
Transformed Pseudo-Random Patterns for BIST

Nur A. Touba and Edward J. McCluskey

Center for Reliable Computing
Departments of Electrical Engineering and Computer Science

Stanford University, Stanford. CA 94305-4055

ABSTRACT
This paper presents a new approach for on-chip test

pattern generation. The set of test patterns generated by a
pseudo-random pattern generator (e.g., an LFSR) is
transformed into a new set of patterns that provides the
desired fault coverage. The trang5ormation is performed by
a small amount of mapping logic that decodes sets of
patterns that don't detect any new faults and maps them
into patterns that detect the hard-to-detect faults. The
mapping iogic is purely combinational and is placed
between the pseudo-random pattern generator and the circuit
under test (CUT). A procedure for designing the mapping
logic so that it satisfies test length and fault coverage
requirements is described. Results are shown for
benchmark circuits which indicate that an LFSR plus a
small amount of mapping logic reduces the test length
required for a particular fault coverage by orders of
magnitude compared with using an LFSR alone. These
results are compared with previously published results for
other methods, and it is shown that the proposed method
requires much less overhead to achieve the same fault
coverage for the same test length.

1. Introduction
One of the requirements for built-in self-test (BIST) is

on-chip test pattern generation. Some circuit, called a test
pattern generator, is needed to generate test pattems for the
circuit under test (CUT). For a given test length, the test
pattem generator must be able to generate test patterns that
provide a high fault coverage. A linear feedback shift register
(LFSR) is commonly used as a test pattem generator because
it provides two advantages: (1) it has a simple structure
requiring small area overhead, (2) it can also be used as an
output response analyzer thereby serving a dual purpose.
BIST techniques such as circular BIST [151 and BILBO
registers [13] make use of these advantages to reduce
overhead. Unfortunately, the pseudo-random test patterns
that are generated do not always give high enough fault
coverage for a reasonable test length. There are two ways
to solve this problem. One is to increase the fault detection
probabilities in the CUT by inserting test points [111 or by
redesigning it [20], and the other is to augment the LFSR
with additional logic to improve the patterns that are
generated. This paper presents a new approach for the latter.

Given an LFSR that doesn't provide high enough fault
coverage when used as a test pattern generator, one

0-8186-7000-2/95 $04.00 0 1995 IEEE
410

possible solution is to simply try a different seed or
different characteristic polynomial. Lempel et al. [161
presented an analytical method for finding a good seed for
an LFSR with a given characteristic polynomial. Results
in [161 indicate, however, that seed selection cannot reduce
the test length by more than a factor of 10. The LFSR
must be augmented by additional logic if this reduction is
not sufficient. Three general approaches that have been
proposed for doing this are as follows:

1. Mixed-Mode: Logic is added to generate deterministic
patterns to detect faults that the pseudo-random patterns
miss. Many methods have been proposed for generating
deterministic patterns on-chip [2,3,7,8,10]. In general,
however, substantial overhead is required.

2. MultiDle SeedsReconfigurable LFSR: Logic is added
to periodically reseed the LFSR or change its characteristic
polynomial. Techniques have been developed for finding
seeds and Characteristic polynomials that will generate tests
for the hard-to-detect faults [9,14,21]. The seeds and
characteristic polynomials need to be stored on-chip.

3. Weighted Patterns: Logic is added to bias the
pseudo-random patterns towards those that detect the hard-
to-detect faults [1 2 ~ 8 ~ 9 , 2 2 1 . Multiple weight sets are
usually required for an acceptable test length [23]. The
weight sets need to be stored on-chip.

This paper presents a new approach for augmenting an
LFSR, or any other pattern generating circuit, to produce a
desired fault coverage for a given test length. No storage
of deterministic patterns, seeds, characteristic polynomials,
or weight sets is required. In fact, no additional sequential
logic needs to be added. As illustrated in Fig. 1, a purely
combinational logic block is added between the pattern
generating circuit and the CUT to map the original set of
patterns into a new transformed set of patterns that
provides the desired fault coverage. The original set of
pattems produced by the pattern generating circuit for a
given test length will be referred to as the original pattern
set, and the set of patterns that is produced at the output of
the mapping logic block will be referred to as the
transformed pattern set. The strategy is to identify patterns
in the original pattern set that don't detect any new faults
and then map them into patterns that detect the
hard-to-detect faults. The key is to design the mapping
logic so that it uses only a small number of gates. This is
accomplished by using the special class of mappings
described in Sec. 2, Given a pattern generating circuit, a
procedure is described in Sec. 3 for designing mapping

logic to produce transformed patterns that satisfy test
lengtlh and fault coverage requirements. The goal of the
procedure is to minimize the number of gates required in
the mapping logic.

