
Applying Two-Pattern Tests Using Scan-Mapping

Nur A. Touba and Edward J. McCluskey

Center for Reliable Computing
Stanford University, Stanford, CA. 94305

Abstract
This paper proposes a new technique, called

scan-mapping, for applying two-pattern tests in a standard
scan design environment. Scan-mapping is performed by
shifting the first pattern (VI) into the scan path and then
using combinational mapping logic to generate the second
pattern (V2) in the next clock cycle. The mapping logic is
placed in the scan path and avoids the performance
degradation of using more complex scan elements to apply
two-pattem tests. A procedure is described for synthesizing
the mapping logic required to apply a set of two-paiftern
tests. Scan-mapping can be used in deteminisl5c testing to
apply two-pattern tests that can‘t be applied using
scan-shifing or functional justijication, and it can be used in
built-in self-testing (BIST) to improve the fault coverage for
delay faults. Experimental results indicate that, for
deterministic testing, scan-mapping can reduce area overhead
and test time compared with using complex scan elements;
and for pseudo-random testing, scan-mapping can
significantly improve the fault coverage using only a small
amount of mapping logic.

1. Introduction
In high performance systems, many chip defects result in

delay faults. Testing for delay faults requires two-pattern
tests. The first pattern (V I) initializes the circuit to a certain
state, and then the second pattern (IT2) causes a signal
transition that provokes the fault and propagates its effect to
the outputs which are sampled at lthe normal operating clock
speed. In a standard scan design, it is not possible to apply
an arbitrary two-pattern test by scan-shifin (one bit
shifting of the scan chain). Only a fraction, 2g-1) , of‘ the
possible pairs of patterns (Vl ,Vz) can be applied (those in
which V 2 can be generated by shifting V I) . This is a major
obstacle in obtaining high coverage for delay faults. The
scan chain can be re-ordered to improve the fault coverage
[Mao 901, [Savir 91, 931, [Patil92], [Cheng 931, however,
this can add substantial routing overhead and doesn’t always
provide sufficient fault coverage.

If shifting patterns in a standard scan path doesn’t prcwide
high enough fault coverage, one solution is to use enhanced
scan elements, such as those described in [Malaiya 841,
[Glover 881, and [Dervisoglu 911 that have an extra holding
latch so they can store 2 bits of state (i.e., both V I and V2) .
Any possible two-pattern test can be applied using an

393
0-8186-7304-4/96 $05.00 0 1996 IEEE

enhanced scan path, however, this approach is rarely used
because of the area and performance overhead [Varma 941.

To avoid the oherhead required for using enhanced scan
elements, functional justijication techniques have been
proposed in I Cheng 931, [Underwood 941, and [Varma 941.
The first pattern (VI> is shifted into the scan path, and then
the second pattern (V 2) is generated through the functional
logic and loaded into the scan path with the system clock.
The limitations of functional justification are that two-cycle
based test generation is more time consuming and in many
cases it is not possible to generate a test for a fault that
could be tested using enhanced scan elements. If functional
justification cannof provide sufficient fault coverage, then a
partial enhanced scan approach can be used in which some of
the scan elements are enhanced. Cheng et al. [Cheng 931
describe an algorithm that attempts to minimize the number
of scan elements that have to be enhanced.

This paper proposes a new technique for generating
two-pattern tests in a standard scan path called scan-mapping.
As illustratedl in Fig. 1, it involves adding combinational
mapping logic in the scan path. When the mapping logic is
enabled, it m(ap the next pattern generated in the scan chain
into a new paittern. In the example in Fig. 2, if the pattern
1000 is in the scan chain, and a 1 is shifted in, then the
next pattern normally would be 1100, however, if the
mapping logic i s enabled then it maps the next pattern into
1101. The mapping logic can be designed so that it can be
used to apply the required two-pattern tests that can’t be
applied by scan-shifting or functional justification.
Scan-mapping is performed by shifting the first pattern (V I)
into the scan path and then using the mapping logic to

[Circuit Under Test 1
Figure 1 a Block Diagram for Scan-Mapping

Figure 2 . Example of Scan-Mapping

14” VLSI Test Symposium - 1996

generate the second pattern (V,). Given a set of two-pattern
tests that are to be applied using scan-mapping, a procedure
is described in Sec. 2 for synthesizing the required mapping
logic in a way that minimizes area overhead.

