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Abstract 
Recently, an X-canceling MISR methodology was 

proposed in [Touba 07] which was based on providing 
very high probabilistic error coverage by canceling out 
X's in MISR signatures.  This paper investigates a new 
methodology for using the X-canceling MISR architecture 
based on deterministically observing scan cells.  The two 
main advantages of the proposed approach are (1) it can 
provide a higher amount of compaction, and (2) it is 
effective for larger percentages of X's in the output 
response.  Also, this paper investigates a hybrid approach 
that combines X-masking with an X-canceling MISR.  
Experimental results indicate that significant amounts of 
output compression can be achieved with no loss of fault 
coverage. 

1. Introduction 
There are many sources of unknown ‘X’ values that 

commonly arise during simulation, for example 
uninitialized memory elements, bus contention, floating 
tri-states, etc.  Output response compaction in the presence 
of X values is a major issue for test compression and BIST.  
X’s corrupt the final signature making it unknown.  There 
are three basic approaches for handling X’s.  One is to do 
X-bounding which involves inserting design-for-testability 
(DFT) hardware into the CUT to prevent X’s from 
propagating to scan cells in the first place [Wang 06].  A 
second approach, which does not require modifying the 
CUT, is to use X-masking.  This involves masking out the 
X’s at the input to the compactor.  Mask data is required to 
specify which scan chain outputs should be masked in 
each clock cycle.  A number of techniques have been 
developed for designing the masking hardware and 
compressing the amount of mask data that is required 
[Barnhart 01], [Wohl 01, 03, 04], [Pomeranz 02], [Naruse 
03], [Chickermane 04], [Vokerink 05], [Chao 05], [Tang 
06], [Rajski 06a].  A third approach is to use an X-tolerant
compactor that can compact an output stream that contains 
X’s.  A number of X-tolerant compactors have been 
proposed including X-Compact [Mitra 04a], convolutional 
compactors [Rajski 05], low fanin compactors [Wohl 03b], 

X-MISR [Mitra 04b], X-Filter [Sharma 05], and modular 
compactors [Rajski 06b].  Recent work has also begun 
looking at ways for tolerating higher densities of X’s.  In 
[Wohl 07], selective X-masking is combined with a 
combinational compactor to tolerate higher X densities. 

An X-canceling MISR methodology was proposed in 
[Touba 07] which is based on providing very high 
probabilistic error coverage by canceling out X’s in MISR 
signatures.  The error coverage can be made arbitrarily 
high and match that of using a conventional MISR to 
compact output responses without X’s.  This approach is 
highly efficient when the percentage of X’s is low (e.g., 
1% or less).  It becomes less efficient for larger 
percentages of X’s.  This paper investigates two 
approaches for handling larger percentages of X’s using an 
X-canceling MISR.  The first is based on deterministically 
observing scan cells, and the second is based on using a 
hybrid approach that combines X-masking with an X-
canceling MISR.  

The first approach is a new methodology for using the 
X-canceling MISR architecture which is based on 
deterministically observing scan cells.  It is effective for 
larger percentages of X’s in the output response and can 
provide greater amounts of compression than probabilistic 
error detection.  It can cancel out all X’s and 
deterministically provide observation of any subset of non-
X values.  By having the automatic test pattern generator 
(ATPG) procedure record the subset of scan cells that 
must be observed to detect the necessary faults for a 
particular test pattern, the proposed method can then be 
used to deterministically observe those scan cells.  By so 
doing, it can preserve the fault coverage of a test set in the 
presence of any distribution of X’s. 

The second approach described in this paper combines 
X-masking with an X-canceling MISR.  The benefit of this 
hybrid approach is that the X-masking hardware can target 
only the easy to mask X’s and can let the rest of the X’s go 
through to the X-canceling MISR to be canceled there.  
This added flexibility allows for much greater 
compression of the masking control data without loss of 
fault coverage.  One particular masking technique is 
proposed which can exploit the added flexibility. 
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2. Overview of X-Canceling MISR 

This section gives an overview of an X-canceling 
MISR and describes the new idea of how to use it for 
deterministic observation. 

