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Abstract 
 
Trace buffers are commonly used to capture data 

during in-system silicon debug.  This paper exploits the 
fact that it is not necessary to capture error-free data in 
the trace buffer since that information is obtainable from 
simulation.  The trace buffer need only capture data 
during clock cycles in which errors are present.  A three 
pass methodology is proposed.  During the first pass, the 
rough error rate is measured, in the second pass, a set of 
suspect clock cycles where errors may be present is 
determined, and then in the third pass, the trace buffer 
captures only during the suspect clock cycles.  In this 
manner, the effective observation window of the trace 
buffer can be expanded significantly, by up to orders of 
magnitude.  This greatly increases the effectiveness of a 
given size trace buffer and can rapidly speed up the debug 
process.  The suspect clock cycles are determined through 
a two dimensional (2-D) compaction technique using a 
combination of multiple-input signature register (MISR) 
signatures and cycling register signatures.  By 
intersecting the signatures, the proposed 2-D compaction 
technique generates a small set of remaining suspect 
clock cycles for which the trace buffer needs to capture 
data. Experimental results indicate very significant 
increases in the effective observation window for a trace 
buffer can be obtained.  
 
1. Introduction 

 

Post-silicon debug is a major time consuming 
challenge that has significant impact on the development 
cycle of a new chip.  The most difficult aspect is in-
system at-speed debug where there is a need to extract 
data while the system is running.  Trace buffers are 
commonly used to capture data from a limited number of 
signals during in-system debug [Abramovici 06], 
[Hopkins 06].  They are very helpful as they provide real-
time at-speed observation of signals across many clock 
cycles.  Unfortunately, they are a limited resource and can 
only store a limited amount of data in one session. 

Some techniques have been proposed to compress the 
data stored in the trace buffer to increase its effectiveness.  
As suggested in [Anis 07a], one can view the width of the 
observation window provided by a trace buffer as the 
number of signals observed each clock cycle and the 
depth of the observation window as the number of clock 
cycles over which the signals are observed.  In 
[Abramovici 05] and [Hsu 06], techniques are proposed 
for reconstructing the values of more internal signals than 
are captured each clock cycle in the trace buffer and 
hence these techniques expand the effective width of the 
observation window, but not its depth. 

In [Anis 07a], lossless compression methods based on 
dictionary coding implemented with content-addressable 
memory were investigated for compressing the data stored 
in a trace buffer.  This approach can expand the depth of 
the observation window as well.  Results in [Anis 07a] for 
MP3 data show that the observation window can be 
increased up to 3.45 times larger.  However, the amount 
of compression provided by dictionary coding varies 
greatly depending on how correlated the data is.  While 
the amount of compression is modest, a nice feature of the 
method in [Anis 07a] is that it is a one pass scheme which 
does not require re-running the debug session and hence 
is useful for debugging non-deterministic behavior that is 
not repeatable. 

If the behavior is deterministic and repeatable, then the 
method in [Anis 07b] which requires re-running the 
debug session many times can be used.  This approach 
compacts the observed signals in a MISR and stores 
MISR signatures in the trace buffer over progressively 
finer resolutions of time in each debug session.  This 
approach implements an accelerated binary search that 
progressively zooms in on clock cycles in which errors 
occur.  When the size of the current search range becomes 
small enough to fit in the trace buffer, then the trace 
buffer is used to capture all the data in the remaining 
portion of the current search.  This is a nice and effective 
idea for accelerating debug methods based on binary 
search, but it may not be a suitable replacement for more 
conventional applications of trace buffers because it can 
require a large number of debug sessions. 
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In this paper, a new method for expanding the depth of 
the observation window for a trace buffer is proposed 
which requires only 3 debug sessions.  It can expand the 
depth of the trace buffer by orders of magnitude which 
can greatly speed up the debug process.  It is also 
compatible with other methods for expanding the width of 
the observation window.  The proposed method exploits 
the fact that it is not necessary to capture error-free data in 
the trace buffer since that information is obtainable from 
simulation. The trace buffer need only capture data during 
clock cycles in which errors are present. During the first 
debug session, the rough error rate is measured, in the 
second debug session, a set of suspect clock cycles where 
errors may be present is determined, and then in the third 
debug session, the trace buffer captures only during the 
suspect clock cycles. The suspect clock cycles are 
determined through a two dimensional (2-D) compaction 
technique using a combination of multiple-input signature 
register (MISR) signatures and cycling register signatures. 
By intersecting the signatures, the proposed 2-D 
compaction technique leaves only a small set of remaining 
suspect clock cycles for which the trace buffer needs to 
capture data. 