The test pattern generator architecture in which a
pseudo-random pattem generator is followed by a transform
network to produce "biased" pattems is not new. However,
previous methods have only considered using a transform
network that either weights or correlates signal
probabilities. This paper considers a broader class of
transformations. Whereas the transformations used in
weighted pattern testing are uniformly applied to some
number of patterns per weight set, the transformations used
here axe applied only to selected sets of pattems.

Pattem Generator

Mapping Logic
Original Test Pattems -b

TkiInsformed Test Patterns+

Circuit Under Test

Figure 1. Block Diagram for Generating Transformed
Pattems

2. Cube Mapping
In the method described in this paper, a special class of

mappings, which will be called cube mappings, are used to
map the original pattern set into a transformed pattern set.
Each cube mapping is uniquely specified by a "source"
cube and an "image" cube where each cube is a product of
literals in the input space of the CUT. Each original
pattern that is contained in the source cube is mapped into
a new pattern that is contained in the image cube. In the
following definitions, a cube in an input space with n
variables will be represented by a vector in { O , l , X } n
where a '0' indicates that the variable appears
complemented in the cube, a 'I' indicates that the variable
appears umcomplemented in the cube, and an 'X' indicates
that the variable doesn't appear in the cube.

Definition 1: For a circuit with n primary inputs,
let A = (,ul, ..., a,,) E {O,l}n be an input pattem and let
C = (c I ,..., c,) E { O , l , X } " be a cube, then A is
contained in C if Qj [(aj = c j) or (cj = ' X I) 1.

Definition 2: For a circuit with n primary inputs,
let A = (a], ..., u n) E { O , l J n be an input pattern, then a
cube mapping, M : {0,I ln + {0,1]', with source cube
S = (S I ,..., s,) E { O , l , X 1" and image cube
I = (il, ..., i n) E { O , l , X } n is defined as follows:
Ms+[(A) = B = (bl , ..., bn) E {O,l}n where

if A is contained in S then if i, = 'X' then b, =a, else bi = ii
else if A is not contained in S then b, = ai

An example of a cube mapping is shown in Fig. 2.
The source cube al 'a2 (0 , l , X) contains the patterns 0 1 0
and 0 I 1 . These two patterns are mapped into new
pattems that are contained in the image cube u2 'a3 (A:, 0 , l)
by setting a2 = 0 and a3 = I. Hence both patterns are
mapped into 0 0 1.

'The method described in this paper involves finding
some set of cube mappings, {M,, ,... ,M, , that
can be used to map the original pattern set into a
transformed pattem set that provides the desired fault
coverage. The advantage of using cube mappings is that
they can be implemented with a small amount of logic. In
Fig. 2, ihe logic required to implement a cube mapping is
shown. One AND-gate is needed to decode the input pattems
that are contained in the source cube, and one two-input
AND or two-input OR gate is needed for each literal in the
image ciube to perform the mapping. The mapping can be
disabled during normal operation by simply adding an input
to the decoding AND-gate (labeled "test mode" in Fig. 2).

Original Transformed
w i alaza~
000 000
0 0 1 0 0 1
0 1 0 9 0 0 1
0 1 1 3 0 0 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0 I I&I kJ 1 1 1 111 I I I

Figure 2. Cube Mapping with Source Cube al 'a2
(0, I , X) and Image Cube a, 'a3 (X , 0, 1)

3. Procedure for Selecting Cube Mappings
Given a pattem generating circuit, a test length, and a

fault coverage requirement, a procedure is described in this
section for finding a set of cube mappings that will map
the original pattem set into a transformed pattern set that
satisfies the fault coverage requirement. The procedure
involves generating cube mappings one at a time until the
resulting transformed pattern set gives a high enough fault
coverage.