Consider the output response that has been captured in 
the scan chains after applying a test vector.  Let the value 
in each scan cell be represented by a symbol (as illustrated 
in Fig. 1).  Symbolic simulation can be performed to 
obtain the final state of the MISR in terms of the symbols 
after the output response has been shifted in to the MISR.  
Each bit of the MISR will be equal to a linear combination 
of the scan cells.  This is shown in Fig. 1 where, for 
example, the final value of the top bit of the MISR will be 
equal to X1� O3� D8�O13. 

 In Fig. 1, assume each symbol Xi has an X value and 
each symbol Di and Oi has a non-X value.  Moreover, 
assume each symbol Di corresponds to a scan cell that 
needs to be observed to ensure detection of the necessary 
faults for this particular test vector.  In [Touba 07], only 
the X dependence was considered and all non-X values 
were observed probabilistically.  In this work, the D
dependence is also taken into consideration to ensure that 
the all D’s are deterministically observed. 

Without loss of generality, assume all the Oi values in 
the output response are 0 so that each MISR bit is now 
simply equal to the linear combination of the X and D
values.  The X and D dependence of the MISR bits in this 
case are as shown in Fig. 2.  The linear equations for each 
MISR bit can be represented as a matrix where each row 
corresponds to a MISR bit and each column corresponds 
to an X or D.  Each entry in the matrix is a 1 if the MISR 
bit corresponding to the row depends on the X or D
corresponding to the column.  This is illustrated in Fig. 2.  
For example, in Fig. 2, the second row of the matrix 
corresponds to M2, and the 1’s in the first three columns 
indicate dependence on X1, X2, and X3, respectively. 

Gauss-Jordan elimination [Cullen 97] can be performed 
on the matrix in Fig. 2.  Gauss-Jordan elimination involves 
performing rows operations that transform a set of 
columns into an identity matrix.  Fig. 3 shows the matrix 
in Fig. 2 after Gauss-Jordan elimination has been 
performed.  As was shown in [Touba 07], as long as the 
number of bits in the MISR is larger than the number of 
X’s compacted in the MISR, it is always possible to obtain 
rows after Gauss-Jordan elimination that have no 
dependence on the X’s.  In Fig. 3, it can be seen that the 
last two rows have no dependence on the X’s.  Looking at 
the last row, for example, if MISR bits M3, M4, and M5 are 
XORed together, all the X’s cancel out and the resulting 
value will have no dependence on the X’s.  This value can 
be compared with its fault-free value to detect errors in the 
non-X values that it depends on.  Any combination of 
MISR bits can be XORed together using a programmable 
XOR as shown in Fig. 4.  Since each XOR combination of 
MISR bits will depend on roughly half of the non-X  
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values, it was shown in [Touba 07] that checking q such 
combinations of MISR bits would give an error coverage 
approximately equal to 1-2-q.  By simply checking a 
sufficient number of X-canceled combinations of MISR 
bits, a high probabilistic error coverage could be obtained.  
For example, by checking 7 X-canceled combinations, 
over 99% error coverage can be obtained.  This is very 
efficient when the percentage of X’s is around 1% or less.  
However, it becomes less efficient for larger percentages 
of X’s. 

The idea in this paper is that rather than checking a 
larger number of combinations to ensure a high 
probabilistic error coverage of all non-X values, a 
deterministic procedure could be used to ensure that the 
necessary to observe values (i.e., the D’s) are checked in a 
small number of combinations.  Since checking each 
combination using the architecture in Fig. 4 requires m bits 
be supplied by the tester where m is the number of bits in 
the MISR, if the number of combinations that need to be 
checked can be reduced, then the data stored on the tester 
can be reduced resulting in greater test data compression. 

