
Expanding Trace Buffer Observation Window for In-System Silicon Debug
through Selective Capture

Joon-Sung Yang and Nur A. Touba

Computer Engineering Research Center
Department of Electrical and Computer Engineering

University of Texas, Austin, TX 78712

Abstract

Trace buffers are commonly used to capture data

during in-system silicon debug. This paper exploits the
fact that it is not necessary to capture error-free data in
the trace buffer since that information is obtainable from
simulation. The trace buffer need only capture data
during clock cycles in which errors are present. A three
pass methodology is proposed. During the first pass, the
rough error rate is measured, in the second pass, a set of
suspect clock cycles where errors may be present is
determined, and then in the third pass, the trace buffer
captures only during the suspect clock cycles. In this
manner, the effective observation window of the trace
buffer can be expanded significantly, by up to orders of
magnitude. This greatly increases the effectiveness of a
given size trace buffer and can rapidly speed up the debug
process. The suspect clock cycles are determined through
a two dimensional (2-D) compaction technique using a
combination of multiple-input signature register (MISR)
signatures and cycling register signatures. By
intersecting the signatures, the proposed 2-D compaction
technique generates a small set of remaining suspect
clock cycles for which the trace buffer needs to capture
data. Experimental results indicate very significant
increases in the effective observation window for a trace
buffer can be obtained.

1. Introduction

Post-silicon debug is a major time consuming
challenge that has significant impact on the development
cycle of a new chip. The most difficult aspect is in-
system at-speed debug where there is a need to extract
data while the system is running. Trace buffers are
commonly used to capture data from a limited number of
signals during in-system debug [Abramovici 06],
[Hopkins 06]. They are very helpful as they provide real-
time at-speed observation of signals across many clock
cycles. Unfortunately, they are a limited resource and can
only store a limited amount of data in one session.

Some techniques have been proposed to compress the
data stored in the trace buffer to increase its effectiveness.
As suggested in [Anis 07a], one can view the width of the
observation window provided by a trace buffer as the
number of signals observed each clock cycle and the
depth of the observation window as the number of clock
cycles over which the signals are observed. In
[Abramovici 05] and [Hsu 06], techniques are proposed
for reconstructing the values of more internal signals than
are captured each clock cycle in the trace buffer and
hence these techniques expand the effective width of the
observation window, but not its depth.

In [Anis 07a], lossless compression methods based on
dictionary coding implemented with content-addressable
memory were investigated for compressing the data stored
in a trace buffer. This approach can expand the depth of
the observation window as well. Results in [Anis 07a] for
MP3 data show that the observation window can be
increased up to 3.45 times larger. However, the amount
of compression provided by dictionary coding varies
greatly depending on how correlated the data is. While
the amount of compression is modest, a nice feature of the
method in [Anis 07a] is that it is a one pass scheme which
does not require re-running the debug session and hence
is useful for debugging non-deterministic behavior that is
not repeatable.

If the behavior is deterministic and repeatable, then the
method in [Anis 07b] which requires re-running the
debug session many times can be used. This approach
compacts the observed signals in a MISR and stores
MISR signatures in the trace buffer over progressively
finer resolutions of time in each debug session. This
approach implements an accelerated binary search that
progressively zooms in on clock cycles in which errors
occur. When the size of the current search range becomes
small enough to fit in the trace buffer, then the trace
buffer is used to capture all the data in the remaining
portion of the current search. This is a nice and effective
idea for accelerating debug methods based on binary
search, but it may not be a suitable replacement for more
conventional applications of trace buffers because it can
require a large number of debug sessions.

