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Abstract 
 

A highly efficient SOC test compression scheme which 
uses sequential linear decompressors local to each core is 
proposed.  Test data is stored on the tester in compressed 
form and brought over the TAM to the core before being 
decompressed. Very high encoding efficiency is achieved 
by providing the ability to share free variables across test 
cubes being compressed at the same time as well as in 
subsequent time steps.  The idea of retaining unused non-
pivot free variables when decompressing one test cube to 
help for encoding subsequent test cubes that was 
introduced in [Muthyala 12] is applied here in the context 
of SOC testing.  It is shown that in this application, a first-
in first-out (FIFO) buffer is not required.  The ability to 
retain excess free variables rather than wasting them 
when the decompressor is reset avoids the need for high 
precision in matching the number of free variables used 
for encoding with the number of care bits. This allows 
greater flexibility in test scheduling to reduce test time, 
tester storage, and control complexity as indicated by the 
experimental results. 
 

1. Introduction 
 

System-on-chip (SOC) designs are composed of 
reusable cores each of which must be thoroughly tested.  
Cores can be synthesizable designs (i.e., soft cores) in 
which the design-for-test (DFT) architecture can be 
customized (e.g., number and length of scan chains, etc.), 
or they can be layouts (i.e., hard cores) in which the DFT 
architecture is fixed.  For intellectual property cores (IP 
cores), it may not be possible to perform ATPG in which 
case a set of test cubes (i.e., test vectors in which the 
unassigned inputs are left as don't cares) is provided that 
must be applied during test. 

SOC testing typically involves designing wrappers to 
go around the cores, providing test access mechanisms 
(TAMs) for transporting data from the tester pins to the 
cores, and developing a test schedule for which cores are 
being tested at different times.  Many techniques for 
designing wrappers, TAMs, and test schedules have been 
developed, see [Xu 05] for a survey. 

One way to reduce test time is through the use of test 
compression [Touba 06].  Several techniques for 
incorporating test compression in SOC testing have been 
proposed.  Early techniques were based on coding using 

frequency-directed run-length (FDR) codes [Iyengar 05], 
nine codewords [Tehranipoor 05], and XOR networks 
[Gonciari 05].  More recent work has been based on 
sequential linear decompression which provides higher 
encoding efficiency.  In [Wang 07], a single sequential 
linear decompressor is used to expand the tester channels 
to drive a larger number of TAM lines.  The drawback of 
performing decompression before the TAM lines is that 
uncompressed data needs to be transported to the cores 
which requires more TAM bandwidth.  Two existing 
schemes as well as the scheme proposed here are based on 
having sequential linear decompressors local to each core 
which allows compressed data to be transported over the 
TAM lines.  The two existing schemes with local 
decompressors are described in further detail in the next 
two paragraphs. 

In [Kinsman 10], the compressed data coming from the 
tester in each clock cycle (which will be referred to here 
as a tester slice) is loaded into one of the k decompressors 
which is selected by log2(k) control bits. Since the control 
bits are needed each clock cycle, log2(k) tester channels 
must be allocated for providing the control bits.  The fine 
grain control over how many tester slices are used to 
encode each test cube for a core helps to match the 
number of free variables (i.e., bits stored on the tester that 
can be assigned either a 0 or 1) with the number of care 
bits in the test cube thereby helping to improve encoding 
efficiency.  This comes at the cost of having a lot of 
control data which subtracts from the encoding efficiency 
and offsets the gains to some degree. 

An approach based on using Embedded Deterministic 
Test (EDT) [Rajski 04] with dynamic channel allocation 
is described in [Kassab 10], [Janicki 11, 12].  The key 
idea in this approach is to dynamically allocate tester 
channels to decompressors in a way that allows test cubes 
across multiple cores to be decompressed simultaneously.  
Test scheduling is performed on a test cube basis to 
determine which channels are allocated to which 
decompressors.  So control information is needed on a per 
test cube basis as opposed to a per slice basis as in 
[Kinsman 10].  Consequently, the control information can 
be loaded using the same tester channels that load the data 
which eliminates the need for allocating tester channel to 
be used only for control data.  The number of free 
variables used for encoding each test cube is controlled by 
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how many tester channels are allocated to the 
decompressor for that test cube. 

