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Abstract 
This paper proposes a new technique, called 

scan-mapping, for applying two-pattern tests in a standard 
scan design environment. Scan-mapping is performed by 
shifting the first pattern (VI) into the scan path and then 
using combinational mapping logic to generate the second 
pattern (V2) in the next clock cycle. The mapping logic is 
placed in the scan path and avoids the performance 
degradation of using more complex scan elements to apply 
two-pattem tests. A procedure is described for synthesizing 
the mapping logic required to apply a set of two-paiftern 
tests. Scan-mapping can be used in deteminisl5c testing to 
apply two-pattern tests that can‘t be applied using 
scan-shifing or functional justijication, and it can be used in 
built-in self-testing (BIST) to improve the fault coverage for 
delay faults. Experimental results indicate that, for 
deterministic testing, scan-mapping can reduce area overhead 
and test time compared with using complex scan elements; 
and for pseudo-random testing, scan-mapping can 
significantly improve the fault coverage using only a small 
amount of mapping logic. 

1. Introduction 
In high performance systems, many chip defects result in 

delay faults. Testing for delay faults requires two-pattern 
tests. The first pattern ( V I )  initializes the circuit to a certain 
state, and then the second pattern (IT2) causes a signal 
transition that provokes the fault and propagates its effect to 
the outputs which are sampled at lthe normal operating clock 
speed. In a standard scan design, it is not possible to apply 
an arbitrary two-pattern test by scan-shifin (one bit 
shifting of the scan chain). Only a fraction, 2g-1) , of‘ the 
possible pairs of patterns (Vl ,Vz)  can be applied (those in 
which V 2  can be generated by shifting V I ) .  This is a major 
obstacle in obtaining high coverage for delay faults. The 
scan chain can be re-ordered to improve the fault coverage 
[Mao 901, [Savir 91, 931, [Patil92], [Cheng 931, however, 
this can add substantial routing overhead and doesn’t always 
provide sufficient fault coverage. 

If shifting patterns in a standard scan path doesn’t prcwide 
high enough fault coverage, one solution is to use enhanced 
scan elements, such as those described in [Malaiya 841, 
[Glover 881, and [Dervisoglu 911 that have an extra holding 
latch so they can store 2 bits of state (i.e., both V I  and V2) .  
Any possible two-pattern test can be applied using an 
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enhanced scan path, however, this approach is rarely used 
because of the area and performance overhead [Varma 941. 

To avoid the oherhead required for using enhanced scan 
elements, functional justijication techniques have been 
proposed in I Cheng 931, [Underwood 941, and [Varma 941. 
The first pattern (VI> is shifted into the scan path, and then 
the second pattern ( V 2 )  is generated through the functional 
logic and loaded into the scan path with the system clock. 
The limitations of functional justification are that two-cycle 
based test generation is more time consuming and in many 
cases it is not possible to generate a test for a fault that 
could be tested using enhanced scan elements. If functional 
justification cannof provide sufficient fault coverage, then a 
partial enhanced scan approach can be used in which some of 
the scan elements are enhanced. Cheng et al. [Cheng 931 
describe an algorithm that attempts to minimize the number 
of scan elements that have to be enhanced. 

This paper proposes a new technique for generating 
two-pattern tests in a standard scan path called scan-mapping. 
As illustratedl in Fig. 1, it involves adding combinational 
mapping logic in the scan path. When the mapping logic is 
enabled, it m(ap the next pattern generated in the scan chain 
into a new paittern. In the example in Fig. 2, if the pattern 
1000 is in the scan chain, and a 1 is shifted in, then the 
next pattern normally would be 1100, however, if the 
mapping logic i s  enabled then it maps the next pattern into 
1101. The mapping logic can be designed so that it can be 
used to apply the required two-pattern tests that can’t be 
applied by scan-shifting or functional justification. 
Scan-mapping is performed by shifting the first pattern ( V I )  
into the scan path and then using the mapping logic to 

[ Circuit Under Test 1 
Figure 1 a Block Diagram for Scan-Mapping 

Figure 2 .  Example of Scan-Mapping 
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generate the second pattern (V,). Given a set of two-pattern 
tests that are to be applied using scan-mapping, a procedure 
is described in Sec. 2 for synthesizing the required mapping 
logic in a way that minimizes area overhead. 

