

SOC Test Compression Scheme Using Sequential Linear Decompressors with
Retained Free Variables

Sreenivaas S. Muthyala and Nur A. Touba

Computer Engineering Research Center
University of Texas, Austin, TX 78712

sreenivaas@utexas.edu, touba@utexas.edu

Abstract

A highly efficient SOC test compression scheme which
uses sequential linear decompressors local to each core is
proposed. Test data is stored on the tester in compressed
form and brought over the TAM to the core before being
decompressed. Very high encoding efficiency is achieved
by providing the ability to share free variables across test
cubes being compressed at the same time as well as in
subsequent time steps. The idea of retaining unused non-
pivot free variables when decompressing one test cube to
help for encoding subsequent test cubes that was
introduced in [Muthyala 12] is applied here in the context
of SOC testing. It is shown that in this application, a first-
in first-out (FIFO) buffer is not required. The ability to
retain excess free variables rather than wasting them
when the decompressor is reset avoids the need for high
precision in matching the number of free variables used
for encoding with the number of care bits. This allows
greater flexibility in test scheduling to reduce test time,
tester storage, and control complexity as indicated by the
experimental results.

1. Introduction

System-on-chip (SOC) designs are composed of
reusable cores each of which must be thoroughly tested.
Cores can be synthesizable designs (i.e., soft cores) in
which the design-for-test (DFT) architecture can be
customized (e.g., number and length of scan chains, etc.),
or they can be layouts (i.e., hard cores) in which the DFT
architecture is fixed. For intellectual property cores (IP
cores), it may not be possible to perform ATPG in which
case a set of test cubes (i.e., test vectors in which the
unassigned inputs are left as don't cares) is provided that
must be applied during test.

SOC testing typically involves designing wrappers to
go around the cores, providing test access mechanisms
(TAMs) for transporting data from the tester pins to the
cores, and developing a test schedule for which cores are
being tested at different times. Many techniques for
designing wrappers, TAMs, and test schedules have been
developed, see [Xu 05] for a survey.

One way to reduce test time is through the use of test
compression [Touba 06]. Several techniques for
incorporating test compression in SOC testing have been
proposed. Early techniques were based on coding using

frequency-directed run-length (FDR) codes [Iyengar 05],
nine codewords [Tehranipoor 05], and XOR networks
[Gonciari 05]. More recent work has been based on
sequential linear decompression which provides higher
encoding efficiency. In [Wang 07], a single sequential
linear decompressor is used to expand the tester channels
to drive a larger number of TAM lines. The drawback of
performing decompression before the TAM lines is that
uncompressed data needs to be transported to the cores
which requires more TAM bandwidth. Two existing
schemes as well as the scheme proposed here are based on
having sequential linear decompressors local to each core
which allows compressed data to be transported over the
TAM lines. The two existing schemes with local
decompressors are described in further detail in the next
two paragraphs.

In [Kinsman 10], the compressed data coming from the
tester in each clock cycle (which will be referred to here
as a tester slice) is loaded into one of the k decompressors
which is selected by log2(k) control bits. Since the control
bits are needed each clock cycle, log2(k) tester channels
must be allocated for providing the control bits. The fine
grain control over how many tester slices are used to
encode each test cube for a core helps to match the
number of free variables (i.e., bits stored on the tester that
can be assigned either a 0 or 1) with the number of care
bits in the test cube thereby helping to improve encoding
efficiency. This comes at the cost of having a lot of
control data which subtracts from the encoding efficiency
and offsets the gains to some degree.

An approach based on using Embedded Deterministic
Test (EDT) [Rajski 04] with dynamic channel allocation
is described in [Kassab 10], [Janicki 11, 12]. The key
idea in this approach is to dynamically allocate tester
channels to decompressors in a way that allows test cubes
across multiple cores to be decompressed simultaneously.
Test scheduling is performed on a test cube basis to
determine which channels are allocated to which
decompressors. So control information is needed on a per
test cube basis as opposed to a per slice basis as in
[Kinsman 10]. Consequently, the control information can
be loaded using the same tester channels that load the data
which eliminates the need for allocating tester channel to
be used only for control data. The number of free
variables used for encoding each test cube is controlled by

2013 IEEE 31st VLSI Test Symposium (VTS)

!

978-1-4673-5543-8/13/$31.00 ©2013 IEEE

!

how many tester channels are allocated to the
decompressor for that test cube.

