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ABSTRACT 
This paper presents a new approach for  on-chip test 

pattern generation. The set of test patterns generated by a 
pseudo-random pattern generator (e.g., an LFSR) is 
transformed into a new set of patterns that provides the 
desired fault coverage. The trang5ormation is performed by 
a small amount of mapping logic that decodes sets of 
patterns that don't detect any new faults and maps them 
into patterns that detect the hard-to-detect faults. The 
mapping iogic is purely combinational and is placed 
between the pseudo-random pattern generator and the circuit 
under test (CUT). A procedure for designing the mapping 
logic so that it satisfies test length and fault coverage 
requirements is described. Results are shown for 
benchmark circuits which indicate that an LFSR plus a 
small amount of mapping logic reduces the test length 
required for a particular fault coverage by orders of 
magnitude compared with using an LFSR alone. These 
results are compared with previously published results for 
other methods, and it is shown that the proposed method 
requires much less overhead to achieve the same fault 
coverage for the same test length. 

1. Introduction 
One of the requirements for built-in self-test (BIST) is 

on-chip test pattern generation. Some circuit, called a test 
pattern generator, is needed to generate test pattems for the 
circuit under test (CUT). For a given test length, the test 
pattem generator must be able to generate test patterns that 
provide a high fault coverage. A linear feedback shift register 
(LFSR) is commonly used as a test pattem generator because 
it provides two advantages: (1) it has a simple structure 
requiring small area overhead, (2) it can also be used as an 
output response analyzer thereby serving a dual purpose. 
BIST techniques such as circular BIST [151 and BILBO 
registers [13] make use of these advantages to reduce 
overhead. Unfortunately, the pseudo-random test patterns 
that are generated do not always give high enough fault 
coverage for a reasonable test length. There are two ways 
to solve this problem. One is to increase the fault detection 
probabilities in the CUT by inserting test points [ 111 or by 
redesigning it [20], and the other is to augment the LFSR 
with additional logic to improve the patterns that are 
generated. This paper presents a new approach for the latter. 

Given an LFSR that doesn't provide high enough fault 
coverage when used as a test pattern generator, one 
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possible solution is to simply try a different seed or 
different characteristic polynomial. Lempel et al. [ 161 
presented an analytical method for finding a good seed for 
an LFSR with a given characteristic polynomial. Results 
in [ 161 indicate, however, that seed selection cannot reduce 
the test length by more than a factor of 10. The LFSR 
must be augmented by additional logic if this reduction is 
not sufficient. Three general approaches that have been 
proposed for doing this are as follows: 

1. Mixed-Mode: Logic is added to generate deterministic 
patterns to detect faults that the pseudo-random patterns 
miss. Many methods have been proposed for generating 
deterministic patterns on-chip [2,3,7,8,10]. In general, 
however, substantial overhead is required. 

2. MultiDle SeedsReconfigurable LFSR: Logic is added 
to periodically reseed the LFSR or change its characteristic 
polynomial. Techniques have been developed for finding 
seeds and Characteristic polynomials that will generate tests 
for the hard-to-detect faults [9,14,21]. The seeds and 
characteristic polynomials need to be stored on-chip. 

3. Weighted Patterns: Logic is added to bias the 
pseudo-random patterns towards those that detect the hard- 
to-detect faults [ 1 2 ~ 8 ~ 9 , 2 2 1 .  Multiple weight sets are 
usually required for an acceptable test length [23]. The 
weight sets need to be stored on-chip. 

This paper presents a new approach for augmenting an 
LFSR, or any other pattern generating circuit, to produce a 
desired fault coverage for a given test length. No storage 
of deterministic patterns, seeds, characteristic polynomials, 
or weight sets is required. In fact, no additional sequential 
logic needs to be added. As illustrated in Fig. 1, a purely 
combinational logic block is added between the pattern 
generating circuit and the CUT to map the original set of 
patterns into a new transformed set of patterns that 
provides the desired fault coverage. The original set of 
pattems produced by the pattern generating circuit for a 
given test length will be referred to as the original pattern 
set, and the set of patterns that is produced at the output of 
the mapping logic block will be referred to as the 
transformed pattern set. The strategy is to identify patterns 
in the original pattern set that don't detect any new faults 
and then map them into patterns that detect the 
hard-to-detect faults. The key is to design the mapping 
logic so that it uses only a small number of gates. This is 
accomplished by using the special class of mappings 
described in Sec. 2, Given a pattern generating circuit, a 
procedure is described in Sec. 3 for designing mapping 



logic to produce transformed patterns that satisfy test 
lengtlh and fault coverage requirements. The goal of the 
procedure is to minimize the number of gates required in 
the mapping logic. 