26th IEEE VLSI Test Symposium

1093-0167/08 $25.00 © 2008 IEEE
DOI 10.1109/VTS.2008.41

345

26th IEEE VLSI Test Symposium

1093-0167/08 $25.00 © 2008 IEEE
DOI 10.1109/VTS.2008.41

345

In this paper, a new method for expanding the depth of
the observation window for a trace buffer is proposed
which requires only 3 debug sessions. It can expand the
depth of the trace buffer by orders of magnitude which
can greatly speed up the debug process. It is also
compatible with other methods for expanding the width of
the observation window. The proposed method exploits
the fact that it is not necessary to capture error-free data in
the trace buffer since that information is obtainable from
simulation. The trace buffer need only capture data during
clock cycles in which errors are present. During the first
debug session, the rough error rate is measured, in the
second debug session, a set of suspect clock cycles where
errors may be present is determined, and then in the third
debug session, the trace buffer captures only during the
suspect clock cycles. The suspect clock cycles are
determined through a two dimensional (2-D) compaction
technique using a combination of multiple-input signature
register (MISR) signatures and cycling register signatures.
By intersecting the signatures, the proposed 2-D
compaction technique leaves only a small set of remaining
suspect clock cycles for which the trace buffer needs to
capture data.

This paper is organized as follows. Sec. 2 gives an
overview of the proposed scheme. Sec. 3 discusses the
three pass debug procedure in detail. Sec. 4 describes the
hardware architecture of the proposed scheme.
Experimental results are shown in Sec. 5 and conclusions
are given in Sec. 6.

2. Overview of Proposed Scheme

The proposed scheme involves adding a debug module
to a trace buffer which is able to support three operations
which are executed in separate debug sessions. The
signals being sampled in each clock cycle will be
collectively referred to here as the “data word”. In the
first debug session, the error rate (i.e., data word errors
per clock cycle) is estimated using lossy compression.
Based on the estimated error rate, the maximum expanded
observation window size is computed as follows:

window_size ≤ buffer_size / error_rate

where window_size is the expanded observation window
size, buffer_size is the number of data words that can be
stored in the trace buffer, and error_rate is the number of
data word errors per clock cycle. Since all the erroneous
data words must be stored in the trace buffer, the
observation window cannot contain more errors than can
fit in the trace buffer.
 In the second debug session, the 2-D compaction is
activated during the clock cycles in the maximum
expanded observation window range to determine the
suspect set of clock cycles in which errors may occur.
The 2-D compaction consists of using both a MISR and a

cycling register and intersecting the information obtained
from them to identify the suspects. The MISR is used to
generate k signatures where each signature compacts
window_size/k consecutive data words. A cycling register
of length m compacts the data words such that every m-th
data word is XORed together in each signature. The
cycling register indicates whether erroneous data exists in
each modulo m set of data words. An erroneous data
word produces a corresponding erroneous MISR
signature and erroneous cycling register signature. Faulty
signatures from both compactors (MISR and cycling
register) are used to identify the suspect clock cycles by
finding the intersections of the signatures.

 In the third debug session, the trace buffer captures
data during the suspect clock cycles. If there is no
aliasing in the compactors, then capturing all suspect
clock cycles guarantees that all errors in the expanded
observation window will be captured in the trace buffer.
As will be shown, the probability of aliasing is extremely
small for low error rates (i.e., error rates below 1%). For
in-system debug, where the part has already passed a
manufacturing test, error rates are typically low as errors
occur only at certain corner cases under at-speed
operation of the system. The proposed scheme exploits
this low error rate property allowing selective capture to
achieve significant observation window size expansion
which greatly enhances visibility.

3. Details of the Three Debug Sessions

The following subsections describe each of the debug
sessions in detail.

3.1 Session 1 - Estimating Expanded Observation
Window Size

In the first debug session, the debug module computes
the parity of the data word each clock cycle and stores it
in the trace buffer. When the trace buffer gets full, the
older data is overwritten, so at the end of the debug
session, the trace buffer contains the parity information
for the last set of data words. This information is
downloaded to a workstation and compared with the fault-
free parity values computed through fault-free simulation.
By comparing the fault-free parity with the observed
parity, the number of erroneous data words can be
roughly estimated. Because single-bit parity detects only
the odd errors in the data word, only roughly half of
errors in the data words are probabilistically detected
during the first debug session. A rough estimate of the
error rate can be obtained by multiplying the number of
parity errors by 2 and dividing by the total number of
parity bits stored in the trace buffer. For example, if two
parity bits in a 512 byte trace buffer are erroneous, then
the error rate is (2bit * 2) / (512 * 8) = 0.097%. The trace
buffer size divided by the error rate is used to estimate the

346346

maximum trace buffer observation window size as
explained in Sec. 2. Note that the achieved observation
window size may be considerably smaller than the
maximum. The reasons for this will become clear later
and will be discussed in Sec. 5. The maximum window
size as used as the starting point for 2-D compaction in
the second session.