Encoding efficiency in sequential linear decompressors
is defined as the number of care bits in the test data
divided by the number of free variables used to encode
them (i.e., the number of bits stored on the tester). If too
few free variables are used to encode a test cube, then it
becomes unlikely to be able to solve the linear equations
to encode it. So the goal is to use enough free variables to
be able to reliably encode all test cubes, but not use more
than necessary. What makes the problem difficult is the
fact that the number of care bits in each test cube varies
considerably for a single core. Examples of test cube
profiles for industrial circuits showing how the percentage
of care bits varies can be found in [Kassab 10]. The
strategy for improving encoding efficiency in the previous
schemes is to try to match the number of free variables
used to encode each test cube to the number of care bits in
the test cube. This is done by regulating the number of
free variables sent to the decompressor for each test cube.
In [Kinsman 10], this is done by selecting the number of
tester slices loaded in the decompressor, and in [Kassab
10], [Janicki 11, 12], this is done by selecting the number
of tester channels allocated to the decompressor. In both
cases, any unused free variables (i.e., free variables that
were not used as pivots when solving the linear equations)
are wasted when the decompressor is reset before
decompressing the next test cube. The resolution in
matching the number of free variables to the number of
care bits in a test cube during decompression is limited by
the quanta of free variables in each slice for [Kinsman 10]
or channel for [Kassab 10], [Janicki 11, 12] as well as the
number of care bits in the available test cubes that can be
paired with it. Moreover, even if there was precise
control of the number of free variables used, it is still
necessary for the number of free variables to be larger
than the number of care bits to increase the probability of
being able to reliably solve the linear equations. For all
these reasons, a considerable number of free variables are
generally wasted each time the decompressor is reset.

The proposed scheme for SOC test compression uses
the ideas described in [Muthyala 12] for retaining unused
non-pivot free variables for one test cube to help with
encoding the next test cube without significantly
increasing the computational complexity of solving the
linear equations. This approach avoids the need for high
precision in matching the number of free variables to the
number of care bits during decompression because excess
free variables are not wasted, but can be retained for
encoding subsequent test cubes. This simplifies the test
scheduling problem and reduces the number of control
bits required to specify how the decompression is
performed. A simple scheme for retaining non-pivot free
variables without the need for a first-in first-out (FIFO)
buffer (as is required in [Muthyala 12]) is utilized in the
context of SOC testing. The proposed scheme offers high

encoding efficiency to reduce tester storage, greater
flexibility in test scheduling to reduce test time, and
simple control complexity.

2. Retaining Non-Pivot Free Variables

Encoding test cubes with a sequential linear
decompressor involves solving a system of linear
equations. There is one equation for each care bit which
gives its dependence on the free variables. An example is
shown in Fig. 1 where a test cube with 5 care bits
(corresponding to the rows) is encoded using 10 free
variables (corresponding to the columns). The system of
linear equations are solved by performing Gauss-Jordan
elimination to obtain a set of pivots (one per care bit).
The non-pivots represent free-variables that can be
assigned any value. Depending on the values assigned to
the non-pivots, the pivots can always be assigned
appropriate values to solve the system of linear equations.
A more detailed explanation of the encoding process can
be found in [Könemann 91], [Krishna 01], and [Wang 06].

0 1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1
1 0 0 1 0 0 0 0 0 0 1
1 1 0 0 1 1 0 0 0 0 0

Z = 1--011----0-

1 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0 0 0 1
0 0 0 1 0 1 0 0 0 0 1
0 0 0 0 1 0 1 0 0 0 0

X = 0111000001

Gaussian
Elimination

Pivots Non-Pivots

Figure 1. Example of solving system of linear equations
for a particular test cube

Conventional methods reset the sequential linear
decompressor before decompressing the next test cube to
decouple the linear equations. If the decompressor is not
reset, then the size of the linear equations grows as more
free variables arrive. The complexity for solving the
linear equations is O(n3) for n free variables, so the
runtime can quickly become prohibitive if the free
variable dependence becomes too large.

In [Muthyala 12], a scheme for retaining the non-pivot
free variables from one test cube and using them to help
encode the next test cube is described. It involves using a
FIFO to store the last q tester slices when decompressing
one test cube and then loading the free variables from the
FIFO into the decompressor while decompressing the next
test cube. The Gaussian elimination can be ordered to first
try to use the early free-variables as pivots as much as
possible, and only create pivots in the free variables
coming in the last q clock cycles when necessary. This
approach maximizes the number of non-pivot free-
variables that get retained in the FIFO for encoding the
next test cube and achieves nearly the same benefit as
encoding the two test cubes together without resetting the
sequential linear decompressor. It only misses out on
non-pivots that occur before the last q clock cycles which
would generally be few. If the number of free variables
retained in the FIFO is 10% of the total number of free

!