3.1 Overview of Procedure

1.

2.
3.

4.
5 .

The steps in the procedure are as follows:
Simulate the pattern generating circuit for the given test

Evaluate the fault coverage and identify undetected faults.
If the fault coverage is high enough, then the procedure

Otherwise, add a cube mapping.
Compute the resulting transformed pattern set and loop

In step 4, a cube mapping is added to improve the fault

length to generate the original pattem set.

is complete.

back t'o step 2.

coverage. A method forselecting which cube mapping to
add during this step will be described in detail. The method
involves first selecting a source cube and then selecting the

411

image cube. To illustrate the method, a simple example of
finding mapping logic for testing the 5-input ISCAS 85
benchmark circuit C17 will be used. Assume that the CI 7
circuit is to be tested using a pseudo-random generator and
100% fault coverage is required with a test length of 10.
The first steps of the method are done for the example and
the results are shown in Fig. 3: the original pattern set is
obtained, and fault simulation is done revealing that 5 out
of 18 faults are left undetected. Now the task is to select a
cube mapping that will produce a transformed pattern set
that will detect the undetected faults; this is the subject of
the next two subsections.

c x x u M l u
Fault Coverage Requirement 100%

Test Length Requirement 10

OrigindPanemSa: 00111,11011,10111,10110,11010,00101,

Fault Coverage =%.= 72.290

11100, 01010,10100,00100

Figure 3. Original Pattern Set and Fault Coverage for
C17 Example.

3.2 Selecting a Source Cube
Each pattern in the original pattern set that is contained

in the source cube will be transformed into a new pattem.
In order not to reduce the fault coverage, it is important to
choose a source cube that does not contain all of the
patterns in the original pattern set that detect some faultf;
otherwise the transformed pattern set may not contain a
test pattern for fault f. On the other hand, in order to
maximize the potential of the mapping for increasing fault
coverage, the source cube should contain as many pattems
as possible in the original pattern set so that the
transformed pattem set will contain as many new pattems
as possible. Thus the strategy for selecting the source
cube is to find a large cube that doesn’t contain all of the
test patterns in the original pattern set for some fault.

In order to avoid selecting a cube that contains all of the
test patterns in the original pattem set for some fault, it is
necessary to know which patterns in the original pattern
set detect each fault. To find the whole set of pattems that
detect each fault, fault simulation without fault dropping
would be required. Results in 1171 indicate that fault
simulation time can be increased by up to a factor of 50 if
fault dropping is not used. If fault dropping is used, then
the fault detection information is limited to one pattem for
each fault (the first pattern that detected the fault).
However, this is enough information to choose the source
cube. For each detected fault, there must be at least one
test pattem that is not contained in the source cube. This
requirement can be satisfied if the source cube is chosen
such that it doesn’t contain any of the patterns that caused
faults to be dropped during fault simulation.

Let F be a Boolean function equal to the sum of the
minterms corresponding to each pattern that caused a fault

to be dropped. Then finding a cube that doesn’t contain
any pattern that caused a fau!t to be dropped is equivalent,
to finding an implicant in F . Finding an implicant in F
that is as large as possible can be solved using binate
covering. A binate matrix is formed in which each column
corresponds to a literal and each row corresponds to a
pattern that caused a fault to be dropped. A minimum
binate column covering for the resulting matrix is then
computed and expressed as a cube C with each literal
corresponding to a binate column in the solution. The
source cube is then computed by complementing each
literal in C. The source cube will then have the property
that it doesn’t match any pattern that caused a fault to be
dropped, and therefore it is guaranteed to not contain all of
the patterns in the original pattem set that detect some
fault. Binate covering is an NP-complete problem,
however, there are good heuristic algorithms for it
(e.g., 161).

For the CI 7 example, the original test patterns that
caused faults to be dropped are listed in Fig. 4. These
patterns are formed into a binate matrix and a minimum
binate column cover is found. The source cube is
computed by complementing each literal in the minimum
binate column cover. The source cube has the property
that it doesn’t contain any of the pattems that caused faults
to be dropped.