Signals to Observe

XOR

Tree

Shift Register

Trace Buffer

Register

Signals to Observe

XOR

Tree

Shift Register

Trace Buffer

Register

Figure 1. Session 1: Parity Generation

Fig. 1 illustrates the operation of the debug module in
the first session. Note that the XOR tree can be pipelined
as necessary to meet timing requirements.

3.2 Session 2 - Determining Suspects

In the second debug session, signatures are generated
using the MISR and cycling register beginning from the
starting point of the maximum observation window
estimated in session 1. The trace buffer is used to store
both the MISR signatures and the cycling register
signatures. Assume k locations are allocated to store the
MISR signatures and m locations are allocated to store
cycling register signatures. The MISR signatures are
stored every window_size/k clock cycles and the MISR is
reset at that time so that the signatures are independent.
The cycling register signatures are generated by XORing
together the data word coming in with one of the m
locations in the trace buffer pointed to by a mod-m
address counter. In this manner, the cycling register will
generate m signatures which consist of the XOR of every
m-th data word.

Phase Shifter

MISR

Cycling
Register

(Trace Buffer)

Trace Buffer

Signals to Observe

Register

Phase Shifter

MISR

Cycling
Register

(Trace Buffer)

Trace Buffer

Signals to Observe

Register

Figure 2. Session 2: 2-D Compaction

3.2.1 2-D Compaction

Fig. 2 illustrates the operation of the 2-D compactor.
Each MISR signature compacts a consecutive sequence of
window_size/k data words. A symbolic expression of the
data words compacted in the signatures is shown in Fig. 3
for a small example with a total of 15 clock cycles of data
words with k=5 and m=5. A MISR signature is generated
every (window_size/k)=3 clock cycles. MS1 represents the
first MISR signature and C1 denotes the data word in
clock cycle 1. MISR signature 1 compacts the data words
in cycles 1 though 3 which is expressed as MS1 = {C1, C2,
C3}. The cycling register compacts every m-th data word.
The first signature in the cycling register in Fig. 3 is
denoted as CR1 and is expressed as {C1, C6, C11} since
m=5.

If C13 is faulty, then MS5 and CR3 will mismatch with
the fault-free signatures assuming there is no aliasing.
The mismatching signatures, MS5 and CR3 are highlighted
in gray in Fig 3. The probability of aliasing in the MISR
depends on the size of MISR. For a 32 bit MISR, it is 2-32,
and for a 16 bit MISR, it is 2-16. Hence, for a sufficiently
large MISR, this aliasing probability is negligible.
Aliasing in a cycling register signature occurs when an
even number of bit errors occur in the same bit position.
The probability of aliasing in a cycling register signature
when the error rate is low is approximately equal to the
probability of a two-bit error occurring in the same bit
position in a cycling register signature (the probability of
4-bit and higher even bit errors are negligibly small
compared with 2-bit errors) which is equal to

() ()() (){ } Rate Error Bit-1Rate Error BitC -1-1 AliasingP SIZEWORD2-NECR2NECR
2≈

where NECR denotes the number of data words
compacted in the cycling register signature. For low bit
error rates, the aliasing probability is negligible for the
cycling register as well.