This paper is organized as follows. Sec. 2 gives an 
overview of the proposed scheme. Sec. 3 discusses the 
three pass debug procedure in detail. Sec. 4 describes the 
hardware architecture of the proposed scheme. 
Experimental results are shown in Sec. 5 and conclusions 
are given in Sec. 6.  

 
2. Overview of Proposed Scheme 

 

The proposed scheme involves adding a debug module 
to a trace buffer which is able to support three operations 
which are executed in separate debug sessions.  The 
signals being sampled in each clock cycle will be 
collectively referred to here as the “data word”.  In the 
first debug session, the error rate (i.e., data word errors 
per clock cycle) is estimated using lossy compression.  
Based on the estimated error rate, the maximum expanded 
observation window size is computed as follows: 

 

window_size ≤ buffer_size / error_rate 
 

where window_size is the expanded observation window 
size, buffer_size is the number of data words that can be 
stored in the trace buffer, and error_rate is the number of 
data word errors per clock cycle.  Since all the erroneous 
data words must be stored in the trace buffer, the 
observation window cannot contain more errors than can 
fit in the trace buffer. 
 In the second debug session, the 2-D compaction is 
activated during the clock cycles in the maximum 
expanded observation window range to determine the 
suspect set of clock cycles in which errors may occur.  
The 2-D compaction consists of using both a MISR and a 

cycling register and intersecting the information obtained 
from them to identify the suspects.  The MISR is used to 
generate k signatures where each signature compacts 
window_size/k consecutive data words. A cycling register 
of length m compacts the data words such that every m-th 
data word is XORed together in each signature.  The 
cycling register indicates whether erroneous data exists in 
each modulo m set of data words.  An erroneous data 
word produces a corresponding erroneous MISR 
signature and erroneous cycling register signature. Faulty 
signatures from both compactors (MISR and cycling 
register) are used to identify the suspect clock cycles by 
finding the intersections of the signatures. 

 In the third debug session, the trace buffer captures 
data during the suspect clock cycles.  If there is no 
aliasing in the compactors, then capturing all suspect 
clock cycles guarantees that all errors in the expanded 
observation window will be captured in the trace buffer.  
As will be shown, the probability of aliasing is extremely 
small for low error rates (i.e., error rates below 1%).  For 
in-system debug, where the part has already passed a 
manufacturing test, error rates are typically low as errors 
occur only at certain corner cases under at-speed 
operation of the system. The proposed scheme exploits 
this low error rate property allowing selective capture to 
achieve significant observation window size expansion 
which greatly enhances visibility. 
 
3. Details of the Three Debug Sessions 

 

The following subsections describe each of the debug 
sessions in detail. 

 

3.1 Session 1 - Estimating Expanded Observation 
Window Size 

 

In the first debug session, the debug module computes 
the parity of the data word each clock cycle and stores it 
in the trace buffer.  When the trace buffer gets full, the 
older data is overwritten, so at the end of the debug 
session, the trace buffer contains the parity information 
for the last set of data words.  This information is 
downloaded to a workstation and compared with the fault-
free parity values computed through fault-free simulation.  
By comparing the fault-free parity with the observed 
parity, the number of erroneous data words can be 
roughly estimated.  Because single-bit parity detects only 
the odd errors in the data word, only roughly half of 
errors in the data words are probabilistically detected 
during the first debug session. A rough estimate of the 
error rate can be obtained by multiplying the number of 
parity errors by 2 and dividing by the total number of 
parity bits stored in the trace buffer.  For example, if two 
parity bits in a 512 byte trace buffer are erroneous, then 
the error rate is (2bit * 2) / (512 * 8) = 0.097%. The trace 
buffer size divided by the error rate is used to estimate the 
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maximum trace buffer observation window size as 
explained in Sec. 2.  Note that the achieved observation 
window size may be considerably smaller than the 
maximum.  The reasons for this will become clear later 
and will be discussed in Sec. 5. The maximum window 
size as used as the starting point for 2-D compaction in 
the second session. 
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Figure 1. Session 1:  Parity Generation 
 

Fig. 1 illustrates the operation of the debug module in 
the first session.  Note that the XOR tree can be pipelined  
as necessary to meet timing requirements. 