PattemsthatDropFaulu <a,b,c,d,e>: 00111, 11011, 10111,
10110,00101

a’ a b’ b c’ c d’ d e’ e
1 0 1 0 0 1 0 1 0 1 AMinimumBinateColumnCover:b’e
0 1 0 1 1 0 0 1 0 1

0 1 1 0 0 1 0 1 0 1 SelectedSourceCubc be’
0 1 1 0 0 1 0 1 1 0
1 0 1 0 0 1 1 0 0 1

Figure 4. Source Cube Selection for C17 Example.

3.3 Selecting an Image Cube
Once the source cube has been selected, the remaining

task is to select the image cube. The goal in selecting the
image cube is to transform the patterns that are contained
in the source cube into new patterns that detect as many of
the undetected faults as possible. The patterns contained in
the source cube are mapped into patterns contained in the
image cube. The strategy that is used for selecting the
image cube is to find some good canddate image cubes and
compute how many undetected faults would be detected if
each was used. The candidate image cube that gives the
highest fault coverage is then selected as the image cube.

Deterministic test pattems for the undetected faults are
used to guide the selection of candidate image cubes. The
unnecessary input assignments in the test patterns are left
as don’t cares (X ’ s) thereby forming rest cubes for each
fault. The test cubes are obtained using an automatic test
pattern generation (ATPG) tool. If the intersection of the

412

image (cube and the test cube for faultfis non-empty, then
the image cube contains test patterns for faultf, and therefore
faultfcan be potentially detected in the transformed pattern
set. So it is important to choose candidate image cubes
that have non-empty intersections with as many test cubes
as possible. This is done using rectangle covering similar
to what is done in multilevel logic optimization to find
cube factors [5] . A binate matrix B is formed in which
each test cube is represented by a row. The complemented
and uncomplemented literals corresponding to each don’t
care input in a test cube are both set equal to 1 (this is
different from finding cube factors where they are both set
equal to 0). A rectangle in B corresponds to a cube that
has a non-empty intersection with the test cubes covered
by the rectangle (this is different from finding cube factors
where a rectangle corresponds to a common cube between
the cubes covered by the rectangle).

One approach for selecting candidate image cubes would
be to simply use each of the prime rectangles in B
(i.e., eac.h rectangle not contained in another rectangle).
However, for circuits with large numbers of primary inputs,
the number of prime rectangles becomes prohibitive. So
the strategy that is used instead is to begin with a prime
rectangle that covers as many test cubes as possible
(i.e.. is the same height or taller than all other prime
rectangles). The cube corresponding to this rectangle is
used as the initial candidate image cube. Subsequent
candidate image cubes are then obtained by incrementally
adding literals to the initial candidate image cube; this
corresponds to incrementally adding columns to the initial
rectangle. The columns are selected based on maximizing
the number of test cubes covered by the resulting rectangle
(i.e., maximizing its height). The procedure is as follows:
1. The initial candidate imape cube IS ’ set eaual to a D rime
rectanyle in B with maximum heipht,

The initial candidate image cube will then have the
property that it has a non-empty intersection with as many
test cubes as possible. Thus, it will contain test patterns
for as many undetected faults as possible.
2. Commute the transformed patte m set ba sed on the
L 2 m d & ! k i m

The transformed pattern set is computed for the cube
mapping specified by the previously selected source cube
and the candidate image cube.
3. Determine how many undetected faults are now detected
in the tran sformed patte m set,

This requires fault simulation of the undetected faults.
4. If the number of faults detected is larger than that of the
best cand idate see n so far. then mark this candidate as the
best candida

The goal in choosing the image cube is to detect as
many faults as possible, so only the best candidate is kept.
5 . Add a column to the current rectangle to form a new
rectangle that is as tall as pos sible,

The goal of this step is to find a smaller candidate
image cube that has the potential to detect as many faults
as possible. A literal is added to the current candidate

image ciube based on maximizing the number of test cubes
that the resulting candidate image cube has a non-empty
intersection with.
6. &J& number of rows covered bv the resulting recur&
is less than or eaual to the number of faults detected bj&
best canididate. the n select the best candidate. Else. loop
bck to s t e a

The next candidate image cube will have a non-empty
intersection only with the test cubes covered by the
rectangle and hence its potential for detecting faults is
limited by the number of rows. If it is not possible for the
next canclidate to detect more faults than the best candidate,
then the best candidate is selected as the image cube.
7. Ecpand the image cube as much as possible without
reducinp fault coverarre,

A gate is needed for each literal in the image cube, so if
some of I.he literals can be removed without reducing the
fault coverage, then this results in a hardware savinlgs.
This can be done by removing one literal at a time from
the image c u b and computing the resulting fault coverage.
If the fault coverage remains the same, then the literal is
not needal.