Scan-mapping has application in both deterministic 
testing and built-in self-testing (BIST). In deterministic 
testing, scan-mapping can be used to apply two-pattern tests 
that can’t be applied using scan-shifting or functional 
justification. In BIST, scan-mapping can be used to 
improve the fault coverage for delay faults. A delay fault 
may not be detected during BIST because the test pattern 
generator is either unable to generate a two-pattern test for 
the fault [Furuya 911, or requires a very long test sequence 
to generate a two-pattern test for the fault [Savir 861. 
Scan-mapping can be used to map selected patterns in a 
given pseudo-random sequence into new patterns to produce 
two-pattern tests that detect faults that would have otherwise 
been missed, thereby improving the Fault coverage. A 
procedure is described in Sec. 4 for designing mapping logic 
to achieve a desired fault coverage for a given pseudo-random 
sequence. 

The paper is organized as follows: In Sec. 2, a 
procedure is described for designing mapping logic to apply 
a given set of two-pattern tests using scan-mapping. In 
Sec. 3,  the application of scan-mapping to deterministic 
testing is discussed and experimental results are given 
comparing scan-mapping with using enhanced scan 
elements. In Sec. 4, the application (of scan-mapping to 
BIST is discussed and experimental results are shown. 
Sec. 5 is a conclusion. 

2. Synthesizing Mapping Logic for 
Scan-Mapping 
Scan-mapping is performed by placing mapping logic in 

the scan path. Given a set of two-pattern tests that are to be 
applied using scan-mapping, this section describes a 
procedure for synthesizing mapping logic to perform the 
desired scan-mapping. The goal of the synthesis procedure 
is to minimize area overhead. 

2.1 Specifying a Mapping Functioin 
Using scan-mapping to apply a two-pattern test involves 

shifting the first pattern, V I ,  into the scan chain and then 
mapping the next state of the scan chain, denoted as 
NextState(Vl), into the second pattern, V,. Given a set of 
two-pattern tests that are to be applied by scan-mapping, a 
mapping function is specified by having the next state for 
each V I  pattern, NextState(V]), be mapped into the 
corresponding Vz pattern. The V I  patterns must be distinct, 
however the V z  patterns may contain unspecified inputs that 
are left as don’t cares (X’s ) .  Fig. 3 shows an example of a 
mapping function for applying the following set of t w e  
pattern tests: { (1110, OOII), (0100, XOOO), (1010, IXXO) ,  
(1111, l l 0 X )  1. The next states for the V i  patterns are 
I 1  I I ,  0010, 0101, and 01 1 I respectively, so these patterns 
are mapped into the V z  patterns 0011, X000, I X X O ,  and 
11 OX respectively. 

NSWI 1 v2 B-Matrix 

X l X 2 X 3 X 4  XlX2X3X4 XI f  Xzf x3/ xqf xi x2 x3 x4 

1 1 1 1 + 0 0 1 1  1 1 * 0  0 0 0 1 1 
o o 1 o + x o o o  1 1 
0 1 0 1 + 1 X X O  0 1 
0 1 1 1 + 1 1 0 x  0 0 

Figure 3 . Example of Rectangles in a B-Matrix 

x1 x2 x3 x4 
I 

Figure 4 . Bit-Fixing Logic Corresponding to the Larger of 
the Two Rectangles in the B-Matrix in Fig. 3 

For most faults, there are a number of possible 
initialization ( V I )  patterns, so there is some degree of 
freedom in selecting the V I  patterns that are matched with 
the V ,  patterns for each two-pattern test. Thus, there are 
many possible mapping functions depending on which V I  
patterns are selected. The amount of logic required to 
implement each possible mapping function varies greatly. 
So the problem of minimizing the mapping logic involves 
careful selection of the mapping function. 