MS4 : {C10, C11, C12}

MS5 : {C13, C14, C15}

MS3 : {C7 , C8 , C9 }

MS1 : {C1 , C2 , C3 }

MISR Signatures

CR2 : {C2, C7 , C12}

CR3 : {C3, C8 , C13}

CR4 : {C4, C9 , C14}

CR5 : {C5, C10, C15}

Cycling Register Signatures

MS2 : {C4 , C5 , C6 }

CR1 : {C1, C6 , C11}

MS4 : {C10, C11, C12}

MS5 : {C13, C14, C15}

MS3 : {C7 , C8 , C9 }

MS1 : {C1 , C2 , C3 }

MISR Signatures

CR2 : {C2, C7 , C12}

CR3 : {C3, C8 , C13}

CR4 : {C4, C9 , C14}

CR5 : {C5, C10, C15}

Cycling Register Signatures

MS2 : {C4 , C5 , C6 }

CR1 : {C1, C6 , C11}

Figure 3. Example of 2-D Compaction using MISR with
k=5 and Cycling Register with m=5 for 15 clock cycles

347347

3.2.2 Tag Data Generation

As shown in Fig. 3, erroneous data in C13 corrupts
signatures in the MISR and cycling register. By finding
the intersection of the mismatching signatures, the suspect
clock cycles can be identified. In Fig. 3, intersecting MS5
with CR3 gives C13.

At the end of second session, all the MISR signatures
and cycling register signatures in the trace buffer are
downloaded to a workstation where they are compared
with the fault-free signatures obtained from simulation.
The set of suspects are formed by intersecting all
mismatching MISR signatures with all mismatching
cycling register signatures and including any clock cycle
that is in the intersection.

In the third session, the trace buffer must capture
during the suspect clock cycles. The information about
when to capture is downloaded into the trace buffer
before the start of the third session. The information is
represented as a set of “tag bits”, one for each clock cycle
in the observation window. Each suspect clock cycle is
indicated by setting its corresponding tag bit to 1 and each
vindicated clock cycle is denoted by setting its
corresponding tag bit to 0. For the example in Fig. 3, the
tag bit for C13 is set to 1, and 0 is assigned to the rest of
the clock cycles. In this case, the 15 bit tag information is
generated as 0000000000001(C13)00. In the third session,
the tag bits are cycled through and used to trigger the
trace buffer to capture during the suspect clock cycles.

Fig. 4 shows the algorithm for computing the tag bits.
Each tag bit has a value of 1 only when the corresponding
clock cycle belongs to both a mismatching MISR
signature and mismatching cycling register signature.

One complication that arises is that since the tag bits
are stored in the trace buffer, the size of a trace buffer
could become a limiting factor on the size of expanded
observation window. If a tag bit corresponds to one clock
cycle, then the maximum number of tag bits that can be
stored in the trace buffer sets an upper bound on the
observation window size. For example, if a 1K byte trace
buffer is used, it can only store tag information for up to
8192 bits and hence the observation window would be
limited to 8192 cycles. This may be lower than necessary.

To avoid this limitation, it may be necessary to
compress the tag bits. A simple way to do this is to have
each tag bit correspond to a consecutive sequence of
clock cycles rather than a single clock cycle. The tag bits
can be initially computed one per clock cycle, and then
successive tag bits can be grouped and compressed into a
single bit. One compressed bit is used to represent the
whole group. A compressed tag bit has value 0 when
there are no 1s in a group, and it has 1 if there is at least
one 1. If the compressed tag bit is 1, the trace buffer must
capture during all the corresponding clock cycles.

Figure 4. Tag Data Generation Algorithm

MS4 : {C19, C20, C21, C22, C23, C24}

MS5 : {C25, C26, C27, C28, C29, C30}

MS3 : {C13, C14, C15, C16, C17, C18}

MS1 : {C1 , C2 , C3 , C4 , C5 , C6 }

MISR Signatures

CR2 : {C2, C7 , C12, C17, C22, C27}

CR3 : {C3, C8 , C13, C18, C23, C28}

CR4 : {C4, C9 , C14, C19, C24, C29}

CR5 : {C5, C10, C15, C20, C25, C30}

Cycling Register Signatures

MS2 : {C7 , C8 , C9 , C10, C11, C12}

CR1 : {C1, C6 , C11, C16, C21, C26}

MS4 : {C19, C20, C21, C22, C23, C24}

MS5 : {C25, C26, C27, C28, C29, C30}

MS3 : {C13, C14, C15, C16, C17, C18}

MS1 : {C1 , C2 , C3 , C4 , C5 , C6 }

MISR Signatures

CR2 : {C2, C7 , C12, C17, C22, C27}

CR3 : {C3, C8 , C13, C18, C23, C28}

CR4 : {C4, C9 , C14, C19, C24, C29}

CR5 : {C5, C10, C15, C20, C25, C30}

Cycling Register Signatures

MS2 : {C7 , C8 , C9 , C10, C11, C12}

CR1 : {C1, C6 , C11, C16, C21, C26}

Figure 5. Example of 2-D Compaction using MISR with
k=5 and Cycling Register with m=5 for 30 clock cycles