For the C17 example, the test cubes for the 5 undetecited
faults are listed in Fig. 5. These test cubes are formed into
a binate matrix, and the first candidate image cube is set
equal to a‘e which corresponds to a rectangle with
maximum height. The transformed pattem set is computed
and fault simulation of the undetected faults is done
revealing That only one of them is detected. The d column
is then added to the rectangle because it maximizes the
height of the resulting rectangle. The second candidate
image cube is then set equal to a’de. The transformed
pattern set is computed and fault simulation of the
undetected faults is done revealing that 3 of them are
detected. Since the number of rows in the next rectangle
will be less than or equal to the number of faults detected
for the second candidate image cube, the selection procedure
terminates and the selected image cube is a’de. Removing
any of the literals from the image cube reduces the fault
coverage, so the image cube is not expanded.

i z u a M a E
Test Cubes for Undetected Faults: XXOOX, X11 lX, 010x1,

0111x,x001x

a’ a b’b c’ c d’ d e‘ e
1 1 1 1 1 0 1 0 1 1 Transformed Pattems: Mb&,a’e

1 1 0 1 0 1 0 1 1 1 Firstcandidate 11010-+01011
1 0 0 1 13 1 1 1 0 1 Imagecube: a’e 01010+01011

1 0 0 1 0 1 0 1 1 1 lfaultdetected 11100-+01101
1 0 1 0 I O 0 1 1 1

Transformed Pattems: Mbd-, a‘&

Second Candidate 1101 1 + 0101 1
Imagecube: a’de 01010+01011
3 faults detected 1 1 100 a 01 11 1

Selected Image Cube: a‘ d e

Figure 5. Image Cube Selection for Cl 7 Example.

413

4. Hardware Implementation
After a set of cube mappings has been selected such that

the test length and fault coverage requirements are satisfied,
a gate implementation of the mapping logic can be easily
constructed. This is best explained with an example. For the
C l 7 example, the steps for selecting the first cube mapping,
M b e j o Q e , were shown. This cube mapping causes 3
faults to be detected, but there are still 2 undetected faults
remaining. So the same steps were used to select a second
cube mapping, M a k j a b k ’ , This cube mapping causes
both of the remaining 2 faults to be detected. So the set of
these two cube mappings satisfies the 100% fault coverage
requirement. A circuit that implements these mappings is
shown in Fig. 6. One AND gate is needed to decode each
source cube. A “test mode” input is added to each decoding
AND gate so that it can be disabled during normal
operation. The first cube mapping, Mbe; . ’de , is
implemented by adding an AND gate to a, and OR gates to
d and e . The second cube mapping, M a f e f + o b k ‘ , is
implemented by adding an OR gate to a, and AND gates to
b and c. If a pattern is contained in both sources cubes, the
the output of both decoding AND gates will go high.
Then latter cube mappings must override previous cube
mappings, so in this case the OR gate on a must be placed
after the AND gate. Because the latter source cubes are
always chosen so that they won’t contain pattems that
detect new faults, there is no concern that having the
second cube mapping override the first cube mapping will
reduce fault coverage.

An obvious concern about constructing a circuit
structure by cascading gates is that the delay through the
circuit will be a problem. Note that the circuit can be
flattened and synthesized with logic synthesis tools to
control delay. Also, the mapping logic can be bypassed
during normal operation by using MUXes if necessary.

I Pattem Generator

C17 Circuit

Figure 6 . Gate Implementation of Cube Mapping Logic
for C17 Example: Mh’+a’de and h!fa*et+abtcJ

5. Experimental Results
The method described in this paper was used to generate

mapping logic to reduce the pseudo-random pattern test
length for some of the ISCAS 85 and ISCAS 89
benchmark circuits that require over a million test pattems.