To observe the D’s deterministically, it is necessary to 
include them in the dependency matrix as is done in Fig. 2.  
Then when Gauss-Jordan elimination is performed, it not 
only processes the X columns, but also the D columns so 
that there is a single 1 in every row and column as shown 
in Fig. 3.  The number of X’s and D’s compacted should 
be limited so that it is always possible to obtain such a 
matrix after Gauss-Jordan elimination.  Generally that 
means that each MISR signature can compact up to a total 
number of X’s plus D’s equal to m, the size of the MISR, 
so that the number of columns does not exceed the number 
of rows in the dependency matrix.  After Gauss-Jordan 
elimination, the rows that depend only on the D’s (i.e., not 
on the X’s) are all XORed together to form one MISR bit 
combination that depends on all the D’s.  In the example in 
Fig. 3, this means that the last two rows are XORed 
together resulting in the MISR bit combination equal to: 

(M1�M3�M5)� (M3�M4�M5) = M1�M4

The MISR bit combination M1� M4 will not depend on 
any X’s, but will depend on all the D’s.  This can be seen 
by looking back at Fig. 1, and computing: 
 M1�M4 = (X1�O3�D8�O13)� (X1�O6�O11�D16) 

  = O3�O6�D8�O11�O13�D16  

As long as the number of X’s plus the number of D’s 
compacted by the MISR is less than or equal to m, and the 
Gauss-Jordan elimination produces a single 1 in every row 
and column, it is always possible to find a MISR bit 
combination that will depend on all the D’s. 

Checking a MISR bit combination that depends on all 
the D’s still does not ensure that all errors in the D’s will 
be detected.  If an even number of D’s have errors, the 
errors will cancel out in the MISR bit combination and not 
be detected.  So it is still necessary to check more than one 
combination.  So then the question becomes what is the 
advantage of deterministically considering the D’s versus 
just using probabilistic error coverage as in [Touba 07].  
When using just a single large MISR, there may not be 
much advantage to doing this.  However, as will be shown 
in the next section, if the large MISR is replaced by 
multiple smaller MISRs, then deterministically 
considering the D’s can provide a significant advantage 
over probabilistic error coverage for equivalent aggregate 
MISR sizes.  One specific scheme is described in Sec. 4 
which uses a total of 16 MISRs each of size 16 bits with 
deterministic consideration of the D’s, and it is shown to 
provide almost a factor of 3 better compression in 
comparison to using a single MISR of size 256 with 
probabilistic error coverage.  

3. Using Multiple MISRs 

As was shown in the previous section, even with 
deterministic consideration of the D’s, it is not sufficient to 
observe only one MISR bit combination because an even 
number of errors may cancel out.  Assuming all error 
combinations are equally likely, then the error coverage 
for the D’s would only be 50%.  To reduce the probability 
of error canceling, it is necessary to observe a larger  
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number of MISR bit combinations.  However, if only a 
single large m-bit MISR is used, then checking each 
combination requires m bits to be stored on the tester.  
If two combinations are checked where each 
combination depends on 50% of the D’s, then the error 
coverage for the D’s would be 75% (the probability 
that there is an even number of errors in each 
combination is 0.5, so the probability that both have 
even errors is 0.25).   So with a single m-bit MISR, 
obtaining 75% coverage of the D’s requires 2m bits be 
stored on the tester.  Now consider replacing the single 
m-bit MISR with two m/2-bit MISRs each of which 
compact half of the scan chains.  For each of the two 
m/2-bit MISRs, a combination of MISR bits can be 
found using the procedure described in Sec. 2 such that 
it depends on all the D’s captured by that MISR.  If 
half the D’s propagate to each MISR, then by checking 
one MISR bit combination for each of the m/2-bit 
MISRs, the same error coverage for the D’s (i.e., 75%) 
can be obtained as checking two MISR bit 
combinations of the m-bit MISR.  However, checking 
each of the combinations for the m/2-bit MISRs 
requires only m/2 bits, so in this case 75% coverage of 
the D’s is obtained with storing only m bits on the 
tester which is a factor of 2 improvement. 