 

3.2 Session 2 - Determining Suspects 
 

In the second debug session, signatures are generated 
using the MISR and cycling register beginning from the 
starting point of the maximum observation window 
estimated in session 1. The trace buffer is used to store 
both the MISR signatures and the cycling register 
signatures.  Assume k locations are allocated to store the 
MISR signatures and m locations are allocated to store 
cycling register signatures.  The MISR signatures are 
stored every window_size/k clock cycles and the MISR is 
reset at that time so that the signatures are independent.  
The cycling register signatures are generated by XORing 
together the data word coming in with one of the m 
locations in the trace buffer pointed to by a mod-m 
address counter.  In this manner, the cycling register will 
generate m signatures which consist of the XOR of every 
m-th data word.   

Phase Shifter

MISR

Cycling
Register

(Trace Buffer)

Trace Buffer

Signals to Observe

Register

Phase Shifter

MISR

Cycling
Register

(Trace Buffer)

Trace Buffer

Signals to Observe

Register

 
 

Figure 2. Session 2:  2-D Compaction 

3.2.1 2-D Compaction 
 

Fig. 2 illustrates the operation of the 2-D compactor.  
Each MISR signature compacts a consecutive sequence of 
window_size/k data words. A symbolic expression of the 
data words compacted in the signatures is shown in Fig. 3 
for a small example with a total of 15 clock cycles of data 
words with k=5 and m=5.  A MISR signature is generated 
every (window_size/k)=3 clock cycles. MS1 represents the 
first MISR signature and C1 denotes the data word in 
clock cycle 1.  MISR signature 1 compacts the data words 
in cycles 1 though 3 which is expressed as MS1 = {C1, C2, 
C3}. The cycling register compacts every m-th data word. 
The first signature in the cycling register in Fig. 3 is 
denoted as CR1 and is expressed as {C1, C6, C11} since 
m=5.  

If C13 is faulty, then MS5 and CR3 will mismatch with 
the fault-free signatures assuming there is no aliasing.  
The mismatching signatures, MS5 and CR3 are highlighted 
in gray in Fig 3. The probability of aliasing in the MISR 
depends on the size of MISR.  For a 32 bit MISR, it is 2-32, 
and for a 16 bit MISR, it is 2-16.  Hence, for a sufficiently 
large MISR, this aliasing probability is negligible. 
Aliasing in a cycling register signature occurs when an 
even number of bit errors occur in the same bit position. 
The probability of aliasing in a cycling register signature 
when the error rate is low is approximately equal to the 
probability of a two-bit error occurring in the same bit 
position in a cycling register signature (the probability of 
4-bit and higher even bit errors are negligibly small 
compared with 2-bit errors) which is equal to  

 

( ) ( )( ) ( ){ }  Rate Error Bit-1Rate Error BitC -1-1  AliasingP  SIZEWORD2-NECR2NECR
2≈

 

where NECR denotes the number of data words 
compacted in the cycling register signature. For low bit 
error rates, the aliasing probability is negligible for the 
cycling register as well. 
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MS3 : {C7  , C8  , C9  }

MS1 : {C1  , C2  , C3  }

MISR Signatures

CR2 : {C2, C7  , C12}

CR3 : {C3, C8  , C13}

CR4 : {C4, C9  , C14}

CR5 : {C5, C10, C15}

Cycling Register Signatures
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CR1 : {C1, C6  , C11}
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CR3 : {C3, C8  , C13}
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Figure 3. Example of 2-D Compaction using MISR with 
k=5 and Cycling Register with m=5 for 15 clock cycles 
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3.2.2 Tag Data Generation 

 

As shown in Fig. 3, erroneous data in C13 corrupts 
signatures in the MISR and cycling register.  By finding 
the intersection of the mismatching signatures, the suspect 
clock cycles can be identified. In Fig. 3, intersecting MS5 
with CR3 gives C13. 

At the end of second session, all the MISR signatures 
and cycling register signatures in the trace buffer are 
downloaded to a workstation where they are compared 
with the fault-free signatures obtained from simulation.  
The set of suspects are formed by intersecting all 
mismatching MISR signatures with all mismatching 
cycling register signatures and including any clock cycle 
that is in the intersection. 