5.1 Comparison with LFSR Alone
Table 1 compares using only an LFSR and using an

LFSR with cube mapping logic. It was assumed that the
flip-flops in the ISCAS 89 circuits were configured as part
of the LFSR during testing so that the circuits are tested
like combinational circuits. The number of stages in the
LFSR for each circuit was equal to the number of primary
inputs plus the number of flip-flops. Patterns were applied
in parallel to the circuit, i.e., a pattern was applied each
clock cycle. Only detectable faults were considered in fault
coverage calculations. Table 1 shows results for using an
LFSR alone to generate the pattems. The fault coverage
after 1K patterns, 10K patterns, and 50K patterns is
shown, and the test length required for 100% fault coverage
is shown (all circuits required over a million pattems).
The method described in this paper was used to generate
mapping logic to provide 100% fault coverage for test
lengths of IK, 10K, and 50K patterns using the same
LFSR (same characteristic polynomial and same initial
seed). The mapping logic was inserted between the LFSR
and CUT. In Table 1, results are shown for the LFSR
with the mapping logic. For each of the three test lengths,
four things are shown: the number of cube mappings, the
number of gates required to implement the mapping logic,
the number of literals in the mapping logic (gate inputs),
and the fault coverage achieved. When more than one cube
mapping is required to achieve 100% fault coverage, results
are shown for different numbers of cube mappings to show
the possible tradeoffs between area and fault coverage.
These results indicate that a small amount of mapping
logic can dramatically reduce the random pattern test
length. If the number of gates in the mapping logic is
divided by the number of inputs in the CUT, then for all of
the circuits, less than a gate per input is required to reduce
the test length by 3 orders of magnitude or more. Note
that the number of literals per gate (i.e., average gate
fan-in) is very small as well. As the test length is
increased, the amount of mapping logic required for 100%
fault coverage goes down. It is very easy to trade off
between test length, fault coverage, and hardware overhead.

5.2 Comparison with Prior Methods
There are three important factors in choosing a test

pattern generator for BIST: test time, test quality, and
hardware area. To evaluate the test pattern generators that
are designed by the method in this paper, a comparison was
made with other published results using three measures:
test length (for test time), fault coverage (for test quality),
and gate equivalents plus flip-flop count (for hardware
area). Table 2 shows the comparison. The fault coverage
is the same for all techniques: 100% of detectable single
stuck-at faults. Parallel test pattern application (“a test per
clock”) is assumed for all techniques. The first column
gives the circuit names, and the next column shows the
test length for pseudo-random pattern testing using an
LFSR. Then results are given for 3 different methods plus
the proposed method. The test length and hardware overhead

414

Table 1. Comparison of Testing with an LFSR Alone versus an LFSR plus Cube Mapping Logic

Table 2. Comparison of Test Length and Required Hardware

is shown for each method. In some cases, results are given
for two different test lengths to show the tradeoff between
test time and hardware overhead. The hardware overhead is
the hardware required in addition to what is needed for
pseudo-random pattern testing with an LFSR. Flip-flops
and gates are counted separately. The gates are measured
by gate equivalents (GE’s) using the same method
suggested in [12] to reflect a static CMOS technology:
(0.5)(n) GE’s for an n-input NAND or NOR, (2.5)(n-1) GE’s
for an n-input XOR, and 1.5 GE’s for a 2-to-1 MUX
(realized by transmission gates). The hardware overhead for
each methlod is an estimate that is computed as follows:
Multiule IVeight Sets The weight sets from [41 are used.
The number of weight sets required is shown under the
column WS. It is assumed that the best case occurs in which
no stages have to be added to the LFSR to avoid correlation
that increases test length. Thus, extra flip-flops are needed
only to keep track of which weight set is being used. The
logic required for each input to the CUT is conservatively
estimated to be a total of 4 gates to generate the weighted
signals and WS 2-to-1 MUXes to select the weighted
signals based on which weight set is currently active.