There are two drawbacks to using the two m/2-bit 
versus using one m-bit MISR: 

1. The compaction must stop when either of the two 
MISRs captures a total number of X’s plus D’s 
equal to m/2.  If the X’s and D’s are exactly evenly 
distributed between the two m/2-bit MISRs, then 
this would still happen at the same point as when a 
single m-bit MISR would capture a total number of 
X’s plus D’s equal to m.  However, in reality, it is 
unlikely that the X’s and D’s would be exactly 
evenly distributed, so in general one of the m/2-bit 
MISRs would fill up sooner than the other and thus 
the total number of X’s plus D’s compacted for 
each signature with two m/2-bit MISRs would be 
less than it would for a single m-bit MISR. 

2. If the D’s are not evenly distributed between the 
two m/2-bit MISRs, then the error coverage will be 
lower than for a single m-bit MISR. 

One approach to mitigate both of these drawbacks 
would be to use two pairs of m/2-bit MISRs (4 MISRs 
altogether) in the following way.  Divide the scan 
chains into four evenly sized groups G1, G2, G3, and
G4.  Have one MISR capture from G1 and G2 and 
another MISR capture from G3 and G4.  Then for the 
other pair of MISRs, have one capture from G1 and G3

and the other from G2 and G4.  For each signature, 
there is now a choice of using one or the other pair of 
MISRs.  If one pair of MISR is highly skewed in the 
distribution of X’s or D’s, then the other pair can be 
used.  This helps to smooth out the distributions so that 
the performance of the m/2-bit MISRs in terms of error 

coverage and number of scan slices compacted per 
signature will not significantly lag that of an m-bit 
MISR while still enjoying a factor of 2 reduction in 
storage requirements on the tester.  The cost of using 
two pairs of m/2-bit MISRs versus only a single pair is 
of course the additional overhead of adding more 
MISRs plus one extra bit needs to be stored on the 
tester per signature to dynamically select which pair of 
MISRs to use for each signature. 

This approach of replacing an m-bit MISR with two 
pairs of m/2-bit MISRs can be used recursively.  Each 
of the four m/2-bit MISR could be replaced by two 
pairs of m/4-bit MISRs.  The total number of MISRs 
would now be 16.  A single signature in the m-bit 
MISR is now replaced with signatures from 4 of the 
m/4-bit MISRs.  This would give an error coverage for 
the D’s close to that of checking 4 combinations in the 
m-bit MISR which is (1-2-4 = 93.75%), and a reduction 
in tester storage of almost a factor of 4.  Note that now 
3 bits must be stored on the tester per signature to 
select which pairs of m/4-bit MISRs are used. 

4. Multiple MISR Design Example 

Using this approach of splitting a larger MISR into 
multiple smaller MISRs as described in Sec. 3, one 
particular design example is described here. 