The test pattern generator architecture in which a 
pseudo-random pattem generator is followed by a transform 
network to produce "biased" pattems is not new. However, 
previous methods have only considered using a transform 
network that either weights or correlates signal 
probabilities. This paper considers a broader class of 
transformations. Whereas the transformations used in 
weighted pattern testing are uniformly applied to some 
number of patterns per weight set, the transformations used 
here axe applied only to selected sets of pattems. 

Pattem Generator 

Mapping Logic 
Original Test Pattems -b 

TkiInsformed Test Patterns+ 

Circuit Under Test 

Figure 1. Block Diagram for Generating Transformed 
Pattems 

2. Cube Mapping 
In the method described in this paper, a special class of 

mappings, which will be called cube mappings, are used to 
map the original pattern set into a transformed pattern set. 
Each cube mapping is uniquely specified by a "source" 
cube and an "image" cube where each cube is a product of 
literals in the input space of the CUT. Each original 
pattern that is contained in the source cube is mapped into 
a new pattern that is contained in the image cube. In the 
following definitions, a cube in an input space with n 
variables will be represented by a vector in { O , l , X } n  
where a '0' indicates that the variable appears 
complemented in the cube, a 'I' indicates that the variable 
appears umcomplemented in the cube, and an 'X' indicates 
that the variable doesn't appear in the cube. 

Definition 1: For a circuit with n primary inputs, 
let A = (,ul, ..., a,,) E {O,l}n be an input pattem and let 
C = ( c I  ,..., c,) E { O , l , X } "  be a cube, then A is 
contained in C if Qj [ (aj = c j )  or (cj  = ' X I )  1. 

Definition 2: For a circuit with n primary inputs, 
let A = (a], ..., u n )  E { O , l J n  be an input pattern, then a 
cube mapping, M :  {0,I ln  + {0,1]', with source cube 
S = ( S I  ,..., s,) E { O , l , X  1" and image cube 
I = (il, ..., i n )  E { O , l , X } n  is defined as follows: 
Ms+[ (A) = B = (bl ,  ..., bn) E {O,l}n where 

if A is contained in S then if i, = 'X' then b, =a, else bi = ii 
else if A is not contained in S then b, = ai 

An example of a cube mapping is shown in Fig. 2. 
The source cube al 'a2 ( 0 , l  , X )  contains the patterns 0 1 0 
and 0 I 1 .  These two patterns are mapped into new 
pattems that are contained in the image cube u2 'a3 (A:, 0 , l )  
by setting a2 = 0 and a3 = I. Hence both patterns are 
mapped into 0 0 1. 

'The method described in this paper involves finding 
some set of cube mappings, {M,, ,... ,M, ,  that 
can be used to map the original pattern set into a 
transformed pattem set that provides the desired fault 
coverage. The advantage of using cube mappings is that 
they can be implemented with a small amount of logic. In 
Fig. 2, ihe logic required to implement a cube mapping is 
shown. One AND-gate is needed to decode the input pattems 
that are contained in the source cube, and one two-input 
AND or two-input OR gate is needed for each literal in the 
image ciube to perform the mapping. The mapping can be 
disabled during normal operation by simply adding an input 
to the decoding AND-gate (labeled "test mode" in Fig. 2). 

Original Transformed 
w i  alaza~ 
000  000 
0 0 1  0 0 1  
0 1 0  9 0 0 1  
0 1 1  3 0 0 1  
1 0 0  1 0 0  
1 0 1  1 0 1  
1 1 0  1 1 0  I I&I kJ 1 1 1  111 I I  I 

Figure 2. Cube Mapping with Source Cube al 'a2 
(0, I , X )  and Image Cube a, 'a3 ( X ,  0, 1 ) 

3. Procedure for Selecting Cube Mappings 
Given a pattem generating circuit, a test length, and a 

fault coverage requirement, a procedure is described in this 
section for finding a set of cube mappings that will map 
the original pattem set into a transformed pattern set that 
satisfies the fault coverage requirement. The procedure 
involves generating cube mappings one at a time until the 
resulting transformed pattern set gives a high enough fault 
coverage. 