2.2 Minimizing the Mapping Logic 
In order to map pattern X into pattern Y ,  each bit in 

pattern X that differs from the corresponding bit in pattern Y 
must be “fixed” so that it matches. For example, if the 
pattern 0010 is being mapped into the pattern 1000, then the 
first bit must be fixed to a ‘l’, and the third bit must be 
fixed to a ‘0’. An example of “bit-fixing’’ logic is shown in 
Fig. 4. There is some “bit-fixing function“ which is active 
for some set of patterns (in this case, 0010, 0101, and 
0111). When the bit-fixing function is active, it fixes some 
of the outputs to a specific logic value (in this case, 
xI = ‘l’, x3 = ‘O’, x4 = ‘0’). So in this example, the 
bit-fixing logic maps the original patterns 0010, 0101, and 
0111 into the patterns 1000, 1100, and 1100, respectively. 
The strategy for minimizing the mapping logic is to select 
the mapping function in a way that minimizes the amount 
of bit-fixing that is required. 

The problem of finding the minimum number of 
bit-fixing functions required to implement a mapping 
function can be formulated as one of finding the minimum 
rectangle cover in a binate matrix as described in 
[Touba 951. A binate matrix B ,  where Bij E { O , l } ,  is 
formed in whch each V ,  pattern is represented by a row. 
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There is a complemented and uncomplemented column 
corresponding to each input in the V 2  pattern. If an input in 
a V 2  pattern is a ‘O’, then its corresponding complemented 
and uncomplemented column entries are set equal to 1 and 0, 
respectively. If an input in a V ,  pattern is a ‘l’, then its 
corresponding complemented and uncomplemented column 
entries are set equal to 0 and 1, respectively. If an input in a 
V2 pattern is a don’t care (‘X’), then its corresponding 
complemented and uncomplemented column entries are both 
set equal to 1. A 1-entry in B is starred if it corresponds l:o a 
bit difference between the Nextstate( V I )  pattern and the V2 
pattern. A rectangle in B is a subset of rows R and a subset 
of columns C such that Be = 1 for all i E R and j E C. A 
rectangle in B corresponds to a common bit-fixing function 
between the outputs of the mapping logic. In the example 
in Fig. 3, there are two rectangles that are shown; the larger 
rectangle corresponds to a bit-fixing function that is active if 
any of the NextState(V2) patterns that correspond to the 
rows in the rectangle, i.e., 00Z0, 0101, and OZll, are 
applied to the mapping logic. When the bit-fixing function 
is active, it fixes the outputs that correspond to the columns 
in the rectangle to a specific logic value, i.e., x I  = ‘l’, 
x3 = ‘O’, x4 = ‘0’. Thus, the larger of the two rectangles 
shown in Fig. 3 corresponds to a transformation in which 
the NextState(VI) patterns 00Z0, 11 01, and 01 11 are mapped 
into the patterns 1000, 1100, and 1100, respectively, 
thereby generating the required two-pattern tests. Each 
rectangle in B corresponds to a bit-fixing function that forces 
the logic value at a set of outputs. In order for the mapping 
logic to transform all of the NextStute(Vl) patterns so that 
they match their respective V2 patterns, each bit difference 
(which corresponds to a starred entry in R )  must be contained 
in a rectangle that is implemented by the mapping logic. 
The mapping logic is designed by finding a set of rectangles 
that covers all of the starred entries in B and then 
constructing logic to implement the transformations 
corresponding to those rectangles. Minimizing the mapping 
logic corresponds to finding a minimum set off rectangles 
that covers all of the starred entries in B. 

The set of stared entries in B depends on which V I  
pattern is used for each V 2  pattern. Therefore, the problem 
of selecting a mapping function to minimize the amount of 
mapping logic corresponds to selecting the V I  patterns for 
the V 2  patterns in each two-pattern test in a way that 
minimizes the number of rectangles required to cover all the 
resulting stared entries. A heuristic procedure for solving 
this problem is described in detail in [Touba95]. In 
[Touba 951, the procedure is described for matching original 
patterns with test cubes, however, the same procedure car1 be 
used to match NextStute(Vl) patterns with V 2  patterns; to 
select the mapping function that requires the least amount of 
logic to implement. 

2.3 Implementing the Mapping Logic 
After the mapping function has been selected1 and the set 

of rectangles that covers all the stared entries in the B-matrix 
has been minimized, the mapping logic can be synthesized. 

