
Automated Selection of Signals to Observe for Efficient Silicon Debug

Joon-Sung Yang and Nur A. Touba

Computer Engineering Research Center
Department of Electrical and Computer Engineering

University of Texas, Austin, TX 78712

Abstract

Internal signals of a circuit are observed to analyze,

understand, and debug nonconforming chip
behavior. The number of signals that can be observed is
limited by bandwidth and storage requirements. This
paper presents an automated procedure to select which
signals to observe to facilitate early detection of circuit
malfunction to help find the root cause of a bug. This
paper exploits the nature of error propagation in
sequential circuits by observing signals which are most
often sensitized to possible errors. Given a functional
input vector set, an error transmission matrix is
generated by analyzing which flip-flops are sensitized to
other flip-flops. Signal observability is enhanced by
merging data from relatively independent flip-flops. The
final set of signals to observe is determined through
integer linear programming (ILP) which provides a set of
locations that maximally cover the possible error sites
within given constraints. Experimental results indicate
that the cycle in which a bug first appears can be more
rapidly and precisely found with the proposed approach
thereby speeding up the post-silicon debug process.

1. Introduction

The advance of technology allows sophisticated
designs with millions of transistors. Due to inaccuracies
in modeling integrated circuits (ICs) along with process
variations during the manufacturing process, identifying
and resolving problems in ICs after first silicon is a very
time consuming task [Josephson 04], [Ko 08], [Yang 08a,
08b]. Unlike during pre-silicon verification, the
accessibility and visibility of internal signals are very
limited in post-silicon debug and hence this is the major
challenge in the validation and debug of first silicon. The
narrow observability of internal signals makes silicon
debug costly and time consuming.

Techniques have been proposed to enhance the
observability of internal signals via complete, but non-real

time observation, using scan chains and selective, but real
time observation, such as using trace buffers or direct
access via dedicated pins. Scan-based debug [Hopkins
06], [Vermeulen 02] gives high observability of internal
signals by re-using scan chains, however, it requires
halting the system to scan out responses from the circuit-
under-debug (CUD). Trace buffer based debug
[Abramovici 06], [Anis 07a, 07b], [Yang 08a] provides
at-speed signal capture capability over a limited number
of clock cycles which enhances the observability of the
internal signals. The amount of data that can be observed
with a trace buffer is limited by its on-chip storage space.
Compression techniques can be applied to further improve
the observability provided by a trace buffer [Anis 07a,
07b], [Yang 08a]. In [Vermeulen 01], a set of signals
required for debugging was connected to a multiplexer
module, called SPY, for real-time observation, and then
captured in a register or monitored via chip pins.

Increased internal signal observability helps to
discover erroneous behavior closer to the source of the
problem, both in space and time. Some previous research
has been done on ways to enhance internal observability.
In [Abramovici 05] and [Hsu 06], techniques are
proposed for constructing the values of more signals than
are captured each clock cycle in a trace buffer. The
captured silicon data is mapped to Boolean equations and
non-visible values in combinational logic are expanded by
a dependency and approximation method. This method
provides some improvement in observing localized
signals. [Park 08] shows an architectural level approach
for post-silicon bug localization. It records the history of
the program executed and identifies the bug location-time
information at the system level. Experimental results
show that its method can effectively locate bugs with high
accuracy.

In [Ko 08], an automated data reconstruction method
for sequential circuits is investigated. The restorability of
signals is calculated to determine the signals to be traced.
Results in [Ko 08] for ISCAS benchmark circuits show
that this approach can restore signals up to 130 times
better. However, if the logic depth between internal state

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.51

83

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.51

83

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.51

83

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.51

83

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.51

83

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.51

79

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.51

79

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.51

79

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 25, 2009 at 18:25 from IEEE Xplore. Restrictions apply.

elements is deep, the amount of restorability may be very
limited. If the combinational logic depth is shallow, this
approach can greatly help post-silicon debug with a
number of internal signals implied by captured data.

In [Yang 08b], a signal monitoring technique based on
non-destructive scan chains is investigated. In non-
destructive scan, shadow scan latches are used to retain
the internal state during scan out. Conventional scan
chains that have non-destructive scan capability are
configured to operate as multiple MISRs during normal
system operation. Internal signal observability is
increased by observing the compressed internal system
states without halting the system. Information from the
MISRs is periodically monitored to identify erroneous
behavior. Results show that only a small number of scan
dumps are needed to zero in the first erroneous clock
cycle. However, this technique can only be applied to
designs which have non-destructive scan chains.