3.1 Overview of Procedure 

1. 

2. 
3.  

4. 
5 .  

The steps in the procedure are as follows: 
Simulate the pattern generating circuit for the given test 

Evaluate the fault coverage and identify undetected faults. 
If the fault coverage is high enough, then the procedure 

Otherwise, add a cube mapping. 
Compute the resulting transformed pattern set and loop 

In step 4, a cube mapping is added to improve the fault 

length to generate the original pattem set. 

is complete. 

back t'o step 2. 

coverage. A method forselecting which cube mapping to 
add during this step will be described in detail. The method 
involves first selecting a source cube and then selecting the 
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image cube. To illustrate the method, a simple example of 
finding mapping logic for testing the 5-input ISCAS 85 
benchmark circuit C17 will be used. Assume that the CI 7 
circuit is to be tested using a pseudo-random generator and 
100% fault coverage is required with a test length of 10. 
The first steps of the method are done for the example and 
the results are shown in Fig. 3: the original pattern set is 
obtained, and fault simulation is done revealing that 5 out 
of 18 faults are left undetected. Now the task is to select a 
cube mapping that will produce a transformed pattern set 
that will detect the undetected faults; this is the subject of 
the next two subsections. 

c x x u M l u  
Fault Coverage Requirement 100% 

Test Length Requirement 10 

OrigindPanemSa: 00111,11011,10111,10110,11010,00101, 

Fault Coverage =%.= 72.290 

11100, 01010,10100,00100 

Figure 3. Original Pattern Set and Fault Coverage for 
C17 Example. 

3.2 Selecting a Source Cube 
Each pattern in the original pattern set that is contained 

in the source cube will be transformed into a new pattem. 
In order not to reduce the fault coverage, it is important to 
choose a source cube that does not contain all of the 
patterns in the original pattern set that detect some faultf; 
otherwise the transformed pattern set may not contain a 
test pattern for fault f. On the other hand, in order to 
maximize the potential of the mapping for increasing fault 
coverage, the source cube should contain as many pattems 
as possible in the original pattern set so that the 
transformed pattem set will contain as many new pattems 
as possible. Thus the strategy for selecting the source 
cube is to find a large cube that doesn’t contain all of the 
test patterns in the original pattern set for some fault. 

In order to avoid selecting a cube that contains all of the 
test patterns in the original pattem set for some fault, it is 
necessary to know which patterns in the original pattern 
set detect each fault. To find the whole set of pattems that 
detect each fault, fault simulation without fault dropping 
would be required. Results in 1171 indicate that fault 
simulation time can be increased by up to a factor of 50 if 
fault dropping is not used. If fault dropping is used, then 
the fault detection information is limited to one pattem for 
each fault (the first pattern that detected the fault). 
However, this is enough information to choose the source 
cube. For each detected fault, there must be at least one 
test pattem that is not contained in the source cube. This 
requirement can be satisfied if the source cube is chosen 
such that it doesn’t contain any of the patterns that caused 
faults to be dropped during fault simulation. 

Let F be a Boolean function equal to the sum of the 
minterms corresponding to each pattern that caused a fault 

to be dropped. Then finding a cube that doesn’t contain 
any pattern that caused a fau!t to be dropped is equivalent, 
to finding an implicant in F . Finding an implicant in F 
that is as large as possible can be solved using binate 
covering. A binate matrix is formed in which each column 
corresponds to a literal and each row corresponds to a 
pattern that caused a fault to be dropped. A minimum 
binate column covering for the resulting matrix is then 
computed and expressed as a cube C with each literal 
corresponding to a binate column in the solution. The 
source cube is then computed by complementing each 
literal in C. The source cube will then have the property 
that it doesn’t match any pattern that caused a fault to be 
dropped, and therefore it is guaranteed to not contain all of 
the patterns in the original pattem set that detect some 
fault. Binate covering is an NP-complete problem, 
however, there are good heuristic algorithms for it 
(e.g., 161). 