NextState(W1) Paltterns: 11 11, 0010, 0101, 01 11 
Bit-Fixing Function 1 : 

On-Set =: 11 11 
Off-Set == 0010, 0101, 0111 
Synthesized Logic <Q1 ,Qz,QrQ4> = Q1 Q 

On-Set =: 0010,0101,0111 
Off-Set -I 11 11 
Synthesized Logic <Q1 ,Qz,Q ,Q4> = Q1‘ + Q’ 

Bit-Fixing Function 2: 

Figure 5 . Bit-Fixing Functions Corresponding to Set of 
Rectangles in Fig. 3 

-Adz- 

Figure 6 . Hardware Implementation of Mapping Logic for Set 
of Rectangles in Fig. 3. 

This is best explained with an example. In Fig. 5, the 
bit-fixing functions corresponding to the two rectangles in 
Fig. 3 are specifiedl. For each rectangle, the NextStute(V1) 
patterns corresponding to the rows in the rectangle are placed 
in the on-set since tlhe bix-fixing function must be active for 
those patterns. The other NextStute(Vl) patterns should not 
be transformed, so the bit-fixing function shouldn’t be active 
for those patterns, therefore they are added to the off-set. 
The on-set and off-set specify the bit-fixing function and can 
be passed to a logic synthesis tool to generate a logic 
implementation. 

Fig. 6 shows a hardware implementation for the 
mapping function specified in Fig. 3. The bit-fixing 
functions were derived as shown in Fig. 5 .  Each bit-fixing 
function forces the logic value at the outputs corresponding 
to the coluimns in its rectangle. When bit-fixing 
function 1, Ql Q3, is active, it forces Dl = ‘0’ and D2 = ‘0’. 
This is implemented by adding AND gates at the inputs of 
DI and D2. When bit-fixing function 2, Q, ’+ Q3’, is active, 
it forces D, = ‘1 ’, D3 = ‘0’ and D4 = ‘0’. This is 
implemented by adding an OR gate at the input of D1, and 
AND gates al. the inputs of D3 and D4. A “map enable” 
signal is ANDed in at the output of each bit-fixing function 
to control when scan-mapping is performed. When the 
“map enable” signal is not active, then normal scan-shifting 
is performed. 

3. Application of Scan-Mapping to 
Deterministic Testing 
In deterministic testing, scan-shifting and functional 

justification can be used to generate two-pattern tests for as 
many faults as possible. If the fault coverage is not 
sufficient, then there are two options. One is to use 
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enhanced scan elements, and the other is to use the proposed 
scan-mapping technique. To use scan-mapping, a set of 
two-pattern tests that will detect the remaining undetected 
faults is determined, and then the mapping logic required to 
apply those tests is synthesized using the procedure described 
in Sec. 2. Scan-mapping is performed by shifting in the 
first pattern ( V I ) ,  and then enabling the mapping logic on 
the next cycle to produce the second pattern (V,). 
Scan-mapping doesn't add any extra stages to the scan chain, 
and therefore requires less test time and test storage compared 
with using enhanced scan elements. 

Table 1 shows some experimental results for using scan- 
mapping to apply two-pattern tests for CMOS stuck-open 
faults in some of the ISCAS 89 [Brglez 891 benchmark 
circuits. Results are shown for this particular type of delay 
fault because of the availability of the SOPRANO program 
[Lee 901 for fault simulation and test pattern generation. 
Note, however, that scan-mapping can be used for applying 
any two-pattern test set regardless of what fault model or 
software is used to generate it. The flip-flops and primary 
inputs in each circuit were configured in a scan path using 
the default ordering. The first two columns give the circuit 
name and the number of elements in the scan chain. Then 
results are shown for applying two-pattern tests using a 
standard scan path. Fault simulation was performed using 
all of the 2"" possible two-pattern tesis that can be applied 
using a standard scan path. The fault coverage and number of 
undetected faults are shown. Next, results are shown for 
using an enhanced scan path. Since all possible two-pattern 
tests can be applied, the fault coverage is 100%. The 
overhead is an extra latch for each scan element. In order to 
compare the overhead with scan-mapping, the number of 
gate equivalents (GE's) are shown. The gate equivalents 
were computed by counting each n-input NAND or NOR as 
(0.5)(n) GE's and each latch as 2.5 GE's to reflect a static 
CMOS technology. In the last columns, results are shown 
for using scan-mapping. The mapping logic was designed 
to provide 100% fault coverage, and the number of gate 
equivalents required to implement the mapping logic is 
shown. The results indicate that a small amount of 
mapping logic can be used in a standard scan design to 
significantly increase the fault coverage for faults requiring 
two-pattern tests. 