Encoding efficiency in sequential linear decompressors 
is defined as the number of care bits in the test data 
divided by the number of free variables used to encode 
them (i.e., the number of bits stored on the tester).  If too 
few free variables are used to encode a test cube, then it 
becomes unlikely to be able to solve the linear equations 
to encode it.  So the goal is to use enough free variables to 
be able to reliably encode all test cubes, but not use more 
than necessary.  What makes the problem difficult is the 
fact that the number of care bits in each test cube varies 
considerably for a single core.  Examples of test cube 
profiles for industrial circuits showing how the percentage 
of care bits varies can be found in [Kassab 10].  The 
strategy for improving encoding efficiency in the previous 
schemes is to try to match the number of free variables 
used to encode each test cube to the number of care bits in 
the test cube.  This is done by regulating the number of 
free variables sent to the decompressor for each test cube.  
In [Kinsman 10], this is done by selecting the number of 
tester slices loaded in the decompressor, and in [Kassab 
10], [Janicki 11, 12], this is done by selecting the number 
of tester channels allocated to the decompressor.  In both 
cases, any unused free variables (i.e., free variables that 
were not used as pivots when solving the linear equations) 
are wasted when the decompressor is reset before 
decompressing the next test cube.  The resolution in 
matching the number of free variables to the number of 
care bits in a test cube during decompression is limited by 
the quanta of free variables in each slice for [Kinsman 10] 
or channel for [Kassab 10], [Janicki 11, 12] as well as the 
number of care bits in the available test cubes that can be 
paired with it.  Moreover, even if there was precise 
control of the number of free variables used, it is still 
necessary for the number of free variables to be larger 
than the number of care bits to increase the probability of 
being able to reliably solve the linear equations.  For all 
these reasons, a considerable number of free variables are 
generally wasted each time the decompressor is reset. 

The proposed scheme for SOC test compression uses 
the ideas described in [Muthyala 12] for retaining unused 
non-pivot free variables for one test cube to help with 
encoding the next test cube without significantly 
increasing the computational complexity of solving the 
linear equations.  This approach avoids the need for high 
precision in matching the number of free variables to the 
number of care bits during decompression because excess 
free variables are not wasted, but can be retained for 
encoding subsequent test cubes.  This simplifies the test 
scheduling problem and reduces the number of control 
bits required to specify how the decompression is 
performed.  A simple scheme for retaining non-pivot free 
variables without the need for a first-in first-out (FIFO) 
buffer (as is required in [Muthyala 12]) is utilized in the 
context of SOC testing.  The proposed scheme offers high 

encoding efficiency to reduce tester storage, greater 
flexibility in test scheduling to reduce test time, and 
simple control complexity. 

 

2. Retaining Non-Pivot Free Variables 
 

Encoding test cubes with a sequential linear 
decompressor involves solving a system of linear 
equations.  There is one equation for each care bit which 
gives its dependence on the free variables.  An example is 
shown in Fig. 1 where a test cube with 5 care bits 
(corresponding to the rows) is encoded using 10 free 
variables (corresponding to the columns).  The system of 
linear equations are solved by performing Gauss-Jordan 
elimination to obtain a set of pivots (one per care bit).  
The non-pivots represent free-variables that can be 
assigned any value.  Depending on the values assigned to 
the non-pivots, the pivots can always be assigned 
appropriate values to solve the system of linear equations.  
A more detailed explanation of the encoding process can 
be found in [Könemann 91], [Krishna 01], and [Wang 06]. 

 

0 1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1
1 0 0 1 0 0 0 0 0 0 1
1 1 0 0 1 1 0 0 0 0 0

Z = 1--011----0-

1 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0 0 0 1 
0 0 0 1 0 1 0 0 0 0 1
0 0 0 0 1 0 1 0 0 0 0

X = 0111000001

Gaussian
Elimination

Pivots Non-Pivots  
 

Figure 1.  Example of solving system of linear equations 
for a particular test cube 

 

Conventional methods reset the sequential linear 
decompressor before decompressing the next test cube to 
decouple the linear equations.  If the decompressor is not 
reset, then the size of the linear equations grows as more 
free variables arrive.  The complexity for solving the 
linear equations is O(n3) for n free variables, so the 
runtime can quickly become prohibitive if the free 
variable dependence becomes too large. 