In the third session, the trace buffer must capture 
during the suspect clock cycles.  The information about 
when to capture is downloaded into the trace buffer 
before the start of the third session.  The information is 
represented as a set of “tag bits”, one for each clock cycle 
in the observation window.  Each suspect clock cycle is 
indicated by setting its corresponding tag bit to 1 and each 
vindicated clock cycle is denoted by setting its 
corresponding tag bit to 0. For the example in Fig. 3, the 
tag bit for C13 is set to 1, and 0 is assigned to the rest of 
the clock cycles.  In this case, the 15 bit tag information is 
generated as 0000000000001(C13)00.  In the third session, 
the tag bits are cycled through and used to trigger the 
trace buffer to capture during the suspect clock cycles. 

Fig. 4 shows the algorithm for computing the tag bits. 
Each tag bit has a value of 1 only when the corresponding 
clock cycle belongs to both a mismatching MISR 
signature and mismatching cycling register signature. 

One complication that arises is that since the tag bits 
are stored in the trace buffer, the size of a trace buffer 
could become a limiting factor on the size of expanded 
observation window. If a tag bit corresponds to one clock 
cycle, then the maximum number of tag bits that can be 
stored in the trace buffer sets an upper bound on the 
observation window size. For example, if a 1K byte trace 
buffer is used, it can only store tag information for up to 
8192 bits and hence the observation window would be 
limited to 8192 cycles.  This may be lower than necessary. 

To avoid this limitation, it may be necessary to 
compress the tag bits.  A simple way to do this is to have 
each tag bit correspond to a consecutive sequence of 
clock cycles rather than a single clock cycle.  The tag bits 
can be initially computed one per clock cycle, and then 
successive tag bits can be grouped and compressed into a 
single bit. One compressed bit is used to represent the 
whole group.  A compressed tag bit has value 0 when 
there are no 1s in a group, and it has 1 if there is at least 
one 1.  If the compressed tag bit is 1, the trace buffer must 
capture during all the corresponding clock cycles. 

 

 
 

Figure 4. Tag Data Generation Algorithm 
 
 

MS4 : {C19, C20, C21, C22, C23, C24}

MS5 : {C25, C26, C27, C28, C29, C30}

MS3 : {C13, C14, C15, C16, C17, C18}

MS1 : {C1  , C2  , C3  , C4  , C5  , C6  }
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CR4 : {C4, C9  , C14, C19, C24, C29}

CR5 : {C5, C10, C15, C20, C25, C30}

Cycling Register Signatures

MS2 : {C7  , C8  , C9  , C10, C11, C12}

CR1 : {C1, C6  , C11, C16, C21, C26}

MS4 : {C19, C20, C21, C22, C23, C24}

MS5 : {C25, C26, C27, C28, C29, C30}

MS3 : {C13, C14, C15, C16, C17, C18}

MS1 : {C1  , C2  , C3  , C4  , C5  , C6  }
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CR3 : {C3, C8  , C13, C18, C23, C28}

CR4 : {C4, C9  , C14, C19, C24, C29}

CR5 : {C5, C10, C15, C20, C25, C30}

Cycling Register Signatures
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Figure 5. Example of 2-D Compaction using MISR with 
k=5 and Cycling Register with m=5 for 30 clock cycles 

 
Fig. 5 shows a small example of 2-D compaction with 

a total of 30 clock cycles with k=5 and m=5. C13 and C23 

Input: MISR signatures(MS), Cycling Register 
 signatures(CR), Golden MISR signature(GMS), 
 Golden Cycling Register signatures(GCR) 

Output: Tag Bits 
 
currentMR = 0; currentGMS = 0; 
tagbit[numData] = 0; 
while( currentMR < lastMR ){ 
    List all the element MR[currentMR]; 

if( equality(MR[currentMR], GS[currentGMS]) ){ 
while( !visited all the element ){ 

tagbit[element] = 0; 
next_element; 

}          
} 

    else{ 
        while( !visited all the element ) { 
            if( equality(correspondingCR, GCR) )  
                      tagbit[element] = 0; 
            else    tagbit[element] = 1; 
         next_element; 

   } 
} 

    currentMR++; currentGMS++;  
} 
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are erroneous and corrupt MS3, MS4, and CR3. Intersecting 
the signatures identifies C13, C18 and C23 as suspects. The 
following 30 bit tag data is generated:  

0000000000001(C13)00001(C18)00001(C23)0000000 
If tag compression is used to group 2 tag bits into one 
compressed tag bit, then the 30 bit tag data is compressed 
into the following 15-bits 000000101001000 which is 
also illustrated in Fig. 8.  