In this paper, a method to maximize the effectiveness
of limited internal signal observability is proposed based
on carefully selecting which signals to observe. An
automated procedure is described for selecting the signals
to observe to maximize early error detection during
silicon debug. By detecting circuit misbehavior soon after
it occurs, the search space for zeroing in on the root cause
of the misbehavior is greatly reduced thereby speeding up
the debug process. The proposed method exploits the
nature of error propagation in sequential circuits by
observing signals which are most often sensitized to
possible error sites. The set of signals to observe is
determined by using an error transmission matrix that is
generated by analyzing which flip-flops are sensitized to
other flip-flops. Signal observability is enhanced by
merging data from relatively independent flip-flops. The
final set of signals to observe is determined through
integer linear programming (ILP) which provides a set of
locations that maximally cover the possible errors with a
given condition.

The paper is organized as follows. Sec. 2 gives an
overview of the proposed scheme. Sec. 3 discusses the
three procedures to determine the signals to observe in
detail. Experimental results are shown in Sec. 4 and
conclusions are given in Sec. 5.

2. Overview of Proposed Scheme

The proposed method provides information on which
limited number of signals to observe in a circuit to
maximize the efficiency of the post-silicon debug process.
In a sequential circuit, it may take many cycles for an
error to propagate to a primary output where it can be
observed [Yang 08b]. In the proposed method, signals
are observed along the paths where error propagation is
most likely.

In debug mode, functional vectors are applied and the
responses are analyzed to validate a chip. Using the
functional vectors and treating the flip-flops as sources of
errors, fault simulation can be performed to study the
error transmission between flip-flops. The error
transmission information can be represented as a matrix
which will be referred to here as the “error transmission
matrix”. Based on this information, the flip-flops that are
most often sensitized to other flip-flops can be identified
and used as candidates for the set of signals to observe.

Flip-flops are relatively independent if a single error in
a circuit will not influence them simultaneously.
Relatively independent flip-flops can be XORed together
to increase the overall observability of the internal signals.
The error transmission matrix can be updated by forming
signal groups by combining (XORing) the relatively
independent flip-flops in the matrix.

Because there is limited storage space provided by
DFD (design for debug) hardware, e.g., a trace buffer, it is
important to efficiently choose the set of signals to
observe which will detect as many errors as possible. For
this purpose, integer linear programming (ILP) is used to
select the signal groups from the error transmission matrix

3. Details of Signals to Observe Selection

The following subsections describe each of the steps
in the proposed procedure for selecting the signals to
observe.

3.1 Generating Error Transmission Matrix

A B

D E

C

F

Functional
Input Vectors:
v1, v2, v3

Combinational
Logic

Figure 1. Example of a Simple Logic

Fig.1 shows an example of some simple logic that has
6 sequential elements represented by rectangles named A
to F and combinational logic illustrated as a cloud. For
simplicity, assume three functional vectors (v1, v2 and v3)
are applied to this logic. When the vectors are applied, if
there is a bug, the erroneous response could be captured
in some flip-flops at some time. That faulty response
would likely keep propagating in a sequential circuit over
multiple cycles.

8484848484808080

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 25, 2009 at 18:25 from IEEE Xplore. Restrictions apply.

A B C

E FD

v1

v3

Figure 2. Error (in A and E) Propagation

The error transmission matrix is generated by injecting
errors at each flip-flop for each vector in the vector set
and performing fault simulation for one cycle to see
where the error propagates. For example, simulation can
be done to see which flip-flops are corrupted by an error
in A when input vector v1 is applied. Next, we make B
faulty and see which flops are sensitized to the error with
v1. To illustrate this, Fig. 2 shows where an error at A and
E propagates. The error at A is transmitted to flip-flops C,
D and E for input vector v1 (highlighted in gray color),
and an error at E is transmitted to D and F for v3
(highlighted in dashed line), respectively.