In [Muthyala 12], a scheme for retaining the non-pivot 
free variables from one test cube and using them to help 
encode the next test cube is described.  It involves using a 
FIFO to store the last q tester slices when decompressing 
one test cube and then loading the free variables from the 
FIFO into the decompressor while decompressing the next 
test cube. The Gaussian elimination can be ordered to first 
try to use the early free-variables as pivots as much as 
possible, and only create pivots in the free variables 
coming in the last q clock cycles when necessary.  This 
approach maximizes the number of non-pivot free-
variables that get retained in the FIFO for encoding the 
next test cube and achieves nearly the same benefit as 
encoding the two test cubes together without resetting the 
sequential linear decompressor.  It only misses out on 
non-pivots that occur before the last q clock cycles which 
would generally be few.  If the number of free variables 
retained in the FIFO is 10% of the total number of free 
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variables, it was shown that the computation complexity 
for solving the two test cubes together increases only by a 
factor of 1.15 over the conventional approach where no 
free variables are shared. 

In SOC testing, it is possible to retain non-pivot free 
variables without the need for a FIFO.  The next sections 
describe a scheme for accomplishing this and optimizing 
test scheduling and control information by exploiting the 
additional flexibility that is provided. 

 

3. Proposed SOC Test Architecture 
 

The proposed scheme uses the broadcast architecture 
illustrated in Fig. 2 which allows a single tester slice to be 
simultaneously loaded into multiple decompressors in a 
clock cycle.  The set of decompressors that load the tester 
slices is fixed throughout the decoding of a test cube, so 
the control information is needed only on a per test cube 
basis similar to [Kassab 10], [Janicki 11, 12].  This 
eliminates the need to allocate tester channels for carrying 
control data as is needed in [Kinsman 10].  When 
decompressing a test cube for a core, if there are more 
free variables than necessary, then test cubes for other 
cores can be decompressed at the same time.  Let the set 
of cores that are decompressing test cubes at the same 
time be denoted as core-set-1 and the set of test cubes 
(one corresponding to each core in core-set-1) be denoted 
as testcube-set-1.  These sets are selected under the 
constraint that there are enough free variables to 
simultaneously solve for all care bits.  The tester slices are 
broadcast to all cores in core-set-1 and a system of linear 
equations containing an equation for each care bit in 
testcube-set-1 must be solved when encoding these test 
cubes.  The unused non-pivot free variables can be 
retained as described in Sec. 2. 

Let the next set of cores that are decompressing test 
cubes at the same time be denoted as core-set-2 and the 
set of test cubes be denoted as testcube-set-2. As long as 
core-set-1 and core-set-2 are disjoint, then the unused 
non-pivot free variables from encoding testcube-set-1 can 
be retained to help in encoding testcube-set-2. This is 
done by broadcasting the last q tester slices when 
decompressing testcube-set-1 to the decompressors for 
core-set-2 (with scan shifting disabled in the cores in 
core-set-2). This pre-loads the decompressors in core-set-
2 with the last q tester slices worth of free variables for 
testcube-set-1. By ordering the Gaussian elimination 
process to try to create pivots in the earlier free variables 
first when encoding testcube-set-1, most of the non-pivot 
free variables will be in the last q tester slices worth of 
free variables and hence will be available to help encode 
testcube-set-2. After decompression of testcube-set-1 is 
completed, then decompression of testcube-set-2 is 
performed. 

 

Decompr

Core 1

Decompr

Core 2

Decompr

Core k

Tester
Channels

 
 

Figure 2.  Proposed SOC Test Architecture 
 
Due to the partial overlap of free variables used to 

encode testcube-set-1 and testcube-set-2, the linear 
equations must be solved altogether.  The structure of the 
linear equations will look as shown in Fig. 3.  Note that 
there is some overlap of the free variables used to solve 
for testcube-set-1 and testcube-set-2.  The amount of 
overlap is equal to the number of free variables in q tester 
slices which is equal to q times the number of tester 
channels, c.  If the percentage of overlap is 10%, then as 
shown in [Muthyala 12], the computational complexity 
for solving for the two test cube sets together increases 
only by a factor of 1.15 over the conventional case where 
there is no overlap. 