Consider the design example shown in Fig. 5.  A 
single 64-bit MISR is replaced with 16 MISRs each of 
size 16.  The 16-bit MISRs compact output response 
data scan slice by scan slice until a point is reached 
where compacting an additional slice would make it no 
longer possible to solve for all the D’s using signatures 
from 4 of the MISRs. At this point, 4 of the MISR 
signatures are processed.  Gauss-Jordan reduction is 
performed on the linear equations for those MISRs as 
described in Sec. 2.  In order to ensure high error 
coverage of the D’s, two linear combinations are 
checked for each MISR signature.  Each of the two 
linear combinations per signature are formed by 
XORing together half of the rows in the Gauss-Jordan 
reduced matrix that depend only on D’s.  This evenly 
divides the D’s between the two combinations.  The 
end result is that 8 linear combinations are checked 
(two combinations for each of the 4 MISRs).  Every D
is included in exactly one of the linearly dependent 
combinations.  The best case is if the D’s are evenly 
distributed among all 4 MISRs.  In that case, the error 
coverage for the D’s where all error combinations are 
equally likely would be approximately 1-2-8=99.6%.  
All odd errors in the D’s would be guaranteed to be 
detected since at least one of the 8 combinations must 
have an odd number of errors.  The error coverage for 
all other non-X bits would be 1-2-2=75%.  In general, 
the error coverage would be slightly lower due to 
variance in the distribution of D’s.  Experiments 
indicate the average error coverage for the D’s is 
greater than 98% and as high as 99.5%. 
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The storage requirements for using a single 64-bit 
MISR checking 8 combinations would be (8*64)=512 
bits per signature, and each signature could compact a 
total of 64 X’s plus D’s.  So the cost is 512/64=8 bits of 
storage per X and per D.  Going to a 256-bit MISR 
would also still require 8 bits per X and per D.  The 
probabilistic approach in [Touba 07] would require 8 
bits of storage per X (it doesn’t depend on D’s) for 
99.6% error coverage, so it would actually be better.  
Now compare this to using the multiple MISR design 
in Fig. 5.  For the multiple MISR design, each 
signature can compact 64 X’s plus D’s, and requires 
generating 2 linear combinations of four 16-bit MISRs 
where each linear combination requires 3-bits to select 
which MISR and 16-bits to select the combination.  So 
the storage requirement per signature as shown in the 
figure is 4*(16+16+3) = 140 bits. The cost is 140/64 
=2.1875 bits of storage per X and per D.  Consider a 
test set with 1% X’s and 2% D’s, in this case the 

method in [Touba 07] would require around 8*1%=8% 
whereas the proposed method would require around 
(2.1875)(1%+2%) =6.56%.  However, now consider a 
design with 3% X’s and 2% D’s, in this case the 
method in [Touba 07] would require around 
8*3%=24% whereas the proposed method would 
require around (2.1875)(3%+2%)=10.9375%.  So the 
bottom line is that for low percentages of X’s, the 
method in [Touba 07] is very efficient.  However, for 
designs with larger percentages of X’s, the proposed 
multiple MISR method is much more efficient.  

5.  Combining X-Masking and X-Canceling
To further improve the output compression 

achieved by an X-canceling MISR on designs with 
larger numbers of X’s, a hybrid approach that combines 
X-masking with an X-canceling MISR can be used.  X-
masking circuitry is added between the outputs of the 
scan chains and the inputs to the X-canceling MISR.  
The purpose of the X-masking circuitry, as well as the 
ensuing methodology, is to mask as many X’s as 
possible with the smallest amount of mask and control 
data, such that the overall amount of data stored on the 
ATE used to mask all of the X’s is less than it would 
have been if the X-canceling MISR was used by itself.  

The key advantage of using X-masking plus 
X-canceling versus conventional X-masking only 
approaches that is exploited here is that the same mask 
can be reused for many scan slices since it is not 
necessary to mask all X’s.  This is taken advantage of 
by using the X-masking architecture proposed in Fig. 6. 

For m scan chains, the architecture in Fig. 6 consists 
of a control signal, an m-bit masking register, an 
interval counter, and two logic gates per internal scan 
chain for a total of 2m logic gates. The control signal is 
used to determine whether or not to apply the mask on 
a per scan slice basis. If the control signal is a ‘1’, then 
the mask is applied. If the control signal is a ‘0’, then 
the mask data itself is blocked and cannot affect the 
scan output response data. The mask register holds the 
mask data, which can be applied to the current scan 
slice. If the control signal is a ‘1’, and a given mask 
data bit is also a ‘1’, then the corresponding output 
response data bit is masked and forced to be a ‘1’. A 
‘0’ in the mask data means no masking will occur on 
the corresponding output response data bit even if the 
mask control signal is ‘1’. 

The interval counter counts down the number of 
shift cycles (i.e., scan slices) the current mask can be 
applied to before a new mask is loaded. A constant 
value representing that number of scan slices is loaded 
into the interval counter’s control logic one time at the 
beginning of the scan test. Every time the interval 
counter hits zero, including when it is reset at the 
beginning of the scan test, a new mask is loaded into 
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the mask register, and the interval counter is loaded with 
its preprogrammed value. If there are m internal scan 
chains requiring m bits of mask data and b tester channels, 
then it will take m/b clock cycles to fully load the mask 
data at the beginning of each interval. 