!

variables, it was shown that the computation complexity
for solving the two test cubes together increases only by a
factor of 1.15 over the conventional approach where no
free variables are shared.

In SOC testing, it is possible to retain non-pivot free
variables without the need for a FIFO. The next sections
describe a scheme for accomplishing this and optimizing
test scheduling and control information by exploiting the
additional flexibility that is provided.

3. Proposed SOC Test Architecture

The proposed scheme uses the broadcast architecture
illustrated in Fig. 2 which allows a single tester slice to be
simultaneously loaded into multiple decompressors in a
clock cycle. The set of decompressors that load the tester
slices is fixed throughout the decoding of a test cube, so
the control information is needed only on a per test cube
basis similar to [Kassab 10], [Janicki 11, 12]. This
eliminates the need to allocate tester channels for carrying
control data as is needed in [Kinsman 10]. When
decompressing a test cube for a core, if there are more
free variables than necessary, then test cubes for other
cores can be decompressed at the same time. Let the set
of cores that are decompressing test cubes at the same
time be denoted as core-set-1 and the set of test cubes
(one corresponding to each core in core-set-1) be denoted
as testcube-set-1. These sets are selected under the
constraint that there are enough free variables to
simultaneously solve for all care bits. The tester slices are
broadcast to all cores in core-set-1 and a system of linear
equations containing an equation for each care bit in
testcube-set-1 must be solved when encoding these test
cubes. The unused non-pivot free variables can be
retained as described in Sec. 2.

Let the next set of cores that are decompressing test
cubes at the same time be denoted as core-set-2 and the
set of test cubes be denoted as testcube-set-2. As long as
core-set-1 and core-set-2 are disjoint, then the unused
non-pivot free variables from encoding testcube-set-1 can
be retained to help in encoding testcube-set-2. This is
done by broadcasting the last q tester slices when
decompressing testcube-set-1 to the decompressors for
core-set-2 (with scan shifting disabled in the cores in
core-set-2). This pre-loads the decompressors in core-set-
2 with the last q tester slices worth of free variables for
testcube-set-1. By ordering the Gaussian elimination
process to try to create pivots in the earlier free variables
first when encoding testcube-set-1, most of the non-pivot
free variables will be in the last q tester slices worth of
free variables and hence will be available to help encode
testcube-set-2. After decompression of testcube-set-1 is
completed, then decompression of testcube-set-2 is
performed.

Decompr

Core 1

Decompr

Core 2

Decompr

Core k

Tester
Channels

Figure 2. Proposed SOC Test Architecture

Due to the partial overlap of free variables used to

encode testcube-set-1 and testcube-set-2, the linear
equations must be solved altogether. The structure of the
linear equations will look as shown in Fig. 3. Note that
there is some overlap of the free variables used to solve
for testcube-set-1 and testcube-set-2. The amount of
overlap is equal to the number of free variables in q tester
slices which is equal to q times the number of tester
channels, c. If the percentage of overlap is 10%, then as
shown in [Muthyala 12], the computational complexity
for solving for the two test cube sets together increases
only by a factor of 1.15 over the conventional case where
there is no overlap.

A

B C

t1

t2

q·c
Figure 3. Structure of Linear Equations when Solving
testcube-set-1 (t1) and testcube-set-2 (t2) with q·c Free

Variables Retained

If desired, this process could be repeated to encode a
third set of test cubes, testcube-set-3. In this case, core-
set-3 needs to be disjoint from core-set-2, but could
include cores that were present in core-set-1, because at
this point the decompressors in core-set-1 are finished
decompressing testcube-set-1 and hence are available to
be pre-loaded for decompressing testcube-set-3. The last
q tester slices when decompressing core-set-2 is broadcast
to the decompressors for core-set-3 to pre-load them.
This allows non-pivot free variables from decompressing
testcube-set-1 and testcube-set-2 to be used for
decompressing testcube-set-3. In this case, all three
testcube sets need to be solved together. If the percentage
of overlap is 10%, then as shown in [Muthyala 12], the
computational complexity for solving for the three test
cube sets together increases only by a factor of 1.35 over
the conventional case where there is no overlap.

Let m be the number of test cube sets that are encoded
together. Then m=1 is the conventional case where there
is no overlap of free variables when encoding test cubes

!