FF’s = Iog2(number of weight sets)
GE’s = [4 + (1.5) (WS)] (number of inputs in CUT)

3-Weinht Method: This method was proposed by
Pomeranz and Reddy in 1181. 3-gate modules are used to
fix the value of certain inputs while random patterns are
being applied thus forming “expanded tests”. Extra flip-
flops are needed to keep track of which expanded test is
being usecl. The logic required by the 3-gate modules
depends on the fan-in. One of the gates is a two-inpat
gate, and tlhe average fan-in for the other two is given i~n
[18] (results are not available for the ISCAS 89 circuits).

FF’s = Iog24number of expanded tests)
GE’s = (number of 3-gate modules) (1 + average fan-in)

Fixed-Biased Method: This method was proposed by
AlShaibi and Kime in [I]. It generates patterns using a
weighted bit stream and fixing the value of some bits. A
ROM is required to store configuration sequences that are
periodically loaded during testing, but for sakeofcomparison,
it is assumed that the configuration sequences are stored
off-chip even though this would impact test time. A
17-stage LFSR plus some weight logic is used to generate
the weighted bit stream. Each fixed bit requires one extra
flip-flop, four 2-to-1 MUXes, and a two-input NAND gate;
the number of fixed bits for each circuit is given in [I].

FF’s E li‘ + (number offixed bits)
GE’s = [(84)(P .S) + 11 (number of fixed bits)

415

The proposed method requires no additional flip-flops,
only combinational logic between the LFSR and the CUT.
Assuming that flip-flops require 4 gate equivalents or
more, the proposed method requires the least hardware
overhead for a given test length compared with the other
methods. In many cases, the proposed method reduces the
test length significantly more than the other methods while
using much less hardware.

Wunderlich proposed a generator of unequiprobable
random tests (GURT) in [22] that requires very little
hardware overhead but is limited to only one weight set.
Hartmann and Kemnitz proposed a method in [12] that
uses a modified GURT structure and described test pattern
generators for C2670 and C7552 which require very little
hardware overhead. However, these methods are not
general methods because they use only one weight set and
therefore are limited in their ability to reduce test length.
For some circuits these methods will not be able to reduce
the test length enough. The methods shown in the table
are general methods in the sense that they can be used to
reduce the test length for any circuit by basically any
amount. It should also be pointed out that the order of the
flip-flops in a GURT structure is greatly constrained and
therefore can add substantial routing overhead. The proposed
method, on the other hand, places no constraints on flip-flop
ordering and allows the use of normal BILBO register cells.

6. Conclusions
The method described in this paper requires much less

overhead than other general methods to achieve the same
fault coverage for a given pseudo-random pattern test
length. In addition to minimizing hardware overhead, the
proposed approach has the following advantages:

1) Easy to insert into an existing design.
2) Fully compatible with BILBO registers.
3) Easy to trade off between test time, fault coverage,

4) No additional sequential logic is required.
5) Very simple control -- only one control line is

Thus, the method described in this paper is very
convenient to use in BIST designs to boost fault coverage.
Mapping logic can be generated and seamlessly inserted
into a BIST architecture.

In this paper, the problem of improving fault coverage
during pseudo-random pattern testing was thought of as
transforming a pseudo-random pattern set into a better one.
This led to the use of a broader class of transformations
than had been previously considered. Other transformations
besides cube mappings are currently being investigated.
More complex transformations hold promise for even
greater improvement.

and hardware overhead.

needed (to indicate test mode).

References
[l] AIShaibi, M.F., and C.R. Kime, “Fixed-Biased Pseudorandom

Built-In Self-Test for Random Pattem Resistant Circuits,” Proc. of
Int. Test Conf., pp. 929-938. 1994.

