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Abstract 
 
Internal signals of a circuit are observed to analyze, 

understand, and debug nonconforming chip 
behavior.  The number of signals that can be observed is 
limited by bandwidth and storage requirements.  This 
paper presents an automated procedure to select which 
signals to observe to facilitate early detection of circuit 
malfunction to help find the root cause of a bug.  This 
paper exploits the nature of error propagation in 
sequential circuits by observing signals which are most 
often sensitized to possible errors.  Given a functional 
input vector set, an error transmission matrix is 
generated by analyzing which flip-flops are sensitized to 
other flip-flops.  Signal observability is enhanced by 
merging data from relatively independent flip-flops.  The 
final set of signals to observe is determined through 
integer linear programming (ILP) which provides a set of 
locations that maximally cover the possible error sites 
within given constraints.  Experimental results indicate 
that the cycle in which a bug first appears can be more 
rapidly and precisely found with the proposed approach 
thereby speeding up the post-silicon debug process. 
 
 
1. Introduction 

 

The advance of technology allows sophisticated 
designs with millions of transistors.  Due to inaccuracies 
in modeling integrated circuits (ICs) along with process 
variations during the manufacturing process, identifying 
and resolving problems in ICs after first silicon is a very 
time consuming task [Josephson 04], [Ko 08], [Yang 08a, 
08b].  Unlike during pre-silicon verification, the 
accessibility and visibility of internal signals are very 
limited in post-silicon debug and hence this is the major 
challenge in the validation and debug of first silicon.  The 
narrow observability of internal signals makes silicon 
debug costly and time consuming. 

Techniques have been proposed to enhance the 
observability of internal signals via complete, but non-real 

time observation, using scan chains and selective, but real 
time observation, such as using trace buffers or direct 
access via dedicated pins.  Scan-based debug [Hopkins 
06], [Vermeulen 02] gives high observability of internal 
signals by re-using scan chains, however, it requires 
halting the system to scan out responses from the circuit-
under-debug (CUD).  Trace buffer based debug 
[Abramovici 06], [Anis 07a, 07b], [Yang 08a] provides 
at-speed signal capture capability over a limited number 
of clock cycles which enhances the observability of the 
internal signals.  The amount of data that can be observed 
with a trace buffer is limited by its on-chip storage space.  
Compression techniques can be applied to further improve 
the observability provided by a trace buffer [Anis 07a, 
07b], [Yang 08a].  In [Vermeulen 01], a set of signals 
required for debugging was connected to a multiplexer 
module, called SPY, for real-time observation, and then 
captured in a register or monitored via chip pins. 

Increased internal signal observability helps to 
discover erroneous behavior closer to the source of the 
problem, both in space and time.  Some previous research 
has been done on ways to enhance internal observability.  
In [Abramovici 05] and [Hsu 06], techniques are 
proposed for constructing the values of more signals than 
are captured each clock cycle in a trace buffer.  The 
captured silicon data is mapped to Boolean equations and 
non-visible values in combinational logic are expanded by 
a dependency and approximation method.  This method 
provides some improvement in observing localized 
signals.  [Park 08] shows an architectural level approach 
for post-silicon bug localization.  It records the history of 
the program executed and identifies the bug location-time 
information at the system level.  Experimental results 
show that its method can effectively locate bugs with high 
accuracy.   

In [Ko 08], an automated data reconstruction method 
for sequential circuits is investigated.  The restorability of 
signals is calculated to determine the signals to be traced.  
Results in [Ko 08] for ISCAS benchmark circuits show 
that this approach can restore signals up to 130 times 
better.  However, if the logic depth between internal state 
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elements is deep, the amount of restorability may be very 
limited.  If the combinational logic depth is shallow, this 
approach can greatly help post-silicon debug with a 
number of internal signals implied by captured data. 

In [Yang 08b], a signal monitoring technique based on 
non-destructive scan chains is investigated.  In non-
destructive scan, shadow scan latches are used to retain 
the internal state during scan out.  Conventional scan 
chains that have non-destructive scan capability are 
configured to operate as multiple MISRs during normal 
system operation.  Internal signal observability is 
increased by observing the compressed internal system 
states without halting the system.  Information from the 
MISRs is periodically monitored to identify erroneous 
behavior.  Results show that only a small number of scan 
dumps are needed to zero in the first erroneous clock 
cycle.  However, this technique can only be applied to 
designs which have non-destructive scan chains. 