!

sets, m=2 is the case where the non-pivot free variables
for testcube-set-1 are used to help encode testcube-set-2,
and m=3 is the case where the non-pivot free variables for
testcube-set-1 are used to help encode testcube-set-2 and
the non-pivot free variables for testcube-set-2 are used to
help encode testcube-set-3. Note that there is a
diminishing marginal return from encoding additional test
cubes sets together (as can be seen in the experimental
results in Sec. 6). So encoding more than 3 test cube sets
together would generally not be worthwhile.

Each set of test cubes that are encoded together are
encoded using some particular decompression mode. A
decompression mode is defined by core-set-1, core-set-2,
and core-set-3, where some of these core sets would be
empty if m is less than 3. For example, for a
decompression mode where m=2, then core-set-3 would
be empty. So the decompression process works as
follows. First some control data is provided to establish
the decompression mode (methods for providing the
control data will be discussed in Sec. 5). Then the cores
in core-set-1 load the tester slices for a number of clock
cycles equal to the longest scan length in any core in core-
set-1. If m > 1 for the current decompression mode, then
in the last q clock cycles, the decompressors in core-set-2
also load the tester slices. After the scan chains in core-
set-1 are finished loading, the cores in core-set-1 perform
a capture cycle, and then the scan chains in core-set-2 are
loaded, and when that completes, they receive a capture
cycle. If m > 2, then the decompressors in core-set-3
would be loaded in the last q clock cycles when core-set-2
is loaded, and the scan chains for core-set-3 would be
loaded when core-set-2 is finished. After completing one
decompression in the current decompression mode, then
control information is provided to establish the
decompression mode for the next decompression, and the
process repeats until all test cubes have been applied.

Note that output compaction is not addressed in this
paper, however, there are a number of existing output
compaction schemes that can be employed in this scenario
including something similar to what is used in [Janicki 11].

4. Test Scheduling Procedure

Given the set of test cubes that needs to be applied to
each core, the test scheduling problem involves deciding
which test cubes should be decompressed together and
which decompression mode should be used when they are
decompressed. The larger the number of unique
decompression modes that are used, the more control bits
are required to specify the decompression mode. So there
is a tradeoff in terms of how many different
decompression modes are used versus how efficient the
encoding is. To manage this tradeoff, the test scheduling
procedure described here uses a user-supplied threshold
parameter, thresh, to determine when a new mode should
be created and when an existing mode should be used. If
the improvement in encoding efficiency for some

decompression with a newly created mode exceeds the
encoding efficiency of using an existing mode by an
amount greater than thresh, then the new mode is created,
otherwise the existing mode is used.

The proposed test scheduling procedure is as follows:
Step 1: Select the test cube with most care bits from the
core with most remaining test cubes left to encode.
Step 2: Consider each existing decompression mode that
contains the selected core. For each such mode, choose
test cubes for the other cores present in the decompression
mode that maximize encoding efficiency while still
having a solution for the overall set of linear equations.
Step 3: Create one new candidate decompression mode
for each value of m for the test cube selected in step 1
which maximizes encoding efficiency.
Step 4: If there is no existing decompression modes that
use the selected core, then use the new candidate
decompression mode from Step 3. Otherwise, compare
the encoding efficiency of the best candidate
decompression mode from Step 3 with the encoding
efficiency of the best existing decompression mode from
Step 2, and if it exceeds the value of thresh, then use the
new candidate decompression mode, otherwise, use the
existing decompression mode.
Step 5: Remove all the test cubes covered by the
decompression and loop back to Step 1 while more test
cubes remain.

If the number of decompression modes that result from
running the test scheduling procedure is too high, the
procedure can be rerun with a higher value for thresh.
The test scheduling procedure is a greedy procedure and
will find a good test schedule but is not guaranteed to find
the optimum test schedule.

Note that in some cases where unwrapped glue logic
between cores is tested, it may be necessary to apply some
test cubes to groups of cores at the same time. This can
be handled in the proposed framework, but would require
some constraints on the test scheduling process to ensure
that the decompression mode for applying such test cubes
includes the necessary cores.

5. Control Data

As mentioned earlier, control data is required to
establish the decompression mode used for each
decompression. There are a number of different ways for
generating the control data. One approach would be to
load the control data with one or more tester slices right at
the beginning of each decompression. The minimum
number of control bits would be log2(number of modes) to
select the decompression mode to use. On-chip hardware
would then decode the mode and generate the approach
control signals during the decompression. Another
approach would be to order the decompressions so that all
the ones that use mode 1 come first, followed by those
that use mode 2, and then mode 3, etc. In this way, one bit

!