0110
0000
0000
0011
0001
1100

0000
0110
0001
0010
1001
0000

0000
1000
0000
0011
0000
0010

01
01
00
00
01
01

01
00
00
00
01
10

01
10
00
01
10
01

(A, v1)
(B, v1)
(C, v1)
(D, v1)
(E, v1)
(F, v1)
(A, v2)
(B, v2)
(C, v2)
(D, v2)
(E, v2)
(F, v2)
(A, v3)
(B, v3)
(C, v3)
(D, v3)
(E, v3)
(F, v3)

DCBA FE

Figure 3. Error Transmission Matrix

Error transmission information corresponding to input
vectors and error locations is represented in the error
transmission matrix. This is illustrated in Fig. 3. Each
column represents a flip-flop in the circuit, and each row
shows the error information. (A, v1) in the first row
indicates that an error is located in A and for vector v1 it

propagates to C, D and E which each have an ‘1’ in the
first row of Fig. 3. Once the error transmission matrix is
generated, the flip-flops that are most often sensitized to
possible errors can be identified assuming bugs in silicon
are modeled as occurring evenly distributed in time and
space. Note that an error will likely propagate for
multiple clock cycles and need not necessarily be detected
in the first cycle in which it occurs. The columns in the
error transmission matrix with the most 1’s are
probabilistically more likely to capture errors over time
since errors are transmitted to them most frequently.
Hence, they are candidates for signals to observe for the
better observability. Moreover, if a limited set of signals
to observe is to be selected, then columns that are most
non-overlapping and cover as many rows as possible are
also more likely to cover more errors. This will be
discussed in more detail later.

3.2 Merging Relatively Independent Flip-Flops

Relatively independent flip-flops in a circuit are
identified and merged to achieve better observation
capability. The overall goal is to find misbehavior as
early as possible, so observing more signals helps silicon
debug by providing more internal signal information.

If two flip-flops are relatively independent, the
erroneous response for one error will not be
simultaneously transmitted to both flip-flops. For the
example in Fig. 2, since an error in A is transmitted to C,
D, and E for vector v1, flip-flops A, B, and F are relatively
independent to the possible error (A, v1). Therefore, A, B,
and F can be merged together in this case and E can be
combined with A, B, C in the (E, v3) case.

In the error transmission matrix, if there are multiple
1’s in a row, the corresponding flip-flops are relatively
dependent for a possible error. By finding the columns in
the matrix which are not sensitized to the same errors
simultaneously, relatively independent flip-flops can be
identified.

Relatively independent flip-flops can be XORed
together without losing error observation for single flip-
flop errors. Note, however, that flip-flops are relatively
independent only with respect to single errors, so it is still
possible for multiple errors to cancel. However, this
serves as a good heuristic for increasing overall error
coverage. In Fig. 3, relative independence is checked
among flip-flops (A ~ F) and three relatively independent
signal groups can be found. Flip-flop A, C and F are not
sensitized to the same errors, and any error set does not
influence flip-flop B and D simultaneously. Therefore,
the first signal group (S0), the second group (S1) and the
last group (S2) can be expressed respectively as follows:

Signal Groups (S0, S1, S2)

S0 = A ⊕ C ⊕ F

8585858585818181

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 25, 2009 at 18:25 from IEEE Xplore. Restrictions apply.

S1 = B ⊕ D

S2 = E

Then, the error transmission matrix is updated based on
the signal groups as shown in Fig. 4. Error index (R0 ~
R17) is used to identify the errors from (A, v1) to (F, v3).

111
100
000
011
101
111

100
011
001
010
111
001

100
011
000
111
001
110

(A, v1) : R0

(B, v1) : R1

(C, v1) : R2

(D, v1) : R3

(E, v1) : R4

(F, v1) : R5

(A, v2) : R6

(B, v2) : R7

(C, v2) : R8

(D, v2) : R9

(E, v2) : R10

(F, v2) : R11

(A, v3) : R12

(B, v3) : R13

(C, v3) : R14

(D, v3) : R15

(E, v3) : R16

(F, v3) : R17

S2S1S0

0110
0000
0000
0011
0001
1100

0000
0110
0001
0010
1001
0000

0000
1000
0000
0011
0000
0010

01
01
00
00
01
01

01
00
00
00
01
10

01
10
00
01
10
01

DCBA FE

Figure 4. Updated Error Transmission Matrix

A limit can be placed on the number of signals which
are XORed together when the error transmission matrix is
updated to minimize delay and/or routing. Results are
shown in Sec. 4 with different limits on the maximum
number of signals XORed together.