 
3.3 Session 3 - Capturing Suspect Clock Cycles 

 

The tag data generated in session 2 is stored in the 
trace buffer at the start of session 3. During session 3, 
when in the expanded observation window, the trace 
buffer captures data whenever the tag bit (or compressed 
tag bit) for the corresponding clock cycle has a value of 1 
indicating it is a suspect.  As illustrated in Fig. 6, both the 
tag bits and the captured data are stored in the trace buffer.  
As the tag data is read out of the trace buffer, it can be 
overwritten in the trace buffer by the captured data.  
Enough slack has to be incorporated so that the captured 
data never overwrites any unread tag data.  
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Figure 6. Session 3: Selective Capture with Tag Bit 
 

In the example in Fig. 3, C13 is identified as a suspect 
and the tag bits were generated as 0000000000001(C13)00.  
Fig. 7 shows the trace buffer after the third session.  For 
the example in Fig. 5, the 30 tag bits are generated and 
compressed down to 15 tag bits as illustrated in Fig. 8.  
As a result of this compression, in addition to the suspects 
(C13, C18, and C23) from the original 30 tag bits, three 
additional clock cycles are also captured in the trace 
buffer, namely  (C14, C17, and C24). 

The proposed scheme uses the information from 2-D 
compaction to significantly increase the size of 
observation window. Expanding the trace buffer 
observation window gives visibility over wider range of 
data.  Hence the proposed approach reduces the overall 
silicon debug time. 
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Figure 7. Data in Trace Buffer for 15 Tag Bits from 
Example in Fig. 3 

 
 

Compressed Tag Bit : 0  0  0  0  0  0  1  0  1  0  0  1  0  0  0

Original Tag Bit : 000000000000100001000010000000

Trace Buffer Contents : C13, C14 , C17 , C18 , C23 , C24

C13

C14

C17

C18

C23

C24

empty

Compressed Tag Bit : 0  0  0  0  0  0  1  0  1  0  0  1  0  0  0

Original Tag Bit : 000000000000100001000010000000

Trace Buffer Contents : C13, C14 , C17 , C18 , C23 , C24

C13

C14

C17

C18

C23

C24

empty

 
Figure 8. Data in Trace Buffer for 15 Compressed Tag 

Bits from Example in Fig. 5 
 

 
4. Hardware Architecture of Debug Module 

 

The hardware architecture for a proposed debug 
module is shown in Fig. 9.  To perform the operations 
discussed in Sec. 3, the debug module activates different 
functional blocks using the Mode_Ctrl signals.  

In session 1, the Mode_Ctrl signals select the phase 1 
block in Fig. 9 which is the parity generation mode.   In 
this mode, the debug data is compressed via an XOR tree 
to generate a single parity bit each clock cycle.  The 
single parity bits are stored in the trace buffer and used 
for estimating the error rate in the data words. 

In session 2, the 2-D compactors in the phase 2 block, 
are activated by the Mode_Ctrl signals. The MISR and 
cycling register signatures are generated and stored in the 
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Figure 9. Hardware Architecture of Proposed Debug Module 

trace buffer.  Since the number of intersections is 
generally minimized when using an equal number of 
MISR signatures and cycling register signatures, half of 
the trace buffer is used to store cycling register signatures 
and the other half is used to store MISR signatures. 

In session 3, the Mode_Ctrl signals activate the 
selection logic in the phase 3 block which selectively 
captures the debug data based on the tag information. A 
tag bit shift register is used to provide serial access to the 
tag bits so they can be checked one bit at a time each 
clock cycle. The suspect clock cycles are selectively 
captured whenever the tag bit is 1.  