 

A

B C

t1

t2

q·c  
Figure 3.  Structure of Linear Equations when Solving 
testcube-set-1 (t1) and testcube-set-2 (t2) with q·c Free 

Variables Retained 
 

If desired, this process could be repeated to encode a 
third set of test cubes, testcube-set-3.  In this case, core-
set-3 needs to be disjoint from core-set-2, but could 
include cores that were present in core-set-1, because at 
this point the decompressors in core-set-1 are finished 
decompressing testcube-set-1 and hence are available to 
be pre-loaded for decompressing testcube-set-3.  The last 
q tester slices when decompressing core-set-2 is broadcast 
to the decompressors for core-set-3 to pre-load them.  
This allows non-pivot free variables from decompressing 
testcube-set-1 and testcube-set-2 to be used for 
decompressing testcube-set-3.  In this case, all three 
testcube sets need to be solved together.  If the percentage 
of overlap is 10%, then as shown in [Muthyala 12], the 
computational complexity for solving for the three test 
cube sets together increases only by a factor of 1.35 over 
the conventional case where there is no overlap. 

Let m be the number of test cube sets that are encoded 
together.  Then m=1 is the conventional case where there 
is no overlap of free variables when encoding test cubes 
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sets,  m=2 is the case where the non-pivot free variables 
for testcube-set-1 are used to help encode testcube-set-2, 
and m=3 is the case where the non-pivot free variables for 
testcube-set-1 are used to help encode testcube-set-2 and 
the non-pivot free variables for testcube-set-2 are used to 
help encode testcube-set-3.  Note that there is a 
diminishing marginal return from encoding additional test 
cubes sets together (as can be seen in the experimental 
results in Sec. 6).  So encoding more than 3 test cube sets 
together would generally not be worthwhile. 

Each set of test cubes that are encoded together are 
encoded using some particular decompression mode.  A 
decompression mode is defined by core-set-1, core-set-2, 
and core-set-3, where some of these core sets would be 
empty if m is less than 3.  For example, for a 
decompression mode where m=2, then core-set-3 would 
be empty.  So the decompression process works as 
follows. First some control data is provided to establish 
the decompression mode (methods for providing the 
control data will be discussed in Sec. 5).  Then the cores 
in core-set-1 load the tester slices for a number of clock 
cycles equal to the longest scan length in any core in core-
set-1.  If m > 1 for the current decompression mode, then 
in the last q clock cycles, the decompressors in core-set-2 
also load the tester slices.  After the scan chains in core-
set-1 are finished loading, the cores in core-set-1 perform 
a capture cycle, and then the scan chains in core-set-2 are 
loaded, and when that completes, they receive a capture 
cycle.  If  m > 2, then the decompressors in core-set-3 
would be loaded in the last q clock cycles when core-set-2 
is loaded, and the scan chains for core-set-3 would be 
loaded when core-set-2 is finished.  After completing one 
decompression in the current decompression mode, then 
control information is provided to establish the 
decompression mode for the next decompression, and the 
process repeats until all test cubes have been applied. 

Note that output compaction is not addressed in this 
paper, however, there are a number of existing output 
compaction schemes that can be employed in this scenario 
including something similar to what is used in [Janicki 11]. 

 

4. Test Scheduling Procedure 
 

Given the set of test cubes that needs to be applied to 
each core, the test scheduling problem involves deciding 
which test cubes should be decompressed together and 
which decompression mode should be used when they are 
decompressed.  The larger the number of unique 
decompression modes that are used, the more control bits 
are required to specify the decompression mode.  So there 
is a tradeoff in terms of how many different 
decompression modes are used versus how efficient the 
encoding is.  To manage this tradeoff, the test scheduling 
procedure described here uses a user-supplied threshold 
parameter, thresh, to determine when a new mode should 
be created and when an existing mode should be used.  If 
the improvement in encoding efficiency for some 

decompression with a newly created mode exceeds the 
encoding efficiency of using an existing mode by an 
amount greater than thresh, then the new mode is created, 
otherwise the existing mode is used. 