In this paper, a method to maximize the effectiveness 
of limited internal signal observability is proposed based 
on carefully selecting which signals to observe.  An 
automated procedure is described for selecting the signals 
to observe to maximize early error detection during 
silicon debug.  By detecting circuit misbehavior soon after 
it occurs, the search space for zeroing in on the root cause 
of the misbehavior is greatly reduced thereby speeding up 
the debug process.  The proposed method exploits the 
nature of error propagation in sequential circuits by 
observing signals which are most often sensitized to 
possible error sites.    The set of signals to observe is 
determined by using an error transmission matrix that is 
generated by analyzing which flip-flops are sensitized to 
other flip-flops.  Signal observability is enhanced by 
merging data from relatively independent flip-flops.  The 
final set of signals to observe is determined through 
integer linear programming (ILP) which provides a set of 
locations that maximally cover the possible errors with a 
given condition.   

The paper is organized as follows.  Sec. 2 gives an 
overview of the proposed scheme.  Sec. 3 discusses the 
three procedures to determine the signals to observe in 
detail.  Experimental results are shown in Sec. 4 and 
conclusions are given in Sec. 5.  

 
2. Overview of Proposed Scheme 

 

The proposed method provides information on which 
limited number of signals to observe in a circuit to 
maximize the efficiency of the post-silicon debug process.  
In a sequential circuit, it may take many cycles for an 
error to propagate to a primary output where it can be 
observed [Yang 08b].  In the proposed method, signals 
are observed along the paths where error propagation is 
most likely.  

In debug mode, functional vectors are applied and the 
responses are analyzed to validate a chip.  Using the 
functional vectors and treating the flip-flops as sources of 
errors, fault simulation can be performed to study the 
error transmission between flip-flops.  The error 
transmission information can be represented as a matrix 
which will be referred to here as the “error transmission 
matrix”.  Based on this information, the flip-flops that are 
most often sensitized to other flip-flops can be identified 
and used as candidates for the set of signals to observe. 

Flip-flops are relatively independent if a single error in 
a circuit will not influence them simultaneously.  
Relatively independent flip-flops can be XORed together 
to increase the overall observability of the internal signals.  
The error transmission matrix can be updated by forming 
signal groups by combining (XORing) the relatively 
independent flip-flops in the matrix. 

Because there is limited storage space provided by 
DFD (design for debug) hardware, e.g., a trace buffer, it is 
important to efficiently choose the set of signals to 
observe which will detect as many errors as possible.  For 
this purpose, integer linear programming (ILP) is used to 
select the signal groups from the error transmission matrix   

 
3. Details of Signals to Observe Selection 

 

The following subsections describe each of the steps 
in the proposed procedure for selecting the signals to 
observe. 

 

3.1 Generating Error Transmission Matrix 
 

 

A B

D E

C

F

Functional 
Input Vectors:
v1, v2, v3

Combinational
Logic

 
 

Figure 1. Example of a Simple Logic 
 

Fig.1 shows an example of some simple logic that has 
6 sequential elements represented by rectangles named A 
to F and combinational logic illustrated as a cloud.  For 
simplicity, assume three functional vectors (v1, v2 and v3) 
are applied to this logic.  When the vectors are applied, if 
there is a bug, the erroneous response could be captured 
in some flip-flops at some time.  That faulty response 
would likely keep propagating in a sequential circuit over 
multiple cycles. 
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Figure 2. Error (in A and E) Propagation 
 

The error transmission matrix is generated by injecting 
errors at each flip-flop for each vector in the vector set 
and performing fault simulation for one cycle to see 
where the error propagates.  For example, simulation can 
be done to see which flip-flops are corrupted by an error 
in A when input vector v1 is applied.  Next, we make B 
faulty and see which flops are sensitized to the error with 
v1.  To illustrate this, Fig. 2 shows where an error at A and 
E propagates.  The error at A is transmitted to flip-flops C, 
D and E for input vector v1 (highlighted in gray color), 
and an error at E is transmitted to D and F for v3 
(highlighted in dashed line), respectively. 
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Figure 3. Error Transmission Matrix 
 