The goal of creating each mask is to make it applicable 
to as many adjacent scan slices as possible and mask as 
many X’s in those scan slices as possible, without masking 
out any of the D’s for which observation must be ensured. 
Also, it is desirable to minimize the number of non-X
values that are masked as they may be useful for detecting 
unmodeled faults.  

The mask is created by first determining the locations 
of the D and X bits for each scan slice. Next, an interval of 
n number of scan slices is chosen to be processed for each 
new mask. Then an optimal mask is created for each 
interval by determining which scan slices should not be 
masked, as well as which scan slice bit position should be 
masked. 

The algorithm for creating all of the masks for the 
entire pattern set, along with an example illustrated in Fig. 
7, is as follows: 

1) Select the next interval of n scan slices to process. In 
the example in Fig. 7, the interval contains five scan 
slices (shown as rows numbered 1 to 5). 

2) All mask bits corresponding to scan chains in the 
current interval that contain X’s and no D’s are set to 
‘1’ indicating that those scan chains will be masked. In 
Fig. 7, scan chain 6 is the only scan chain that this 
applies to, so it’s mask bit is set to a ‘1’. 

3) For each scan chain containing both X’s and D’s, the 
only way to mask the scan chain is if the mask control 
bit for the scan slices containing the D’s is set to 0.  
Setting the mask control bit for a scan slice to 0 
prevents masking any X’s in that scan slice.  A benefit 
function can be computed as the number of X’s that 
can be masked in the scan chain minus the number of 
X’s that cannot be masked for each of the scan slices 
containing D’s for which the mask control bit would 
need to be set to 0.  For example, for scan chain 4, it 

has three X’s and one D.  The one D resides in scan 
slice 2 which contains one X.  So the benefit function 
for scan chain 4 would be 3-1=2.  The scan chain with 
largest positive benefit function is selected first.  It’s 
mask bit is set to ‘1’ and the mask control bit for each 
scan slice containing a D in that scan chain is set to ‘0’.  
This is repeated in a greedy fashion until no more scan 
chains exist whose benefit function is positive.  In the 
example in Fig. 7, there are two scan chains that have 
both X’s and D’s, namely scan chains 4 and 5.  Their 
initial benefit functions are 2 and 0 respectively.  So 
only scan chain 4 has its mask bit set to ‘1’ and the 
mask control bit for scan slice 2 is set to ‘0’ to prevent 
masking the D in scan chain 4. 

4) When the greedy mask selection procedure in step 3 
completes, then all the beneficial scan chain mask bits 
have been set to ‘1’ and all the necessary mask control 
bits have been set to ‘0’.  The procedure can now move 
to the next interval of n scan slices. 

s d s s s d s s s s
s s s s d s x s s s
s s s s s d s s s s
s d s s s x s s s s
s d s s s s s s s s

(a)

(b)
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Figure 7.  (a) Example of Mask Data for Output 
Response Interval; (b) Output Response after Masking 
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For the example output response in Fig. 7, the 
algorithm only masks scan chains 4 and 6 and disables 
masking of scan slice 2.  All but two of the X’s are 
masked.  The resulting masked output response data 
(which is shown in Fig. 7b) is fed into the X-canceling 
MISR. 

By being able to reuse a carefully created mask for 
multiple scan slices, without masking any D’s and 
masking out a large percentage of X’s from the output 
response data, the proposed X-masking approach, when 
combined with a downstream X-canceling MISR, can 
provide a significant improvement in output response data 
compaction, especially in the presence of a large number 
of unknowns. 

6. Experimental Results 

Experiments were performed using the compactor 
design in Fig. 5 with 16 X-canceling MISRs each of size 
16 for output streams with different percentages of X’s and 
D’s. The results are shown in Table 1.  The first column 
shows the percentage of X’s in the output stream. The 
remaining columns show the various compressions 
achieved for different percentages of D’s corresponding to 
the different X percentages. Experimental results 
substantiate that the number of bits stored on the tester is 
approximately 2.1875 bits for each X or D, as described in 
Sec. 4. Thus, the amount of compression reduces as the 
number of X’s plus D’s increases. 