The proposed test scheduling procedure is as follows: 
Step 1:  Select the test cube with most care bits from the 
core with most remaining test cubes left to encode. 
Step 2:  Consider each existing decompression mode that 
contains the selected core.  For each such mode, choose 
test cubes for the other cores present in the decompression 
mode that maximize encoding efficiency while still 
having a solution for the overall set of linear equations. 
Step 3:  Create one new candidate decompression mode 
for each value of m for the test cube selected in step 1 
which maximizes encoding efficiency. 
Step 4:  If there is no existing decompression modes that 
use the selected core, then use the new candidate 
decompression mode from Step 3.  Otherwise, compare 
the encoding efficiency of the best candidate 
decompression mode from Step 3 with the encoding 
efficiency of the best existing decompression mode from 
Step 2, and if it exceeds the value of thresh, then use the 
new candidate decompression mode, otherwise, use the 
existing decompression mode.   
Step 5:  Remove all the test cubes covered by the 
decompression and loop back to Step 1 while more test 
cubes remain. 

If the number of decompression modes that result from 
running the test scheduling procedure is too high, the 
procedure can be rerun with a higher value for thresh.  
The test scheduling procedure is a greedy procedure and 
will find a good test schedule but is not guaranteed to find 
the optimum test schedule. 

Note that in some cases where unwrapped glue logic 
between cores is tested, it may be necessary to apply some 
test cubes to groups of cores at the same time.  This can 
be handled in the proposed framework, but would require 
some constraints on the test scheduling process to ensure 
that the decompression mode for applying such test cubes 
includes the necessary cores. 

 

5. Control Data 
 

As mentioned earlier, control data is required to 
establish the decompression mode used for each 
decompression.  There are a number of different ways for 
generating the control data.  One approach would be to 
load the control data with one or more tester slices right at 
the beginning of each decompression.  The minimum 
number of control bits would be log2(number of modes) to 
select the decompression mode to use.  On-chip hardware 
would then decode the mode and generate the approach 
control signals during the decompression.  Another 
approach would be to order the decompressions so that all 
the ones that use mode 1 come first, followed by those 
that use mode 2, and then mode 3, etc. In this way, one bit 
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could signal whether the mode should be incremented or 
not. It is also possible to design an on-chip custom FSM 
for a particular test schedule that controls the mode, in 
which case no control data would be required on the tester. 

If it is desirable to have a generic controller design that 
is not customized to any particular set of modes, then 
more control data would need to be brought in from the 
tester.  For example, the value of m (i.e., number of core-
sets) for the mode could be loaded followed by a vector 
with one bit per core indicating which cores are included 
in each core-set.  In this case, there would be no need to 
minimize the number of modes during test scheduling 
since any number of modes could be applied at equal cost. 

 

6. Experimental Results 
 

Two sets of experiments were performed with the 
proposed scheme on different SoC designs with different 
number of cores.  One is where the number of scan chains 
in each core is optimized to maximize compression 
(results are shown in Table 1).  The other is where the 
scan architecture for each core is not changed as would be 
the case for hard cores (results are shown in Table 2).  In 
both cases, the number of tester channels used is 16, and 
the test time and amount of data stored on the tester is 
shown for the case where the cores are tested serially one 
at a time, with the total test time being the sum of the 
clock cycles required for testing each core.  Next, the test 
scheduling procedure in Sec. 4 is used without retaining 
unused free variables (i.e., m=1).  Then results are shown 
for the m=2 case where the unused free variables when 
encoding test cubes in testcube-set-1 are retained and used 
to help encode test cubes in testcube-set-2.  Similarly, 
results are shown for the m=3 case where unused free 

variables are retained between testcube-set-1 and 
testcube-set-2, and well as between testcube-set-2 and 
testcube-set-3.  In all cases, the percentage improvement 
in test compression is calculated in comparison to the 
conventional case where the cores are tested serially. 