Error transmission information corresponding to input 
vectors and error locations is represented in the error 
transmission matrix.  This is illustrated in Fig. 3.  Each 
column represents a flip-flop in the circuit, and each row 
shows the error information.  (A, v1) in the first row 
indicates that an error is located in A and for vector v1 it 

propagates to C, D and E which each have an ‘1’ in the 
first row of Fig. 3.  Once the error transmission matrix is 
generated, the flip-flops that are most often sensitized to 
possible errors can be identified assuming bugs in silicon 
are modeled as occurring evenly distributed in time and 
space.  Note that an error will likely propagate for 
multiple clock cycles and need not necessarily be detected 
in the first cycle in which it occurs.  The columns in the 
error transmission matrix with the most 1’s are 
probabilistically more likely to capture errors over time 
since errors are transmitted to them most frequently.  
Hence, they are candidates for signals to observe for the 
better observability.  Moreover, if a limited set of signals 
to observe is to be selected, then columns that are most 
non-overlapping and cover as many rows as possible are 
also more likely to cover more errors.  This will be 
discussed in more detail later. 

 
3.2 Merging Relatively Independent Flip-Flops 

 

Relatively independent flip-flops in a circuit are 
identified and merged to achieve better observation 
capability.  The overall goal is to find misbehavior as 
early as possible, so observing more signals helps silicon 
debug by providing more internal signal information.   

If two flip-flops are relatively independent, the 
erroneous response for one error will not be 
simultaneously transmitted to both flip-flops.  For the 
example in Fig. 2, since an error in A is transmitted to C, 
D, and E for vector v1, flip-flops A, B, and F are relatively 
independent to the possible error (A, v1).  Therefore, A, B, 
and F can be merged together in this case and E can be 
combined with A, B, C in the (E, v3) case.  

In the error transmission matrix, if there are multiple 
1’s in a row, the corresponding flip-flops are relatively 
dependent for a possible error.  By finding the columns in 
the matrix which are not sensitized to the same errors 
simultaneously, relatively independent flip-flops can be 
identified. 

Relatively independent flip-flops can be XORed 
together without losing error observation for single flip-
flop errors.  Note, however, that flip-flops are relatively 
independent only with respect to single errors, so it is still 
possible for multiple errors to cancel.  However, this 
serves as a good heuristic for increasing overall error 
coverage.  In Fig. 3, relative independence is checked 
among flip-flops (A ~ F) and three relatively independent 
signal groups can be found.  Flip-flop A, C and F are not 
sensitized to the same errors, and any error set does not 
influence flip-flop B and D simultaneously.  Therefore, 
the first signal group (S0), the second group (S1) and the 
last group (S2) can be expressed respectively as follows:  

 

Signal Groups (S0, S1, S2) 
 

S0 = A ⊕ C ⊕ F 
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S1 = B ⊕ D 
 

S2 = E 
 

Then, the error transmission matrix is updated based on 
the signal groups as shown in Fig. 4.  Error index (R0 ~ 
R17) is used to identify the errors from (A, v1) to (F, v3).  
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Figure 4. Updated Error Transmission Matrix 
 
 

A limit can be placed on the number of signals which 
are XORed together when the error transmission matrix is 
updated to minimize delay and/or routing.  Results are 
shown in Sec. 4 with different limits on the maximum 
number of signals XORed together.  

 
3.3 Determining the Set of Signals to Observe 

 

Because there are limitations on storage, bandwidth, 
and overhead for observing signals, it is very important to 
choose the best set of signal groups to observe for the 
most efficient debugging.  With given conditions in the 
error transmission matrix, debugging capability can be 
maximized by finding a set of signal groups that are 
sensitive to the broadest set of errors.   

Integer linear programming (ILP) is employed to select 
an optimal set of signals based on the error transmission 
matrix.  The updated error transmission matrix in Fig. 4 is 
formulated as the set of equations in Fig. 5. 