Fig. 5 shows a small example of 2-D compaction with

a total of 30 clock cycles with k=5 and m=5. C13 and C23

Input: MISR signatures(MS), Cycling Register
 signatures(CR), Golden MISR signature(GMS),
 Golden Cycling Register signatures(GCR)

Output: Tag Bits

currentMR = 0; currentGMS = 0;
tagbit[numData] = 0;
while(currentMR < lastMR){
 List all the element MR[currentMR];

if(equality(MR[currentMR], GS[currentGMS])){
while(!visited all the element){

tagbit[element] = 0;
next_element;

}
}

 else{
 while(!visited all the element) {
 if(equality(correspondingCR, GCR))
 tagbit[element] = 0;
 else tagbit[element] = 1;
 next_element;

 }
}

 currentMR++; currentGMS++;
}

348348

are erroneous and corrupt MS3, MS4, and CR3. Intersecting
the signatures identifies C13, C18 and C23 as suspects. The
following 30 bit tag data is generated:

0000000000001(C13)00001(C18)00001(C23)0000000
If tag compression is used to group 2 tag bits into one
compressed tag bit, then the 30 bit tag data is compressed
into the following 15-bits 000000101001000 which is
also illustrated in Fig. 8.

3.3 Session 3 - Capturing Suspect Clock Cycles

The tag data generated in session 2 is stored in the
trace buffer at the start of session 3. During session 3,
when in the expanded observation window, the trace
buffer captures data whenever the tag bit (or compressed
tag bit) for the corresponding clock cycle has a value of 1
indicating it is a suspect. As illustrated in Fig. 6, both the
tag bits and the captured data are stored in the trace buffer.
As the tag data is read out of the trace buffer, it can be
overwritten in the trace buffer by the captured data.
Enough slack has to be incorporated so that the captured
data never overwrites any unread tag data.

Tag Bit
Shift Register

Signals to Observe

Trace
Data

Tag
Data

Selection

Current
Tag Bit

Tag Bit
Shift Register

Signals to Observe

Trace
Data

Tag
Data

Selection

Current
Tag Bit

Figure 6. Session 3: Selective Capture with Tag Bit

In the example in Fig. 3, C13 is identified as a suspect
and the tag bits were generated as 0000000000001(C13)00.
Fig. 7 shows the trace buffer after the third session. For
the example in Fig. 5, the 30 tag bits are generated and
compressed down to 15 tag bits as illustrated in Fig. 8.
As a result of this compression, in addition to the suspects
(C13, C18, and C23) from the original 30 tag bits, three
additional clock cycles are also captured in the trace
buffer, namely (C14, C17, and C24).

The proposed scheme uses the information from 2-D
compaction to significantly increase the size of
observation window. Expanding the trace buffer
observation window gives visibility over wider range of
data. Hence the proposed approach reduces the overall
silicon debug time.

C13

Tag Bit : 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

empty

empty

Trace Buffer Contents : C13

empty

empty

empty

empty

C13

Tag Bit : 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

empty

empty

Trace Buffer Contents : C13

empty

empty

empty

empty

Figure 7. Data in Trace Buffer for 15 Tag Bits from
Example in Fig. 3

Compressed Tag Bit : 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0

Original Tag Bit : 000000000000100001000010000000

Trace Buffer Contents : C13, C14 , C17 , C18 , C23 , C24

C13

C14

C17

C18

C23

C24

empty

Compressed Tag Bit : 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0

Original Tag Bit : 000000000000100001000010000000

Trace Buffer Contents : C13, C14 , C17 , C18 , C23 , C24

C13

C14

C17

C18

C23

C24

empty

Figure 8. Data in Trace Buffer for 15 Compressed Tag

Bits from Example in Fig. 5

4. Hardware Architecture of Debug Module

The hardware architecture for a proposed debug
module is shown in Fig. 9. To perform the operations
discussed in Sec. 3, the debug module activates different
functional blocks using the Mode_Ctrl signals.