!

could signal whether the mode should be incremented or
not. It is also possible to design an on-chip custom FSM
for a particular test schedule that controls the mode, in
which case no control data would be required on the tester.

If it is desirable to have a generic controller design that
is not customized to any particular set of modes, then
more control data would need to be brought in from the
tester. For example, the value of m (i.e., number of core-
sets) for the mode could be loaded followed by a vector
with one bit per core indicating which cores are included
in each core-set. In this case, there would be no need to
minimize the number of modes during test scheduling
since any number of modes could be applied at equal cost.

6. Experimental Results

Two sets of experiments were performed with the
proposed scheme on different SoC designs with different
number of cores. One is where the number of scan chains
in each core is optimized to maximize compression
(results are shown in Table 1). The other is where the
scan architecture for each core is not changed as would be
the case for hard cores (results are shown in Table 2). In
both cases, the number of tester channels used is 16, and
the test time and amount of data stored on the tester is
shown for the case where the cores are tested serially one
at a time, with the total test time being the sum of the
clock cycles required for testing each core. Next, the test
scheduling procedure in Sec. 4 is used without retaining
unused free variables (i.e., m=1). Then results are shown
for the m=2 case where the unused free variables when
encoding test cubes in testcube-set-1 are retained and used
to help encode test cubes in testcube-set-2. Similarly,
results are shown for the m=3 case where unused free

variables are retained between testcube-set-1 and
testcube-set-2, and well as between testcube-set-2 and
testcube-set-3. In all cases, the percentage improvement
in test compression is calculated in comparison to the
conventional case where the cores are tested serially.

As can be seen in the results, retaining free variables
provides more flexibility during test scheduling to allow
greater efficiency resulting in significantly better
compression. The improvement is less when the scan
architecture is optimized in Table 1 because conventional
test compression does better to begin with, but it is still a
significant improvement. In Table 2 where the scan
architecture is not optimized, the greater flexibility in test
scheduling is a big help in improving compression, and
the final numbers for test time and tester data for m=3 in
Table 2 get close to those in Table 1.

The effect of changing the number of tester channels
on the test time is shown in the graph in Fig. 4 for Design
B. The test time is plotted versus the number of tester
channels for serial testing as well as the m=1, m=2, and
m=3 cases using the proposed scheme. The effect on the
amount of data stored on the tester (i.e., the amount of
compression) is shown in Fig. 5. Note that the overall
amount of compression is relatively constant regardless of
the number of tester channels, although it tends to degrade
slightly as the number of channels is increased.

Note that in these experiments, the set of test cubes is
fixed and must be encoded as is (i.e., static encoding). An
alternative (which is used in EDT [Rajski 04]) is to
incorporate the encoding process into the automatic test
pattern generation (ATPG) (i.e., dynamic encoding). The
proposed scheme can also be used with dynamic encoding
in the manner described in [Muthyala 12].

Table 1. Results Using the Proposed Scheme when the Number of Scan Chains in Individual Cores is Optimized

Design

Cores
Scan
Cells

Serial Testing m = 1 m = 2 m = 3
Test
Time

Tester
Data

Test
Time

Tester
Data

Percent
Reduction

Test
Time

Tester
Data

Percent
Reduction

Test
Time

Tester
Data

Percent
Reduction

A 34 95322 139381 2230096 116101 1857616 16.7% 105805 1692880 24.1% 83169 1330704 40.3%
B 20 57923 71366 1141856 62006 992096 13.1% 52050 832800 27.1% 44481 711696 37.7%
C 16 45375 59963 959408 54725 875600 8.7% 45003 720048 25.0% 39313 629008 34.4%
D 23 78821 92318 1477088 75173 1202768 18.6% 64011 1024176 30.7% 58450 935200 36.7%
E 28 86379 128365 2053840 106795 1708720 16.8% 97054 1552864 24.4% 78660 1258560 38.7%

Table 2. Results Using the Proposed Scheme when the Number of Scan Chains in Individual Cores is Not Changed

Design

Cores

Scan
Cells

Serial Testing m = 1 m = 2 m = 3
Test
Time

Tester
Data

Test
Time

Tester
Data

Percent
Reduction

Test
Time

Tester
Data

Percent
Reduction

Test
Time

Tester
Data

Percent
Reduction

A 34 95322 169680 2714880 143000 2288000 15.7% 98380 1574080 42.0% 82760 1324160 51.2%
B 20 57923 92660 1482560 82000 1312000 11.5% 49880 798080 46.2% 41920 670720 54.8%
C 16 45375 71560 1144960 65600 1049600 8.3% 37280 596480 47.9% 31980 511680 55.3%
D 23 78821 111920 1790720 94300 1508800 15.7% 56320 901120 49.7% 51700 827200 53.8%
E 28 86379 142780 2284480 121420 1942720 15.0% 79960 1279360 44.0% 71540 1144640 49.9%

!