For the CI  7 example, the original test patterns that 
caused faults to be dropped are listed in Fig. 4. These 
patterns are formed into a binate matrix and a minimum 
binate column cover is found. The source cube is 
computed by complementing each literal in the minimum 
binate column cover. The source cube has the property 
that it doesn’t contain any of the pattems that caused faults 
to be dropped. 

PattemsthatDropFaulu <a,b,c,d,e>: 00111, 11011, 10111, 
10110,00101 

a’ a b’ b c’ c d’ d e’ e 
1 0 1 0 0 1 0 1 0 1 AMinimumBinateColumnCover:b’e 
0 1 0 1  1 0 0 1 0 1  

0 1 1 0 0 1 0 1 0 1 SelectedSourceCubc be’ 
0 1  1 0 0 1 0 1  1 0  
1 0 1 0 0 1 1 0 0 1  

Figure 4. Source Cube Selection for C17 Example. 

3.3 Selecting an Image Cube 
Once the source cube has been selected, the remaining 

task is to select the image cube. The goal in selecting the 
image cube is to transform the patterns that are contained 
in the source cube into new patterns that detect as many of 
the undetected faults as possible. The patterns contained in 
the source cube are mapped into patterns contained in the 
image cube. The strategy that is used for selecting the 
image cube is to find some good canddate image cubes and 
compute how many undetected faults would be detected if 
each was used. The candidate image cube that gives the 
highest fault coverage is then selected as the image cube. 

Deterministic test pattems for the undetected faults are 
used to guide the selection of candidate image cubes. The 
unnecessary input assignments in the test patterns are left 
as don’t cares ( X ’ s )  thereby forming rest cubes for each 
fault. The test cubes are obtained using an automatic test 
pattern generation (ATPG) tool. If the intersection of the 
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image (cube and the test cube for faultfis non-empty, then 
the image cube contains test patterns for faultf, and therefore 
faultfcan be potentially detected in the transformed pattern 
set. So it is important to choose candidate image cubes 
that have non-empty intersections with as many test cubes 
as possible. This is done using rectangle covering similar 
to what is done in multilevel logic optimization to find 
cube factors [5] .  A binate matrix B is formed in which 
each test cube is represented by a row. The complemented 
and uncomplemented literals corresponding to each don’t 
care input in a test cube are both set equal to 1 (this is 
different from finding cube factors where they are both set 
equal to 0). A rectangle in B corresponds to a cube that 
has a non-empty intersection with the test cubes covered 
by the rectangle (this is different from finding cube factors 
where a rectangle corresponds to a common cube between 
the cubes covered by the rectangle). 

One approach for selecting candidate image cubes would 
be to simply use each of the prime rectangles in B 
(i.e., eac.h rectangle not contained in another rectangle). 
However, for circuits with large numbers of primary inputs, 
the number of prime rectangles becomes prohibitive. So 
the strategy that is used instead is to begin with a prime 
rectangle that covers as many test cubes as possible 
(i.e.. is the same height or taller than all other prime 
rectangles). The cube corresponding to this rectangle is 
used as the initial candidate image cube. Subsequent 
candidate image cubes are then obtained by incrementally 
adding literals to the initial candidate image cube; this 
corresponds to incrementally adding columns to the initial 
rectangle. The columns are selected based on maximizing 
the number of test cubes covered by the resulting rectangle 
(i.e., maximizing its height). The procedure is as follows: 
1. The initial candidate imape cube IS ’ set eaual to a D rime 
rectanyle in B with maximum heipht, 

The initial candidate image cube will then have the 
property that it has a non-empty intersection with as many 
test cubes as possible. Thus, it will contain test patterns 
for as many undetected faults as possible. 
2. Commute the transformed patte m set ba sed on the 
L 2 m d & ! k i m  

The transformed pattern set is computed for the cube 
mapping specified by the previously selected source cube 
and the candidate image cube. 
3. Determine how many undetected faults are now detected 
in the tran sformed patte m set, 

This requires fault simulation of the undetected faults. 
4. If the number of faults detected is larger than that of the 
best cand idate see n so far. then mark this candidate as the 
best candida 

The goal in choosing the image cube is to detect as 
many faults as possible, so only the best candidate is kept. 
5 .  Add a column to the current rectangle to form a new 
rectangle that is as tall as pos sible, 