In session 1, the Mode_Ctrl signals select the phase 1
block in Fig. 9 which is the parity generation mode. In
this mode, the debug data is compressed via an XOR tree
to generate a single parity bit each clock cycle. The
single parity bits are stored in the trace buffer and used
for estimating the error rate in the data words.

In session 2, the 2-D compactors in the phase 2 block,
are activated by the Mode_Ctrl signals. The MISR and
cycling register signatures are generated and stored in the

349349

Trace Buffer

Cntr

Cntr

XOR

MISR
Phase

Shifter

Selection

Tag Bit Register

Trace Buffer Control
Mode_Ctrl

Debug
Data

Parity
GeneratorPhase 1

Phase 3

Phase 2

Trace Buffer

Cntr

Cntr

XOR

MISR
Phase

Shifter

Selection

Tag Bit Register

Trace Buffer Control
Mode_Ctrl

Debug
Data

Parity
GeneratorPhase 1

Phase 3

Phase 2

Trace Buffer

Cntr

Cntr

XOR

MISR
Phase

Shifter

Selection

Tag Bit Register

Trace Buffer Control
Mode_Ctrl

Debug
Data

Parity
GeneratorPhase 1

Phase 3

Phase 2

Figure 9. Hardware Architecture of Proposed Debug Module

trace buffer. Since the number of intersections is
generally minimized when using an equal number of
MISR signatures and cycling register signatures, half of
the trace buffer is used to store cycling register signatures
and the other half is used to store MISR signatures.

In session 3, the Mode_Ctrl signals activate the
selection logic in the phase 3 block which selectively
captures the debug data based on the tag information. A
tag bit shift register is used to provide serial access to the
tag bits so they can be checked one bit at a time each
clock cycle. The suspect clock cycles are selectively
captured whenever the tag bit is 1.

5. Experimental Results

In this section, experimental results are presented for
an ARM based processor design [Shen 99]. Faults were
injected into a processor design to generate erroneous data.
The 32-bit data bus was assumed to be observed by the
trace buffer. By changing the injected faults, a set of
experiments for different low error rates were generated.
Table 1 shows the results for different error rates using
different size trace buffers. The first column shows the
size of the trace buffer. The second column shows the
error rate computed as the number of 32-bit data bus
words with errors divided by the total number of 32-bit
data bus words and expressed as a percentage. The third
column shows the conventional observation window size
in terms of the number of clock cycles worth of 32-bit
data words that could be stored in the trace buffer. For
example, a 512 byte trace buffer can only capture 128
clock cycles worth of 32-bit words from the data bus. The
expanded observation window size that can be obtained
using the proposed method is shown in the fourth column.
The fifth column shows the expansion ratio which is
computed as the expanded observation window size

divided by the conventional observation window size.
The last column shows the error aliasing percentage.

As can be seen from the results, the lower the error
rate, the fewer the number of mismatching signatures
from the MISR and cycling register, and hence the 2-D
compaction yields fewer suspects resulting in greater
observation window expansion. The experimental results
had only one case where aliasing occurred and this
resulted in a loss of 2.4% of the erroneous data words.
Note the aliasing probability can always be reduced by
using a less aggressive expanded observation window size.