!

Figure 4. Test Time versus Number of Tester Channels for
Design B

Figure 5. Tester Data versus Number of Tester Channels
for Design B

7. Conclusions

By retaining unused free variables, the proposed scheme
provides greater flexibility in test scheduling for SoC testing
resulting in greater test compression. No additional
hardware is required to retain the free variables. The
computational complexity and control complexity can be
adjusted as desired.

Acknowledgements

This research was supported in part by the National
Science Foundation under Grant No. CCF-1217750.

References

[Gonciari 05] P.T. Gonciari, P. Rosinger, and B.M. Al-Hashimi,
"Compression Considerations in Test Access Mechanism
Design", IEE Proc. Computers & Digital Techniques, Vol.
152, Issue 1, pp. 89-96, Jan. 2005.

[Iyengar 05] V. Iyengar, and A. Chandra, "Unified SOC Test
Approach based on Test Data Compression and TAM
Design", IEE Proc. Computers & Digital Techniques, Vol.
152, Issue 1, pp. 82-88, Jan. 2005.

[Janicki 11] J. Janicki, J. Tyszer, A. Dutta, M. Kassab, G.
Mrugulski, N. Mukherjee, and J. Rajski, “EDT Channel
Bandwidth Management in SoC Designs with Pattern-
Independent Test Access Mechanism”, Proc. of International
Test Conference, Paper 14.1, 2011.

[Janicki 12] J. Janicki, J. Tyszer, G. Mrugulski, and J. Rajski,
"Bandwidth-Aware Test Compression Logic for SoC
Designs", Proc. of European Test Symp., 2012.

[Kassab 10] M. Kassab, G. Mrugalski, N. Mukherjee, J. Rajski, J.
Janicki, and J. Tyszer, “Dynamic Channel Allocation for
Higher EDT Compression for SoC Designs,” Proc. of
International Test Conference, Paper 9.2, 2010.

[Kinsman 10] A.B Kinsman and N Nicolici "Time-Multiplexed
Compressed Test of SOC Designs", Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol.18,
no.8, pp 1159-1172, Aug 2010

[Könemann 91] B. Könemann, “LFSR-Coded Test Patterns for
Scan Designs”, Proc. of European Test Conference, pp. 237-
242, 1991.

[Krishna 01] C.V. Krishna and N.A. Touba, “Test Vector
Encoding Using Partial LFSR Reseeding”, Proc. of
International Test Conference, pp. 885-893, 2001.

[Muthyala 12] S.S. Muthyala and N.A. Touba, "Improving Test
Compression by Retaining Non-Pivot Free Variables in
Sequential Linear Decompressors," Proc. of International
Test Conference, Paper 9.1, 2012.

[Rajski 04] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee,
“Embedded Deterministic Test”, IEEE Trans. on Computer-
Aided Design, Vol. 23, Issue 5, pp. 1306-1320, May 2004.

[Tehranipoor 05] M. Tehranipoor, M. Nourani, and K.
Chakrabarty, "Nine-Coded Compression Techniques for
Testing Embedded Cores in SoCs", IEEE Trans. on VLSI
Systems, Vol. 13, No. 6, pp. 719-722, Jun. 2005.

[Touba 06] N.A. Touba, “Survey of Test Vector Compression
Techniques”, IEEE Design & Test Magazine, Vol. 23, Issue 4,
pp. 294-303, Jul. 2006.

[Xu 05] Q. Xu and N. Nicolici, "Resource-Constrained System-on-
a-Chip Test: A Survey", IEE Proc. Computers & Digital
Techniques, Vol. 152, Issue 1, pp. 67-81, Jan. 2005.

[Wang 06] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test
Principles and Architectures: Design for Testability, Morgan
Kaufmann, 2006.

[Wang 07] Z. Wang., K. Chakrabarty, S. Wang, “SoC Testing
Using LFSR Reseeding, and Scan-Slice-Based TAM
Optimization and Test Scheduling”, Design, Automation &
Test in Europe Conference & Exhibition,2007. DATE ’07, pp
1-6.

!

!