The goal of this step is to find a smaller candidate 
image cube that has the potential to detect as many faults 
as possible. A literal is added to the current candidate 

image ciube based on maximizing the number of test cubes 
that the resulting candidate image cube has a non-empty 
intersection with. 
6. &J& number of rows covered bv the resulting recur& 
is less than or eaual to the number of faults detected bj& 
best canididate. the n select the best candidate. Else. loop 
bck to s t e a  

The next candidate image cube will have a non-empty 
intersection only with the test cubes covered by the 
rectangle and hence its potential for detecting faults is 
limited by the number of rows. If it is not possible for the 
next canclidate to detect more faults than the best candidate, 
then the best candidate is selected as the image cube. 
7. Ecpand the image cube as much as possible without 
reducinp fault coverarre, 

A gate is needed for each literal in the image cube, so if 
some of I.he literals can be removed without reducing the 
fault coverage, then this results in a hardware savinlgs. 
This can be done by removing one literal at a time from 
the image c u b  and computing the resulting fault coverage. 
If the fault coverage remains the same, then the literal is 
not needal. 

For the C17 example, the test cubes for the 5 undetecited 
faults are listed in Fig. 5. These test cubes are formed into 
a binate matrix, and the first candidate image cube is set 
equal to a‘e which corresponds to a rectangle with 
maximum height. The transformed pattem set is computed 
and fault simulation of the undetected faults is done 
revealing That only one of them is detected. The d column 
is then added to the rectangle because it maximizes the 
height of the resulting rectangle. The second candidate 
image cube is then set equal to a’de. The transformed 
pattern set is computed and fault simulation of the 
undetected faults is done revealing that 3 of them are 
detected. Since the number of rows in the next rectangle 
will be less than or equal to the number of faults detected 
for the second candidate image cube, the selection procedure 
terminates and the selected image cube is a’de. Removing 
any of the literals from the image cube reduces the fault 
coverage, so the image cube is not expanded. 

i z u a M a E  
Test Cubes for Undetected Faults: XXOOX, X11 lX, 010x1, 

0111x,x001x 

a’ a b’b c’ c d’ d e‘ e 
1 1 1 1 1 0 1 0 1 1 Transformed Pattems: Mb&,a’e 

1 1 0 1 0 1 0 1 1 1 Firstcandidate 11010-+01011 
1 0 0 1 13 1 1 1 0 1 Imagecube: a’e 01010+01011 

1 0 0 1 0 1 0 1 1 1 lfaultdetected 11100-+01101 
1 0  1 0  I O 0  1 1  1 

Transformed Pattems: Mbd-, a‘& 

Second Candidate 1101 1 + 0101 1 
Imagecube: a’de 01010+01011 
3 faults detected 1 1  100 a 01 11 1 

Selected Image Cube: a‘ d e 

Figure 5. Image Cube Selection for Cl 7 Example. 
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4. Hardware Implementation 
After a set of cube mappings has been selected such that 

the test length and fault coverage requirements are satisfied, 
a gate implementation of the mapping logic can be easily 
constructed. This is best explained with an example. For the 
C l  7 example, the steps for selecting the first cube mapping, 
M b e j o Q e ,  were shown. This cube mapping causes 3 
faults to be detected, but there are still 2 undetected faults 
remaining. So the same steps were used to select a second 
cube mapping, M a k j a b k ’ ,  This cube mapping causes 
both of the remaining 2 faults to be detected. So the set of 
these two cube mappings satisfies the 100% fault coverage 
requirement. A circuit that implements these mappings is 
shown in Fig. 6. One AND gate is needed to decode each 
source cube. A “test mode” input is added to each decoding 
AND gate so that it can be disabled during normal 
operation. The first cube mapping, Mbe; . ’de ,  is 
implemented by adding an AND gate to a,  and OR gates to 
d and e .  The second cube mapping, M a f e f + o b k ‘ ,  is 
implemented by adding an OR gate to a,  and AND gates to 
b and c. If a pattern is contained in both sources cubes, the 
the output of both decoding AND gates will go high. 
Then latter cube mappings must override previous cube 
mappings, so in this case the OR gate on a must be placed 
after the AND gate. Because the latter source cubes are 
always chosen so that they won’t contain pattems that 
detect new faults, there is no concern that having the 
second cube mapping override the first cube mapping will 
reduce fault coverage. 