Table 1 . Experimental Results for Using Scan-Mapping for 
Deterministic Testing of CMOS Stuck-Open Faults 

4. Application of Scan-Mapping to BIST 
One approach for BIST is to use a pseudo-random pattern 

generator, e.g., an LFSR, to shift a pseudo-random sequence 
into the scan chain. Faults requiring two-pattern tests may 
go undetected for two reasons: (1) it impossible to generate 
a two-pattern test for the fault due to the order of the scan 
path, or (2)  the probability of generating a two-pattern test 
for the fault is so low that an unreasonably long test length 
would be required to detect the fault. Using enhanced scan 
elements can solve the first problem by making it possible 
to generate all possible two-pattern tests, however, it doesn't 
help with the second problem of low fault detection 
probabilities. The proposed scan-mapping technique, 
however, can solve both problems. If an initialization pattern 
( V I )  for some fault occurs in the pseudo-random sequence, 
then the fault can be detected by using scan-mapping to 
generate the second pattern (V,) of the two-pattern test. 

Fault simulation can be done to determine which faults 
are detected by the pseudo-random sequence that is generated 
during BIST. For each fault that is not detected, an 
initialization pattern ( V I )  for the fault can be identified (if 
one exists) in the pseudo-random sequence. The mapping 
logic can then be synthesized using the procedure described 
in Sec. 2 so that scan-mapping can be used to produce the 
corresponding V 2  patterns to generate a two-pattern test for 
each undetected fault. This method is capable of detecting 
all faults provided that an initialization pattern ( V I )  for the 
fault is generated in the pseudo-random sequence. 

Table 2 shows some experimental results for using scan- 
mapping to increase the fault coverage for pseudo-random 
pattern testing of CMOS stuck-open faults in some of the 
ISCAS 89 benchmark circuits. The flip-flops and primary 
inputs in each circuit were configured into a scan chain, and 
an LFSR was used to shift a pseudo-random sequence of 
100,000 bits into the scan chain. The first two columns 
give the circuit name and the number of scan elements in the 
scan chain. Then the fault coverage obtained using a 
standard scan path is shown. Next the fault coverage using 
an enhanced scan path is shown. The overhead is an extra 
latch for each scan element which is shown in terms of gate 
equivalents. The last two columns show results for using 
scan-mapping. The mapping logic was designed to generate 
V2 patterns for all undetected faults for which a V I  pattern 
appears in the pseudo-random pattern sequence. The number 
of gate equivalents required to implement the mapping logic 
is shown. 

The results indicate that a small amount of mapping 
logic is capable of significantly increasing the fault coverage 
during BIST. Using an enhanced scan path improves the 
fault coverage compared with using a standard scan path 
because it eliminates the shift correlation between V I  and 
Va, however, it doesn't help for faults with low detection 
probabilities. Scan-mapping improves the fault coverage 
more than using an enhanced scan path because it only 
requires that a V I  pattern be generated for the fault thereby 
improving the detection probability. Scan-mapping was 
able to provide 100% coverage in all of the circuits except 
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for s420 and s641. In those two circuits, there were some 
faults for which no V ,  pattern was generated in the 
pseudo-random sequence. Techniques such as those in 
[Konemann 911, [Dufaza 911, [Hellebrand 951, ,and 
[Zacharia 953, can be used to reseed the LFSR to ensure ithat 
a V I  pattern for each fault is generated. 

Table 2 . Experimental Results for Using Scan-Mapping for 
Pseudo-Random Testing of CMOS Stuck-Open Faults 

5. Conclusions 
Scan-mapping can be used to obtain high coverage: of 

delay faults for either deterministic testing or BIST. For 
deterministic testing, scan-mapping enables 100% coverage 
of detectable delay faults while providing the: following 
advantages compared to using enhanced scan elements: less 
performance degradation, less area overhead, faster test time, 
and less test storage requirements. For BIST, scan-mapping 
improves the fault coverage of not only the delay faults that 
can‘t be detected due to shift correlation, but also the 
“random-pattern-resistant’’ delay faults. 
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