In Fig. 5, R0 denotes 0th row in the updated error 
transmission matrix and S0 represents 0th column.  
Because the objective in solving ILP is to maximize the 
number of errors covered by a set of signal groups, the 
objective equation (“maximize the covered errors”) is 

expressed as the summation of the entire error sets (1).  If 
an error is covered by any signal group, then the value ‘1’ 
is assigned to a corresponding error variable (Rk).  And if 
an error is not covered, ‘0’ will be assigned (4).  When a 
signal group is selected for observation, Si has ‘1’ (5).  
For example, if S0 is selected and S1 is not selected, S0 is 1 
and S1 is 0.  Because the number of signal groups to 
observe is always larger than 1 (i.e. S0 + S1 + S2 ≥ 1) (2), 
the row constraints can be represented as equations (3).  
In the first row, R0 is always detected by S0-0, S0-1 or S0-2 
where Sk-i denotes a signal group in kth row and ith column.  
Therefore, the ILP formulation from the first row can be 
expressed as S0-0 + S0-1 + S0-2 ≥ R0.  From the second row, 
we can derive a constraint as S1-0 + S1-2 ≥ R1.  This implies 
that if a signal selection of either S0 or S2 (S1-0 + S1-2 = 1), 
or selection of both S0 and S2 (S1-0 + S1-2 = 2) will cover 
R1 (R1 = 1), and if none of S0 and S1 (S1-0 + S1-2 = 0) is 
selected, R1 would not be covered (R1 = 0).  Therefore, a 
summation of S1-0 and S1-2 is always greater than or equal 
to R1.  In the same manner, a total of 18 ILP formulations 
are generated in (3). 
 
max : R0 + R1 + R2 + ... + R15 + R16 + R17

s.t : S0 + S1 + S2 = num. of signal groups to observe

S0_0 + S0_1 + S0_2  R0≥

S1_0 + S1_2  R1≥

S16_0 + S16_1  R16≥

S17_2  R17≥

R0 , R1 , R2 ,  ... , R15 , R16 , R17 ∈ {0, 1}

(1)

(2)

(3)

(4)

S0 , S1 , S2 ∈ {0, 1} (5) 
 
 

Figure 5. ILP Formulation for Updated Error 
Transmission Matrix 

 

 
If two signal groups are to be chosen in Fig 4, the ILP 

solver selects S0 and S2.  12 errors are covered by the S0 
and S1 combination, S0 and S2 gives 15 covered errors, 
and S1 and S2 can cover 13 errors.  Therefore, S0 and S2 
cover the maximum number of possible errors with the 
given constraint in Fig. 5.  The signals corresponding to 
S0 and S2 are selected for observation.   

A general ILP formulation for locating the set of 
signals to observe is shown in Fig. 6.  When there are n 
rows and m columns in the updated error transmission 
matrix, the constraints are expressed using R and S where 
R and S denote the error list and the signal group 
respectively.  The formulation of the objective is shown in 
(1) in Fig. 6 to maximize the number of covered errors 
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that satisfies (2).  Sk-i in (3) is a signal list in ith column 
with kth row error list in the updated error transmission 
matrix.  And xk-i is an element in the intersection of kth 
row and ith column of the matrix.  The solution space for 
R and S is {0, 1} in (4) and (5). 
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Figure 6. General ILP Formulation for Updated  
Error Transmission Matrix 

 

The final set of signals to observe is determined 
through ILP which provides a set of signal groups that 
maximally cover the possible errors with the constraints 
in Fig. 6.  

The size of the error transmission matrix increases 
with the number of functional vectors.  The matrix can be 
partitioned for scalability.  For example, if there are n 
patterns, we can generate two error transmission matrices 
using n/2 patterns each.  The final signal groups can be 
determined from the two matrices by counting the number 
of possible errors detected.  

 
4. Experimental Results 

 

Experimental results are presented for ISCAS-89 
benchmark circuits [Brglez 89] and an NOC (network-on-
chip) design [Jang 08].  Random faults were injected in 
circuits to generate erroneous data.  Random input 
patterns were applied to the ISCAS-89 benchmark circuits 
and deterministic functional verification vectors were 
applied to the NOC design.  Fault simulation was 
conducted to generate the error transmission matrix.  As 
discussed in Sec. 3.2, the number of signals which can be 
merged for the signal groups can be limited to avoid 
issues related to the physical design such as timing and 
wiring.  We use three threshold values:  8, 12 and ∞ , to 
limit the number of signals included in a single group.  
The error transmission matrix was updated using 
threshold values.  To find the final set of signals to 
observe, GNU Linear Programming Kit (GLPK) 4.32 
[GLPK] was used as the ILP solver.   