3.3 Determining the Set of Signals to Observe

Because there are limitations on storage, bandwidth,
and overhead for observing signals, it is very important to
choose the best set of signal groups to observe for the
most efficient debugging. With given conditions in the
error transmission matrix, debugging capability can be
maximized by finding a set of signal groups that are
sensitive to the broadest set of errors.

Integer linear programming (ILP) is employed to select
an optimal set of signals based on the error transmission
matrix. The updated error transmission matrix in Fig. 4 is
formulated as the set of equations in Fig. 5.

In Fig. 5, R0 denotes 0th row in the updated error
transmission matrix and S0 represents 0th column.
Because the objective in solving ILP is to maximize the
number of errors covered by a set of signal groups, the
objective equation (“maximize the covered errors”) is

expressed as the summation of the entire error sets (1). If
an error is covered by any signal group, then the value ‘1’
is assigned to a corresponding error variable (Rk). And if
an error is not covered, ‘0’ will be assigned (4). When a
signal group is selected for observation, Si has ‘1’ (5).
For example, if S0 is selected and S1 is not selected, S0 is 1
and S1 is 0. Because the number of signal groups to
observe is always larger than 1 (i.e. S0 + S1 + S2 ≥ 1) (2),
the row constraints can be represented as equations (3).
In the first row, R0 is always detected by S0-0, S0-1 or S0-2
where Sk-i denotes a signal group in kth row and ith column.
Therefore, the ILP formulation from the first row can be
expressed as S0-0 + S0-1 + S0-2 ≥ R0. From the second row,
we can derive a constraint as S1-0 + S1-2 ≥ R1. This implies
that if a signal selection of either S0 or S2 (S1-0 + S1-2 = 1),
or selection of both S0 and S2 (S1-0 + S1-2 = 2) will cover
R1 (R1 = 1), and if none of S0 and S1 (S1-0 + S1-2 = 0) is
selected, R1 would not be covered (R1 = 0). Therefore, a
summation of S1-0 and S1-2 is always greater than or equal
to R1. In the same manner, a total of 18 ILP formulations
are generated in (3).

max : R0 + R1 + R2 + ... + R15 + R16 + R17

s.t : S0 + S1 + S2 = num. of signal groups to observe

S0_0 + S0_1 + S0_2 R0≥

S1_0 + S1_2 R1≥

S16_0 + S16_1 R16≥

S17_2 R17≥

R0 , R1 , R2 , ... , R15 , R16 , R17 ∈ {0, 1}

(1)

(2)

(3)

(4)

S0 , S1 , S2 ∈ {0, 1} (5)

Figure 5. ILP Formulation for Updated Error
Transmission Matrix

If two signal groups are to be chosen in Fig 4, the ILP

solver selects S0 and S2. 12 errors are covered by the S0
and S1 combination, S0 and S2 gives 15 covered errors,
and S1 and S2 can cover 13 errors. Therefore, S0 and S2
cover the maximum number of possible errors with the
given constraint in Fig. 5. The signals corresponding to
S0 and S2 are selected for observation.

A general ILP formulation for locating the set of
signals to observe is shown in Fig. 6. When there are n
rows and m columns in the updated error transmission
matrix, the constraints are expressed using R and S where
R and S denote the error list and the signal group
respectively. The formulation of the objective is shown in
(1) in Fig. 6 to maximize the number of covered errors

8686868686828282

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 25, 2009 at 18:25 from IEEE Xplore. Restrictions apply.

that satisfies (2). Sk-i in (3) is a signal list in ith column
with kth row error list in the updated error transmission
matrix. And xk-i is an element in the intersection of kth
row and ith column of the matrix. The solution space for
R and S is {0, 1} in (4) and (5).

∑
1

0

:
−

=

n

k
kR axm

}1-,,1,0{∈}1,0{∈ nkforRk L

k

m

i
ikik RSx ≥

−

=

∑
1

0
__ }1-,,1,0{∈ nkfor L

}1,0{∈_ikxfor

observetogroupssignalofnumSts
m

i
i . :. ∑

1

0

=
−

=

(1)

(2)

(3)

(4)
}1-,,1,0{∈}1,0{∈ niforSi L (5)

Figure 6. General ILP Formulation for Updated
Error Transmission Matrix

The final set of signals to observe is determined
through ILP which provides a set of signal groups that
maximally cover the possible errors with the constraints
in Fig. 6.