As can be seen in the results, retaining free variables 
provides more flexibility during test scheduling to allow 
greater efficiency resulting in significantly better 
compression.  The improvement is less when the scan 
architecture is optimized in Table 1 because conventional 
test compression does better to begin with, but it is still a 
significant improvement.  In Table 2 where the scan 
architecture is not optimized, the greater flexibility in test 
scheduling is a big help in improving compression, and 
the final numbers for test time and tester data for m=3 in 
Table 2 get close to those in Table 1. 

The effect of changing the number of tester channels 
on the test time is shown in the graph in Fig. 4 for Design 
B.  The test time is plotted versus the number of tester 
channels for serial testing as well as the m=1, m=2, and 
m=3 cases using the proposed scheme.  The effect on the 
amount of data stored on the tester (i.e., the amount of 
compression) is shown in Fig. 5.  Note that the overall 
amount of compression is relatively constant regardless of 
the number of tester channels, although it tends to degrade 
slightly as the number of channels is increased. 

Note that in these experiments, the set of test cubes is 
fixed and must be encoded as is (i.e., static encoding).  An 
alternative (which is used in EDT [Rajski 04]) is to 
incorporate the encoding process into the automatic test 
pattern generation (ATPG) (i.e., dynamic encoding).  The 
proposed scheme can also be used with dynamic encoding 
in the manner described in [Muthyala 12]. 

 

Table 1.  Results Using the Proposed Scheme when the Number of Scan Chains in Individual Cores is Optimized 
 

Design 
 

Cores 
Scan  
Cells 

Serial Testing m = 1 m = 2 m = 3 
Test 
Time 

Tester 
Data 

Test 
Time 

Tester 
Data 

Percent 
Reduction

Test 
Time 

Tester 
Data 

Percent 
Reduction 

Test 
Time 

Tester 
Data 

Percent 
Reduction

A 34 95322 139381 2230096 116101 1857616 16.7% 105805 1692880 24.1% 83169 1330704 40.3% 
B 20 57923 71366 1141856 62006 992096 13.1% 52050 832800 27.1% 44481 711696 37.7% 
C 16 45375 59963 959408 54725 875600 8.7% 45003 720048 25.0% 39313 629008 34.4% 
D 23 78821 92318 1477088 75173 1202768 18.6% 64011 1024176 30.7% 58450 935200 36.7% 
E 28 86379 128365 2053840 106795 1708720 16.8% 97054 1552864 24.4% 78660 1258560 38.7% 

 
Table 2. Results Using the Proposed Scheme when the Number of Scan Chains in Individual Cores is Not Changed 

 

 
Design 

 
Cores 

Scan 
Cells 

Serial Testing m = 1 m = 2 m = 3 
Test 
Time 

Tester 
Data 

Test 
Time 

Tester 
Data 

Percent 
Reduction

Test 
Time 

Tester 
Data 

Percent 
Reduction 

Test 
Time 

Tester 
Data 

Percent 
Reduction

A 34 95322 169680 2714880 143000 2288000 15.7% 98380 1574080 42.0% 82760 1324160 51.2% 
B 20 57923 92660 1482560 82000 1312000 11.5% 49880 798080 46.2% 41920 670720 54.8% 
C 16 45375 71560 1144960 65600 1049600 8.3% 37280 596480 47.9% 31980 511680 55.3% 
D 23 78821 111920 1790720 94300 1508800 15.7% 56320 901120 49.7% 51700 827200 53.8% 
E 28 86379 142780 2284480 121420 1942720 15.0% 79960 1279360 44.0% 71540 1144640 49.9% 
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Figure 4.  Test Time versus Number of Tester Channels for 
Design B 

 
 
 

 
 

Figure 5.  Tester Data versus Number of Tester Channels 
for Design B 

 
7. Conclusions 

 

By retaining unused free variables, the proposed scheme 
provides greater flexibility in test scheduling for SoC testing 
resulting in greater test compression.  No additional 
hardware is required to retain the free variables.  The 
computational complexity and control complexity can be 
adjusted as desired. 
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