Table 1 shows how many flip flops are observed with 
each of the three threshold values.  The first column 
shows the circuit name.  The number of flip-flops in 

s9234, s38584, and NOC are 211, 1426 and 1991, 
respectively.  The second column shows the maximum 
number of signals that can be merged into one signal 
group when updating the error transmission matrix.  In the 
third column, the number of flip-flops observed is shown 
when 8, 12, 16 and 32 signal groups are chosen by ILP in 
the updated error transmission matrix.  As can be seen 
from the results except for s9234, more flip-flops can be 
observed as the maximum value in the second column is 
increased.  Since s9234 is a relatively small benchmark 
circuit, the number of relatively independent flip-flops 
that are found is limited by its circuit size and not by the 
three threshold values.   

Table 1. Number of Flip-Flops Observed by Proposed 
Method  

 

Num. of Signal Groups Circuit Max.
Val 8 12 16 32 
8 23 25 35 53 

12 23 25 35 53 s9234
∞  23 25 35 53 
8 61 87 112 230 

12 86 127 173 380 s38584
∞  893 1037 1205 1402
8 64 93 126 256 

12 92 134 184 379 NOC 
∞  367 921 1169 1543

 

Table 2 shows comparisons in terms of the average 
latency to detect bugs using the proposed method 
compared with two other techniques.  The latency is 
measured by the number of clock cycles after the error is 
injected until it is observed.  The measured latency is 
averaged over 300 different random error injections.  The 
first column in Table 2 shows the name of benchmark 
circuit and the second column shows the type of 
technique used.  For comparison purposes, two different 
ways of selecting the signals to observe were used in 
addition to the proposed method.  In one way, signals are 
randomly chosen and observed to detect circuit 
misbehavior.  In the other way, signals are chosen using 
structural information in the following way.  The size of 
each logic cone is sorted and the flip-flops that are fed by 
the largest logic cones are selected.  Debug was 
performed with the three methods:  random, structure-
based, and the proposed method to compare the efficiency 
of the silicon debug.  For the proposed method, three 
different threshold values for the maximum number of 
signals to merge is used which are shown in the third 
column.  As can be seen, the proposed method detects the 
erroneous data more rapidly in all cases.  It can also be 
seen that the more signals that are merged, the faster 
debug process is achieved.  These results show that 
careful signal selection can be used to increase the 
efficiency and speed of silicon debug. 
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Table 2. Average Erroneous Response Detection Latency Results for 300 Different Random Error Injections 
 

Average Detection Latency with Different  
Number of Signal Groups Circuit Type of  

Technique 
Max. 
Val 8 12 16 32 

Random N/A 320.81 212.18 186.82 173.73 
Structure N/A 244.28 197.71 176.82 173.01 

8 49.36 41.84 41.06 20.52 
12 49.36 41.84 41.06 20.52 

s9234 
Proposed 

∞  49.36 41.84 41.06 20.52 
Random N/A 197.56 184.46 131.85 109.87 
Structure N/A 178.08 146.73 127.32 115.86 

8 67.35 61.44 51.87 31.41 
12 59.42 54.13 49.04 19.67 

s38584 
Proposed 

∞  10.24 6.62 0.58 0.34 
Random N/A 594.42 571.87 574.52 504.65 
Structure N/A 643.26 551.66 541.23 492.24 

8 201.56 153.68 124.08 68.37 
12 148.97 117.79 109.80 45.21 

NOC 
Proposed 

∞  47.63 21.79 16.37 9.12 
 

5. Conclusions 
 

In this paper, an automated procedure for selecting 
which signals to observe is proposed for more efficient 
silicon debug.  The set of signals selected by the proposed 
method are most often sensitized to possible errors and 
they maximally cover the errors within given constraints.  
The result shows that the proposed method can detect the 
faulty response rapidly and can increase the effectiveness 
of DFD hardware. 

It should also be noted that the proposed technique 
could be universally applied to any designs including 
those which do not have scan chains with non-destructive 
scan out capability. 
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