An obvious concern about constructing a circuit 
structure by cascading gates is that the delay through the 
circuit will be a problem. Note that the circuit can be 
flattened and synthesized with logic synthesis tools to 
control delay. Also, the mapping logic can be bypassed 
during normal operation by using MUXes if necessary. 

I Pattem Generator 

C17 Circuit 

Figure 6 .  Gate Implementation of Cube Mapping Logic 
for C17 Example: Mh’+a’de and h!fa*et+abtcJ 

5. Experimental Results 
The method described in this paper was used to generate 

mapping logic to reduce the pseudo-random pattern test 
length for some of the ISCAS 85 and ISCAS 89 
benchmark circuits that require over a million test pattems. 

5.1 Comparison with LFSR Alone 
Table 1 compares using only an LFSR and using an 

LFSR with cube mapping logic. It was assumed that the 
flip-flops in the ISCAS 89 circuits were configured as part 
of the LFSR during testing so that the circuits are tested 
like combinational circuits. The number of stages in the 
LFSR for each circuit was equal to the number of primary 
inputs plus the number of flip-flops. Patterns were applied 
in parallel to the circuit, i.e., a pattern was applied each 
clock cycle. Only detectable faults were considered in fault 
coverage calculations. Table 1 shows results for using an 
LFSR alone to generate the pattems. The fault coverage 
after 1K patterns, 10K patterns, and 50K patterns is 
shown, and the test length required for 100% fault coverage 
is shown (all circuits required over a million pattems). 
The method described in this paper was used to generate 
mapping logic to provide 100% fault coverage for test 
lengths of IK, 10K, and 50K patterns using the same 
LFSR (same characteristic polynomial and same initial 
seed). The mapping logic was inserted between the LFSR 
and CUT. In Table 1, results are shown for the LFSR 
with the mapping logic. For each of the three test lengths, 
four things are shown: the number of cube mappings, the 
number of gates required to implement the mapping logic, 
the number of literals in the mapping logic (gate inputs), 
and the fault coverage achieved. When more than one cube 
mapping is required to achieve 100% fault coverage, results 
are shown for different numbers of cube mappings to show 
the possible tradeoffs between area and fault coverage. 
These results indicate that a small amount of mapping 
logic can dramatically reduce the random pattern test 
length. If the number of gates in the mapping logic is 
divided by the number of inputs in the CUT, then for all of 
the circuits, less than a gate per input is required to reduce 
the test length by 3 orders of magnitude or more. Note 
that the number of literals per gate (i.e., average gate 
fan-in) is very small as well. As the test length is 
increased, the amount of mapping logic required for 100% 
fault coverage goes down. It is very easy to trade off 
between test length, fault coverage, and hardware overhead. 

5.2 Comparison with Prior Methods 
There are three important factors in choosing a test 

pattern generator for BIST: test time, test quality, and 
hardware area. To evaluate the test pattern generators that 
are designed by the method in this paper, a comparison was 
made with other published results using three measures: 
test length (for test time), fault coverage (for test quality), 
and gate equivalents plus flip-flop count (for hardware 
area). Table 2 shows the comparison. The fault coverage 
is the same for all techniques: 100% of detectable single 
stuck-at faults. Parallel test pattern application (“a test per 
clock”) is assumed for all techniques. The first column 
gives the circuit names, and the next column shows the 
test length for pseudo-random pattern testing using an 
LFSR. Then results are given for 3 different methods plus 
the proposed method. The test length and hardware overhead 
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Table 1. Comparison of Testing with an LFSR Alone versus an LFSR plus Cube Mapping Logic 

Table 2. Comparison of Test Length and Required Hardware 

is shown for each method. In some cases, results are given 
for two different test lengths to show the tradeoff between 
test time and hardware overhead. The hardware overhead is 
the hardware required in addition to what is needed for 
pseudo-random pattern testing with an LFSR. Flip-flops 
and gates are counted separately. The gates are measured 
by gate equivalents (GE’s) using the same method 
suggested in [12] to reflect a static CMOS technology: 
(0.5)(n) GE’s for an n-input NAND or NOR, (2.5)(n-1) GE’s 
for an n-input XOR, and 1.5 GE’s for a 2-to-1 MUX 
(realized by transmission gates). The hardware overhead for 
each methlod is an estimate that is computed as follows: 
Multiule IVeight Sets The weight sets from [41 are used. 
The number of weight sets required is shown under the 
column WS. It is assumed that the best case occurs in which 
no stages have to be added to the LFSR to avoid correlation 
that increases test length. Thus, extra flip-flops are needed 
only to keep track of which weight set is being used. The 
logic required for each input to the CUT is conservatively 
estimated to be a total of 4 gates to generate the weighted 
signals and WS 2-to-1 MUXes to select the weighted 
signals based on which weight set is currently active. 