 

5. Experimental Results 
 

In this section, experimental results are presented for 
an ARM based processor design [Shen 99].  Faults were 
injected into a processor design to generate erroneous data.  
The 32-bit data bus was assumed to be observed by the 
trace buffer.  By changing the injected faults, a set of 
experiments for different low error rates were generated.  
Table 1 shows the results for different error rates using 
different size trace buffers.  The first column shows the 
size of the trace buffer.  The second column shows the 
error rate computed as the number of 32-bit data bus 
words with errors divided by the total number of 32-bit 
data bus words and expressed as a percentage.  The third 
column shows the conventional observation window size 
in terms of the number of clock cycles worth of 32-bit 
data words that could be stored in the trace buffer.  For 
example, a 512 byte trace buffer can only capture 128 
clock cycles worth of 32-bit words from the data bus. The 
expanded observation window size that can be obtained 
using the proposed method is shown in the fourth column.  
The fifth column shows the expansion ratio which is 
computed as the expanded observation window size 

divided by the conventional observation window size.  
The last column shows the error aliasing percentage. 

As can be seen from the results, the lower the error 
rate, the fewer the number of mismatching signatures 
from the MISR and cycling register, and hence the 2-D 
compaction yields fewer suspects resulting in greater 
observation window expansion.  The experimental results 
had only one case where aliasing occurred and this 
resulted in a loss of 2.4% of the erroneous data words.  
Note the aliasing probability can always be reduced by 
using a less aggressive expanded observation window size. 

As discussed in Sec. 2, the maximum possible 
expanded observation window size is equal to the trace 
buffer size divided by the error rate since the trace buffer 
must store all the erroneous data words.  The expanded 
observation window size actually achieved with the 
proposed method is considerably less than that.   There 
are two reasons for this.  One is that the 2-D compaction 
generally yields more suspects than the actual erroneous 
clock cycles, and the other is that the tag bits may need to 
be compressed which reduces the suspect resolution 
thereby increasing the number of clock cycles that need to 
be captured.  Because the maximum expanded 
observation window size is not achievable, one way to 
reduce the search space for the 2-D compaction would be 
to compute a tighter upper bound on the expanded 
observation window size. This can be done by estimating 
the number of 2-D signature intersections and the amount 
of tag bit compression based on the trace buffer size and 
the estimated error rate.  Using this information, a tighter 
upper bound on the expanded window size can be 
computed as follows: 

 
 sizegroup bit tag*ANI* error_rate

ebuffer_siz
  ewindow_siz ≤  
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Table 1. Results for Proposed Method for Different Size Trace Buffers and Error Rates 
 

Size of  
Trace Buffer 

Error Rate  
Percentage 

Conventional
 Observation 

Window 

Expanded  
Observation 

Window 

Expansion  
Ratio 

Error  
Aliasing  

Percentage 
0.016 128 19456 152 0 
0.051 128 12032 94 0 
0.097 128 8576 67 0 
0.513 128 3072 24 0 

512 Byte 

1.387 128 1792 14 0 
0.016 256 28672 112 0 
0.051 256 19968 78 0 
0.097 256 17152 67 0 
0.513 256 5376 21 0 

1K Byte 

1.387 256 3328 12 0 
0.016 512 61440 120 0 
0.051 512 33792 66 0 
0.097 512 26112 51 0 
0.513 512 9216 18 0 

2K Byte 

1.387 512 5632 11 0 
0.016 1024 132096 129 0 
0.051 1024 61440 60 0 
0.097 1024 39936 39 0 
0.513 1024 17408 17 2.4 

4K Byte 

1.387 1024 10240 10 0 
 
where ANI denotes the average number of intersections 
and tag bit group size represents the number of original 
tag bits that need to be compressed together (as discussed 
in Sec. 3.2.2).  This tighter upper bound on the expanded 
window size can be used to determine when to begin the 
2-D compaction. 
 

6. Conclusions 
 

The experimental results indicate that the methodology 
proposed in this paper can use 3 debug sessions to expand 
the observation window for a trace buffer by one to two 
orders of magnitude.  This provides much greater 
visibility of the real-time at-speed operation during in-
system silicon debug.  The proposed methodology is 
compatible with other trace buffer compression 
techniques.  Moreover, it can also be applied even when a 
trace buffer is only triggered during certain events which 
may not necessarily be in consecutive clock cycles.  From 
the debug module’s viewpoint, the stream of data that is 
being observed can be relative to only the clock cycles 
when the trace buffer would normally be triggered.  The 
expanded observation window in this case would be 
expanded only across the clock cycles when the trace 
buffer would normally be triggered. 

It should also be noted that if a design contains 
multiple trace buffers, the proposed methodology could 
be concurrently applied to all the trace buffers.  So the 
total number of debug sessions would still be 3 regardless 

of how many trace buffer observations windows are being 
expanded. 
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