The size of the error transmission matrix increases
with the number of functional vectors. The matrix can be
partitioned for scalability. For example, if there are n
patterns, we can generate two error transmission matrices
using n/2 patterns each. The final signal groups can be
determined from the two matrices by counting the number
of possible errors detected.

4. Experimental Results

Experimental results are presented for ISCAS-89
benchmark circuits [Brglez 89] and an NOC (network-on-
chip) design [Jang 08]. Random faults were injected in
circuits to generate erroneous data. Random input
patterns were applied to the ISCAS-89 benchmark circuits
and deterministic functional verification vectors were
applied to the NOC design. Fault simulation was
conducted to generate the error transmission matrix. As
discussed in Sec. 3.2, the number of signals which can be
merged for the signal groups can be limited to avoid
issues related to the physical design such as timing and
wiring. We use three threshold values: 8, 12 and ∞ , to
limit the number of signals included in a single group.
The error transmission matrix was updated using
threshold values. To find the final set of signals to
observe, GNU Linear Programming Kit (GLPK) 4.32
[GLPK] was used as the ILP solver.

Table 1 shows how many flip flops are observed with
each of the three threshold values. The first column
shows the circuit name. The number of flip-flops in

s9234, s38584, and NOC are 211, 1426 and 1991,
respectively. The second column shows the maximum
number of signals that can be merged into one signal
group when updating the error transmission matrix. In the
third column, the number of flip-flops observed is shown
when 8, 12, 16 and 32 signal groups are chosen by ILP in
the updated error transmission matrix. As can be seen
from the results except for s9234, more flip-flops can be
observed as the maximum value in the second column is
increased. Since s9234 is a relatively small benchmark
circuit, the number of relatively independent flip-flops
that are found is limited by its circuit size and not by the
three threshold values.

Table 1. Number of Flip-Flops Observed by Proposed
Method

Num. of Signal Groups Circuit Max.
Val 8 12 16 32
8 23 25 35 53

12 23 25 35 53 s9234
∞ 23 25 35 53
8 61 87 112 230

12 86 127 173 380 s38584
∞ 893 1037 1205 1402
8 64 93 126 256

12 92 134 184 379 NOC
∞ 367 921 1169 1543

Table 2 shows comparisons in terms of the average
latency to detect bugs using the proposed method
compared with two other techniques. The latency is
measured by the number of clock cycles after the error is
injected until it is observed. The measured latency is
averaged over 300 different random error injections. The
first column in Table 2 shows the name of benchmark
circuit and the second column shows the type of
technique used. For comparison purposes, two different
ways of selecting the signals to observe were used in
addition to the proposed method. In one way, signals are
randomly chosen and observed to detect circuit
misbehavior. In the other way, signals are chosen using
structural information in the following way. The size of
each logic cone is sorted and the flip-flops that are fed by
the largest logic cones are selected. Debug was
performed with the three methods: random, structure-
based, and the proposed method to compare the efficiency
of the silicon debug. For the proposed method, three
different threshold values for the maximum number of
signals to merge is used which are shown in the third
column. As can be seen, the proposed method detects the
erroneous data more rapidly in all cases. It can also be
seen that the more signals that are merged, the faster
debug process is achieved. These results show that
careful signal selection can be used to increase the
efficiency and speed of silicon debug.

8787878787838383

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 25, 2009 at 18:25 from IEEE Xplore. Restrictions apply.

Table 2. Average Erroneous Response Detection Latency Results for 300 Different Random Error Injections

Average Detection Latency with Different
Number of Signal Groups Circuit Type of

Technique
Max.
Val 8 12 16 32

Random N/A 320.81 212.18 186.82 173.73
Structure N/A 244.28 197.71 176.82 173.01

8 49.36 41.84 41.06 20.52
12 49.36 41.84 41.06 20.52

s9234
Proposed

∞ 49.36 41.84 41.06 20.52
Random N/A 197.56 184.46 131.85 109.87
Structure N/A 178.08 146.73 127.32 115.86

8 67.35 61.44 51.87 31.41
12 59.42 54.13 49.04 19.67

s38584
Proposed

∞ 10.24 6.62 0.58 0.34
Random N/A 594.42 571.87 574.52 504.65
Structure N/A 643.26 551.66 541.23 492.24

8 201.56 153.68 124.08 68.37
12 148.97 117.79 109.80 45.21

NOC
Proposed

∞ 47.63 21.79 16.37 9.12

5. Conclusions

In this paper, an automated procedure for selecting
which signals to observe is proposed for more efficient
silicon debug. The set of signals selected by the proposed
method are most often sensitized to possible errors and
they maximally cover the errors within given constraints.
The result shows that the proposed method can detect the
faulty response rapidly and can increase the effectiveness
of DFD hardware.