As discussed in Sec. 2, the maximum possible
expanded observation window size is equal to the trace
buffer size divided by the error rate since the trace buffer
must store all the erroneous data words. The expanded
observation window size actually achieved with the
proposed method is considerably less than that. There
are two reasons for this. One is that the 2-D compaction
generally yields more suspects than the actual erroneous
clock cycles, and the other is that the tag bits may need to
be compressed which reduces the suspect resolution
thereby increasing the number of clock cycles that need to
be captured. Because the maximum expanded
observation window size is not achievable, one way to
reduce the search space for the 2-D compaction would be
to compute a tighter upper bound on the expanded
observation window size. This can be done by estimating
the number of 2-D signature intersections and the amount
of tag bit compression based on the trace buffer size and
the estimated error rate. Using this information, a tighter
upper bound on the expanded window size can be
computed as follows:

 sizegroup bit tag*ANI* error_rate

ebuffer_siz
 ewindow_siz ≤

350350

Table 1. Results for Proposed Method for Different Size Trace Buffers and Error Rates

Size of
Trace Buffer

Error Rate
Percentage

Conventional
 Observation

Window

Expanded
Observation

Window

Expansion
Ratio

Error
Aliasing

Percentage
0.016 128 19456 152 0
0.051 128 12032 94 0
0.097 128 8576 67 0
0.513 128 3072 24 0

512 Byte

1.387 128 1792 14 0
0.016 256 28672 112 0
0.051 256 19968 78 0
0.097 256 17152 67 0
0.513 256 5376 21 0

1K Byte

1.387 256 3328 12 0
0.016 512 61440 120 0
0.051 512 33792 66 0
0.097 512 26112 51 0
0.513 512 9216 18 0

2K Byte

1.387 512 5632 11 0
0.016 1024 132096 129 0
0.051 1024 61440 60 0
0.097 1024 39936 39 0
0.513 1024 17408 17 2.4

4K Byte

1.387 1024 10240 10 0

where ANI denotes the average number of intersections
and tag bit group size represents the number of original
tag bits that need to be compressed together (as discussed
in Sec. 3.2.2). This tighter upper bound on the expanded
window size can be used to determine when to begin the
2-D compaction.

6. Conclusions

The experimental results indicate that the methodology
proposed in this paper can use 3 debug sessions to expand
the observation window for a trace buffer by one to two
orders of magnitude. This provides much greater
visibility of the real-time at-speed operation during in-
system silicon debug. The proposed methodology is
compatible with other trace buffer compression
techniques. Moreover, it can also be applied even when a
trace buffer is only triggered during certain events which
may not necessarily be in consecutive clock cycles. From
the debug module’s viewpoint, the stream of data that is
being observed can be relative to only the clock cycles
when the trace buffer would normally be triggered. The
expanded observation window in this case would be
expanded only across the clock cycles when the trace
buffer would normally be triggered.

It should also be noted that if a design contains
multiple trace buffers, the proposed methodology could
be concurrently applied to all the trace buffers. So the
total number of debug sessions would still be 3 regardless

of how many trace buffer observations windows are being
expanded.

References

[Abramovici 05] Abramovici, M., and Y.-C. Hsu, “A New
Approach to Silicon Debug,” Proc. of Int. Silicon Debug
and Diagnosis Workshop (SDD), 2005.

[Abramovici 06] Abramovici, M., P. Bradley, K. Dwarakanath,
P. Levin, G. Memmi, and D. Miller, “A Reconfigurable
Design-for-Debug Infrastructure for SoCs,” Proc. of Design
Automation Conference, pp. 7-12, 2006.

[Anis 07a] Anis, E., and N. Nicolici, “On Using Lossless
Compression of Debug Data in Embedded Logic Analysis,”
Proc. of Int. Test Conference, Paper 18.3, 2007.

[Anis 07b] Anis, E., and N. Nicolici, “Low Cost Debug
Architecture using Lossy Compression for Silicon Debug,”
Proc. of Design, Automation, and Test in Europe, pp. 1-6,
2007.

[Hopkins 06] Hopkins, A., and K. McDonald-Maier, “Debug
Support for Complex Systems on-Chip: A Review,” IEEE
Proc. on Computers and Digital Techniques, Vol 153, No.
4, pp. 197-207, Jul. 2006.

[Hsu 06] Hsu, Y.-C., F. Tsai, W. Jong and Y.-T. Chang,
“Visibility Enhancement for Silicon Debug,” Proc. of
Design Automation Conference, pp. 13-18, 2006.

[Shen 99] Shen J., and Abraham, J. A., “Verification of
Processor Microarchitectures,” Proc. of VLSI Test
Symposium, pp. 189-194, Apr. 1999.

351351