FF’s = Iog2(number of weight sets) 
GE’s = [4 + (1.5) (WS)] (number of inputs in CUT) 

3-Weinht Method: This method was proposed by 
Pomeranz and Reddy in 1181. 3-gate modules are used to 
fix the value of certain inputs while random patterns are 
being applied thus forming “expanded tests”. Extra flip- 
flops are needed to keep track of which expanded test is 
being usecl. The logic required by the 3-gate modules 
depends on the fan-in. One of the gates is a two-inpat 
gate, and tlhe average fan-in for the other two is given i~n 
[18] (results are not available for the ISCAS 89 circuits). 

FF’s = Iog24number of expanded tests) 
GE’s = (number of 3-gate modules) (1 + average fan-in) 

Fixed-Biased Method: This method was proposed by 
AlShaibi and Kime in [I]. It generates patterns using a 
weighted bit stream and fixing the value of some bits. A 
ROM is required to store configuration sequences that are 
periodically loaded during testing, but for sakeofcomparison, 
it is assumed that the configuration sequences are stored 
off-chip even though this would impact test time. A 
17-stage LFSR plus some weight logic is used to generate 
the weighted bit stream. Each fixed bit requires one extra 
flip-flop, four 2-to-1 MUXes, and a two-input NAND gate; 
the number of fixed bits for each circuit is given in [I]. 

FF’s E li‘ + (number offixed bits) 
GE’s = [ (84)(P .S) + 11 (number of fixed bits) 
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The proposed method requires no additional flip-flops, 
only combinational logic between the LFSR and the CUT. 
Assuming that flip-flops require 4 gate equivalents or 
more, the proposed method requires the least hardware 
overhead for a given test length compared with the other 
methods. In many cases, the proposed method reduces the 
test length significantly more than the other methods while 
using much less hardware. 

Wunderlich proposed a generator of unequiprobable 
random tests (GURT) in [22] that requires very little 
hardware overhead but is limited to only one weight set. 
Hartmann and Kemnitz proposed a method in [12] that 
uses a modified GURT structure and described test pattern 
generators for C2670 and C7552 which require very little 
hardware overhead. However, these methods are not 
general methods because they use only one weight set and 
therefore are limited in their ability to reduce test length. 
For some circuits these methods will not be able to reduce 
the test length enough. The methods shown in the table 
are general methods in the sense that they can be used to 
reduce the test length for any circuit by basically any 
amount. It should also be pointed out that the order of the 
flip-flops in a GURT structure is greatly constrained and 
therefore can add substantial routing overhead. The proposed 
method, on the other hand, places no constraints on flip-flop 
ordering and allows the use of normal BILBO register cells. 

6. Conclusions 
The method described in this paper requires much less 

overhead than other general methods to achieve the same 
fault coverage for a given pseudo-random pattern test 
length. In addition to minimizing hardware overhead, the 
proposed approach has the following advantages: 

1) Easy to insert into an existing design. 
2) Fully compatible with BILBO registers. 
3) Easy to trade off between test time, fault coverage, 

4) No additional sequential logic is required. 
5) Very simple control -- only one control line is 

Thus, the method described in this paper is very 
convenient to use in BIST designs to boost fault coverage. 
Mapping logic can be generated and seamlessly inserted 
into a BIST architecture. 

In this paper, the problem of improving fault coverage 
during pseudo-random pattern testing was thought of as 
transforming a pseudo-random pattern set into a better one. 
This led to the use of a broader class of transformations 
than had been previously considered. Other transformations 
besides cube mappings are currently being investigated. 
More complex transformations hold promise for even 
greater improvement. 

and hardware overhead. 

needed (to indicate test mode). 
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