted with and
without using the X-masking before X-canceling, and the
results are tabulated. As shown in the fifth column, a large
percentage of X’s are masked from all the designs using
the X-masking technique discussed in Sec. 5. The last
three columns show the compression ratio achieved and
the percentage improvement when using X-masking prior
to X-canceling as compared to X-canceling alone. All the
control and masking data needed to support the X-masking
(as described in Sec. 5) is factored into the compression
numbers.

Design B has the smallest number of X’s. As the
number of X’s get smaller, the control data for X-masking
starts to dominate the cost and this is seen from the
minimum percentage improvement for Design B as
compared to the other two designs. Furthermore, this
dominance is exacerbated by the fact that although more
X’s are able to be masked out for smaller numbers of scan
chains, much more control data is required and hence there
is a smaller percentage improvement.

Table 1. Compression for Different Percentages of
X’s and D’s using Design in Fig. 5

% of D's
% of X's

1% 2% 4% 6%
1% 21.3x 14.5x 9.0x 6.6x
3% 11.0x 9.0x 6.6x 5.3x
5% 7.6x 6.6x 5.3x 4.5x
8% 5.3x 4.8x 4.2x 3.7x

10% 4.5x 4.2x 3.7x 3.3x

Table 2. Results for Combining X-Masking and X-Canceling

Design
Percentage

X’s
Percentage

D’s
Scan

Chains

Percent X’s
Masked using

X-Masking

Compression
X-Canceling

Alone

Compression
X-Masking and

X-Canceling

Percentage
Improvement

A 5.37% 0.89%
64

128
256

83%
81%
78%

5.9x
6.5x
6.6x

14.3x
15.7x
15.9x

58.6%
58.9%
58.6%

B 2.58% 0.63%
64

128
256

83%
75%
71%

9.1x
10.7x
11.2x

21.0x
22.3x
23.6x

56.4%
51.8%
52.4%

C 8.33% 0.75%
64

128
256

83%
78%
77%

4.4x
4.8x
5.0x

11.6x
12.2x
12.7x

62.1%
60.2%
60.3%

4141

7. Conclusions
Using an X-canceling MISR with probabilistic

observation provides high error coverage for all errors,
but it becomes less efficient for larger percentages of X’s.
This paper showed how deterministic observation can be
used to achieve greater compression for higher
percentages of X’s. It was shown that by dividing a large
X-canceling MISR into multiple smaller X-canceling
MISRs, the number of bits required to process each
signature could be reduced while still observing the
necessary to observe bits (i.e., the D’s).

It was also shown that a hybrid approach combining
X-masking with an X-canceling MISR can significantly
increase the amount of compression. Large numbers of
X’s can be masked at low cost by focusing only on the
easy to mask X’s (where the mask data can be reused
across many scan slices) and leaving the rest of the X’s to
be handled by the X-canceling MISR.

References
[Barnhart 01] Barnhart, C., V. Brunkhorst, F. Distler, O.

Farnsworth, B. Keller, and B. Koenemann, “OPMISR: the
Foundation for Compressed ATPG Vectors,” Proc. of
International Test Conference , pp. 748-757, 2001.

[Brglez 89] Brglez, F., D. Bryan, and K. Kozminski,
“Combinational Profiles of Sequential Benchmark
Circuits,” Proc. of International Symposium on Circuits
and Systems, pp. 1929-1934, 1989.

[Chao 05] M. C.-T. Chao, S. Wang, S.T. Chakradhar, and K.-T.
Cheng, “Response Shaper: A Novel Technique to Enhance
Unknown Tolerance for Output Response Compaction,”
Proc. of International Conference on Computer-Aided
Design, pp. 80-87, 2005.

[Chickermane 04] Chickermane, V., B. Foutz, and B. Keller,
“Channel Masking Synthesis for Efficient On-Chip Test
Compression,” Proc. of International Test Conference, pp.
452-461, 2004.

[Cullen 97] Cullen, C.G., Linear Algebra with Applications,
Addison-Wesley, ISBN 0-673-99386-8, 1997.

[Mitra 04a] Mitra, S., and K.S. Kim, “X-Compact: An Efficient
Response Compaction Scheme,” IEEE Trans. on
Computer-Aided Design, Vol. 23, No. 3, pp. 421-432, Mar.
2004.

[Mitra 04b] Mitra, S., S.S. Lumetta, and M. Mitzenmacher, “X-
Tolerant Signature Analysis,” Proc. of International Test
Conference, pp. 432-441, 2004.