It should also be noted that the proposed technique
could be universally applied to any designs including
those which do not have scan chains with non-destructive
scan out capability.

Acknowledgement

The authors would like to thank Wooyoung Jang at
the University of Texas at Austin for providing the NOC
design used for the experiments. This research was
supported by the National Science Foundation under
Grant No. CCR-0426608.

References

[Abramovici 05] Abramovici, M., and Y.-C. Hsu, “A New Approach to
Silicon Debug,” Proc. of Int. Silicon Debug and Diagnosis
Workshop (SDD), 2005.

[Abramovici 06] Abramovici, M., P. Bradley, K. Dwarakanath, P. Levin,
G. Memmi, and D. Miller, “A Reconfigurable Design-for-Debug
Infrastructure for SoCs,” Proc. of Design Automation Conference,
pp. 7-12, 2006.

[Anis 07a] Anis, E., and N. Nicolici, “On Using Lossless Compression
of Debug Data in Embedded Logic Analysis,” Proc. of Int. Test
Conference, Paper 18.3, 2007.

[Anis 07b] Anis, E., and N. Nicolici, “Low Cost Debug Architecture
using Lossy Compression for Silicon Debug,” Proc. of Design,
Automation, and Test in Europe, pp. 1-6, 2007.

[Brglez 89] Brglez, F., D. Bryan, and K. Kozminski, “Combinational
Profiles of Sequential Benchmark Circuits,” Proc. of International
Symposium on Circuits and Systems, pp. 1929-1934, 1989.

[GLPK] http://www.gnu.org/software/glpk/glpk.html
[Hopkins 06] Hopkins, A., and K. McDonald-Maier, “Debug Support for

Complex Systems on-Chip: A Review,” Proc. on Computers and
Digital Techniques, Vol 153, No. 4, pp. 197-207, Jul. 2006.

[Hsu 06] Hsu, Y.-C., F. Tsai, W. Jong and Y.-T. Chang, “Visibility
Enhancement for Silicon Debug,” Proc. of Design Automation
Conference, pp. 13-18, 2006.

[Jang 08] Jang, W., Ding, D. and Pan., D., “A Voltage-Frequency Island
Aware Energy Optimization Framework for Networks-on-Chip”,
Proc. of Int. Conf. on Computer-Aided Design, 2008.

 [Josephson 04] Josephson, D. and Gottlieb, B., “The Crazy Mixed up
World of Silicon Debug,” Proc. of Custom Integrated Circuits
Conference, pp. 665-670, 2004

[Ko 08] Ko, H. F., and Nicolici, N., “Automated Trace Signals
Identification and State Restoration for Improving Observability in
Post-Silicon Validation”, Proc. of Design, Automation, and Test in
Europe, pp. 1298-1303, 2008.

[Park 08] Park, S.-B., and Mitra, S., “IFRA: Instruction Footprint
Recording and Analysis for Post-Silicon Bug Localization in
Processors”, Proc. of Design Automation Conf., pp. 373-378, 2008.

[Vermeulen 01] Vermeulen, B., Oostdijk, S. and Bouwman, F., “Test and
Debug Strategy of the PNX8525 NexperiaTM Digital Video
Platform System Chip”, Proc. of Int. Test Conference, pp. 121-130,
2001.

[Vermeulen 02] Vermeulen, B., Waayers, T. and Goel, S.K., “Core-
Based Scan Architecture for Silicon Debug”, Proc. of Int. Test
Conference, pp. 638-647, 2002.

[Yang 08a] Yang, J.-S., and Touba, N. A., “Expanding Trace Buffer
Observation Window for In-System Silicon Debug through
Selective Capture”, Proc. of VLSI Test Symp., pp. 345-351, 2008.

[Yang 08b] Yang, J.-S., and Touba, N. A., “Enhancing Silicon Debug
via Periodic Monitoring”, Proc. of Symposium on Defect and Fault
Tolerance, pp. 125-133, 2008.

8888888888848484

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 25, 2009 at 18:25 from IEEE Xplore. Restrictions apply.