To obtain higher compression, X-masking can be 
combined with X-canceling as described in Sec. 5.  
Experiments were performed on 3 industrial designs from 
Cirrus Logic.  SynTest’s ATPG tool was used to generate 
the tests and report a scan cell that each necessary fault 
propagated an error to.  These scan cells were marked as 
D’s in the output response.  Table 2 reports the results.  
The second and third column shows the percentage of X’s 
and D’s present in the corresponding designs. Experiments 

were performed for 3 different numbers of scan chains 
which are shown in the fourth column. The output 
response of all the three designs was compacted with and 
without using the X-masking before X-canceling, and the 
results are tabulated. As shown in the fifth column, a large 
percentage of X’s are masked from all the designs using 
the X-masking technique discussed in Sec. 5. The last 
three columns show the compression ratio achieved and 
the percentage improvement when using X-masking prior 
to X-canceling as compared to X-canceling alone.  All the 
control and masking data needed to support the X-masking 
(as described in Sec. 5) is factored into the compression 
numbers. 

Design B has the smallest number of X’s.  As the 
number of X’s get smaller, the control data for X-masking 
starts to dominate the cost and this is seen from the 
minimum percentage improvement for Design B as 
compared to the other two designs. Furthermore, this 
dominance is exacerbated by the fact that although more 
X’s are able to be masked out for smaller numbers of scan 
chains, much more control data is required and hence there 
is a smaller percentage improvement. 

Table 1. Compression for Different Percentages of 
X’s and D’s using Design in Fig. 5 

% of D's 
% of X's 

1% 2% 4% 6% 
1% 21.3x 14.5x 9.0x 6.6x 
3% 11.0x 9.0x 6.6x 5.3x 
5% 7.6x 6.6x 5.3x 4.5x 
8% 5.3x 4.8x 4.2x 3.7x 

10% 4.5x 4.2x 3.7x 3.3x 

Table 2. Results for Combining X-Masking and X-Canceling 

Design 
Percentage 

X’s 
Percentage 

D’s 
Scan 

Chains 

Percent X’s 
Masked using 

X-Masking 

Compression 
X-Canceling 

Alone 

Compression  
X-Masking and 

X-Canceling 

Percentage 
Improvement 

A 5.37% 0.89% 
64 

128 
256 

83% 
81% 
78% 

5.9x 
6.5x 
6.6x 

14.3x 
15.7x 
15.9x 

58.6% 
58.9% 
58.6% 

B 2.58% 0.63% 
64 

128 
256 

83% 
75% 
71% 

9.1x 
10.7x 
11.2x 

21.0x 
22.3x 
23.6x 

56.4% 
51.8% 
52.4% 

C 8.33% 0.75% 
64 

128 
256 

83% 
78% 
77% 

4.4x 
4.8x 
5.0x 

11.6x 
12.2x 
12.7x 

62.1% 
60.2% 
60.3% 
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7. Conclusions 
Using an X-canceling MISR with probabilistic 

observation provides high error coverage for all errors, 
but it becomes less efficient for larger percentages of X’s.  
This paper showed how deterministic observation can be 
used to achieve greater compression for higher 
percentages of X’s.  It was shown that by dividing a large 
X-canceling MISR into multiple smaller X-canceling 
MISRs, the number of bits required to process each 
signature could be reduced while still observing the 
necessary to observe bits (i.e., the D’s). 

It was also shown that a hybrid approach combining 
X-masking with an X-canceling MISR can significantly 
increase the amount of compression.  Large numbers of 
X’s can be masked at low cost by focusing only on the 
easy to mask X’s (where the mask data can be reused 
across many scan slices) and leaving the rest of the X’s to 
be handled by the X-canceling MISR. 
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