[Naruse 03] Naruse, M., I. Pomeranz, S.M. Reddy, and S.
Kundu, “On-Chip Compression of Output Responses with
Unknown Values Using LFSR Reseeding,” Proc. of
International Test Conference, pp. 1060-1068, 2003.

[Patel 03] Patel, J.H., S.S. Lumetta, and S.M. Reddy,
“Application of Saluja-Karpovsky Compactors to Test
Responses with Many Unknowns,” Proc. of VLSI Test
Symposium, pp. 107-112, 2003.

[Pomeranz 02] Pomeranz, I., S. Kundu, and S.M. Reddy, “On
Output Response Compression in the Presense of Unknown

Output Values,” Proc. of Design Automation Conference,
pp. 255-258, 2002.

[Rajski 00] Rajski, J., N. Tamarapalli, and J. Tyszer,
“Automated Synthesis of Phase Shifters for Built-In Self-
Test Applications,” IEEE Trans. on Computer-Aided
Design, Vol. 19, No. 10, pp. 1175-1188, Oct. 2000.

[Rajski 05] Rajski, J., J. Tyszer, C. Wang, and S.M. Reddy,
“Finite Memory Test Response Compactors for Embedded
Test Applications,” IEEE Trans. on Computer-Aided
Design, Vol. 24, No. 4, pp. 622-634, Apr. 2005.

 [Rajski 06a] Rajski, J., J. Tyszer, G. Mrugalski, W.-T. Cheng,
N. Mukherjee, and M. Kassab, “X-Press Compactor for
1000x Reduction of Test Data,” Proc. of International Test
Conference, Paper 18.1, 2006.

[Rajski 06b] Rajski, W., and J. Rajski, “Modular Compactor of
Test Responses,” Proc. of VLSI Test Symposium, pp. 242-
251, 2006.

[Saluja 83] Saluja, K.K., and M. Karpovsky, “Testing Computer
Hardware Through Test Data Compression in Space and
Time,” Proc. of International Test Conference, pp. 83-89,
1983.

[Sharma 05] Sharma M. and W.-T. Cheng, “X-Filter: Filtering
Unknowns from Compacted Test Responses,” Proc. of
International Test Conference, Paper 42.1, 2005.

[Tang 06] Tang, Y., H.-J. Wunderlich, P. Engelke, I. Polian, B.
Becker, J. Scholöffel, F. Hapke, and M. Wittke, “X-
Masking During Logic BIST and Its Impact on Defect
Coverage,” IEEE Trans. on VLSI, Vol. 14, No. 2, Feb.
2006.

[Touba 07] Touba, N.A., “X-Canceling MISR – An X-Tolerant
Methodology for Compacting Output Responses with
Unknowns Using a MISR,” Proc. of International Test
Conference, Paper 6.2, 2007.

 [Volkerink 05] Volkerink, E.H., and S. Mitra, “Response
Compaction with Any Number of Unknowns Using a New
LFSR Architecture,” Proc. of Design Automation
Conference, pp. 117-122, 2005.

[Wang 06] L.T. Wang, C.-W. Wu, X. Wen, VLSI Test Principles
and Architectures, Morgan Kaufmann, 2006.

[Wohl 01] Wohl, P., J.A. Waicukauski, and T.W. Williams,
“Design of Compactors for Signature-Analyzers in Built-In
Self-Test,” Proc. of International Test Conference, pp. 54-
63, 2001.

[Wohl 03a] Wohl, P., J.A. Waicukauski, S. Patel, and M.B.
Amin, “X-Tolerant Compression and Application of Scan-
ATPG Patterns in a BIST Architecture,” Proc. of
International Test Conference, pp. 727-736, 2003.

[Wohl 03b] Wohl, P., L. Huisman, “Analysis and Design of
Optimal Combinational Compactors,” Proc. of VLSI Test
Symposium, pp. 101-106, 2003.

[Wohl 04] Wohl, P., J.A. Waicukauski, and S. Patel, “Scalable
Selector Architecture for X-Tolerant Deterministic BIST,”
Proc. of Design Automation Conference, pp. 934-939,
2004.

 [Wohl 07] Wohl, P., J.A. Waicukauski, and S. Ramnath, “Fully
X-Tolerant Combinational Scan Compression,” Proc. of
International Test Conference, Paper 6.1, 2007.

4242