Aganval, V.K., and E. Cemy, “Store and Generate Built-In
Testing Approach:’ Proc. of FTCS-11, pp. 35-40, 1981.
Akers, S.B., and W. Jansz, “Test Set Embedding in a Built-In Self-
Test Environment,” Proc. of Int. Test Conf., pp. 257-263,1989.
Bershteyn, M.. “Calculation of Multiple Sets of Weights for
Weighted Random Testing,” Proc. of Int . Tesi Conf.,

Brayton, R.K., R. R u d d , A. Sangiovanni-Vincentelli, A.R. Wang,
“Multi-Level Logic Optimization and The Rectangular Covering
Problem,” Proc. of Int. Conf, on Computer-Aided Design (ICCAD),
pp. 66-69.1987.
Brayton, R.K., and F. Somenzi, “An Exact Minimizer for Boolean
Relations,” Proc. of Int. Conf. on Compufer-Aided Design
(ICCAD), pp. 316-319.1989.
Daehn, W., and J. Muncha, “Hardware Test Pattem Generation
for Built-In Testing,”Proc. of Inf . Test Conf., pp. 110-113, 1981.
Dandapani, R., J. Patel, and J. Abraham, “Design of Test Pattem
Generators for Built-In Test,” Proc. of Int. Test Conf., pp. 315-319,
1984.
Dufanza, C., and G. Cambon, “LFSR based Deterministic and
Pseudo-Random Test Pattem Generator Structures,” Proc. of
European Test Conf., pp. 27-34, 1991.
Edirisooriya, G . , and J.P. Robinson, “Desigaf Low Cost ROM
Based Test Generators,” Proc. ofVLS1 Test Symp., pp. 61-66.1992.
Eichelberger. E.B., and E. Lindbloom, “Random-Pattem Coverage
Enhancement and Diagnosis for LSSD Logic Self-Test,” I B M
Journal of Research and Development. Vol. 21, No. 3, pp. 265-
272, May 1983.
Hartmann, J., and G. Kemnitz, “How to Do Weighted Random
Testing for BIST,” Proc. of In!. Conf. on Computer-Aided Design

pp. 1031-1040, 1993.

(ICCAD), p ~ . 568-571, 1993.
[13] Konemann. B., I. Mucha, and G. Zwiehoff, “Built-in Logic Block

Observation Technique,” Proc. oflnt. Test Conf., pp. 140-150.1979.
[14] Konemann, B., “LFSR-Coded Test Pattems for Scan Design,”

Proc. of European Test Conf., pp. 237-242,1991.
[15] Krasniewski, A., and S. Pilarski, “Circular Self-Test Path: A Low-

Cost BIST Technique for VLSI Circuits,” IEEE Trans. on
Compuler-Aided Design, Vol. 8, No. 1, pp. 46-55 Jan. 1989.

[16] Lempel, M., S.K. Gupta, and M A . Breuer, “Test Embedding with
Discrete Logarithms.” Proc. of V U 1 Test Symp., pp. 14-80, 1994.

[I71 Pan, R., N.A. Touba, and E.J. McCluskey, “The Effect of Fault
Dropping on Fault Simulation Time,” Tech. Report 93-5, Center
for Reliable Computing, Stanford UNv., Stanford, CA, Nov. 1993.

[18] Pomeranz, I., and S.M. Reddy, “3-Weight Pseudo-Random Test
Generation Based on a Deterministic Test Set for Combinational
and Sequential Circuits,” IEEE Trans. on Compuier-Aided Design,

[19] Schnurmann, H.D., E. Lindbloom, and R.G. Carpenter, “The
Weighted Random Test-Pattem Generator,” IEEE Trans. on
Compuers, Vol. C-24, No. 7. pp. 695-700, Jul. 1975.

[20] Touba, N.A., and E.J. McCluskey, “Automated Logic Synthesis of
Random Pattem Testable Circuits,” Proc. of Int . Test Conf,,
pp. 174-183. 1994.

(211 Venkataramann, S., J. Rajski, S. Hellebrand, and S. Tamick, “An
Efficient BIST Scheme Based on Reseeding of Multiple
Polynomial Linear Feedback Shift Registers,” Proc. of Int. Conf.
on Computer-Aided Design (ICCAD), pp. 572-511.1993.

[22] Wunderlich, H.-J., “Self-Test Using Unequiprobable Random
Pattems,” Proc. of FTCS-17, pp. 258-263, 1987.

123 J Wunderlich, H.-J., “Multiple Distributions for Biased Random Test
Pattems,” Proc. oflnt. Test Conf., pp. 236-244, 1988.

Vol. 12, NO. 7, p ~ . 1050-1058, Jul. 1993.

416