Scan-mapping has application in both deterministic
testing and built-in self-testing (BIST). In deterministic
testing, scan-mapping can be used to apply two-pattern tests
that can’t be applied using scan-shifting or functional
justification. In BIST, scan-mapping can be used to
improve the fault coverage for delay faults. A delay fault
may not be detected during BIST because the test pattern
generator is either unable to generate a two-pattern test for
the fault [Furuya 911, or requires a very long test sequence
to generate a two-pattern test for the fault [Savir 861.
Scan-mapping can be used to map selected patterns in a
given pseudo-random sequence into new patterns to produce
two-pattern tests that detect faults that would have otherwise
been missed, thereby improving the Fault coverage. A
procedure is described in Sec. 4 for designing mapping logic
to achieve a desired fault coverage for a given pseudo-random
sequence.

The paper is organized as follows: In Sec. 2, a
procedure is described for designing mapping logic to apply
a given set of two-pattern tests using scan-mapping. In
Sec. 3, the application of scan-mapping to deterministic
testing is discussed and experimental results are given
comparing scan-mapping with using enhanced scan
elements. In Sec. 4, the application (of scan-mapping to
BIST is discussed and experimental results are shown.
Sec. 5 is a conclusion.

2. Synthesizing Mapping Logic for
Scan-Mapping
Scan-mapping is performed by placing mapping logic in

the scan path. Given a set of two-pattern tests that are to be
applied using scan-mapping, this section describes a
procedure for synthesizing mapping logic to perform the
desired scan-mapping. The goal of the synthesis procedure
is to minimize area overhead.

2.1 Specifying a Mapping Functioin
Using scan-mapping to apply a two-pattern test involves

shifting the first pattern, V I , into the scan chain and then
mapping the next state of the scan chain, denoted as
NextState(Vl), into the second pattern, V,. Given a set of
two-pattern tests that are to be applied by scan-mapping, a
mapping function is specified by having the next state for
each V I pattern, NextState(V]), be mapped into the
corresponding Vz pattern. The V I patterns must be distinct,
however the V z patterns may contain unspecified inputs that
are left as don’t cares (X’s) . Fig. 3 shows an example of a
mapping function for applying the following set of t w e
pattern tests: { (1110, OOII), (0100, XOOO), (1010, IXXO) ,
(1111, l l 0 X) 1. The next states for the V i patterns are
I 1 I I , 0010, 0101, and 01 1 I respectively, so these patterns
are mapped into the V z patterns 0011, X000, I X X O , and
11 OX respectively.

NSWI 1 v2 B-Matrix

X l X 2 X 3 X 4 XlX2X3X4 XI f Xzf x3/ xqf xi x2 x3 x4

1 1 1 1 + 0 0 1 1 1 1 * 0 0 0 0 1 1
o o 1 o + x o o o 1 1
0 1 0 1 + 1 X X O 0 1
0 1 1 1 + 1 1 0 x 0 0

Figure 3 . Example of Rectangles in a B-Matrix

x1 x2 x3 x4
I

Figure 4 . Bit-Fixing Logic Corresponding to the Larger of
the Two Rectangles in the B-Matrix in Fig. 3

For most faults, there are a number of possible
initialization (V I) patterns, so there is some degree of
freedom in selecting the V I patterns that are matched with
the V , patterns for each two-pattern test. Thus, there are
many possible mapping functions depending on which V I
patterns are selected. The amount of logic required to
implement each possible mapping function varies greatly.
So the problem of minimizing the mapping logic involves
careful selection of the mapping function.

2.2 Minimizing the Mapping Logic
In order to map pattern X into pattern Y , each bit in

pattern X that differs from the corresponding bit in pattern Y
must be “fixed” so that it matches. For example, if the
pattern 0010 is being mapped into the pattern 1000, then the
first bit must be fixed to a ‘l’, and the third bit must be
fixed to a ‘0’. An example of “bit-fixing’’ logic is shown in
Fig. 4. There is some “bit-fixing function“ which is active
for some set of patterns (in this case, 0010, 0101, and
0111). When the bit-fixing function is active, it fixes some
of the outputs to a specific logic value (in this case,
xI = ‘l’, x3 = ‘O’, x4 = ‘0’). So in this example, the
bit-fixing logic maps the original patterns 0010, 0101, and
0111 into the patterns 1000, 1100, and 1100, respectively.
The strategy for minimizing the mapping logic is to select
the mapping function in a way that minimizes the amount
of bit-fixing that is required.

The problem of finding the minimum number of
bit-fixing functions required to implement a mapping
function can be formulated as one of finding the minimum
rectangle cover in a binate matrix as described in
[Touba 951. A binate matrix B , where Bij E { O , l } , is
formed in whch each V , pattern is represented by a row.

394

There is a complemented and uncomplemented column
corresponding to each input in the V 2 pattern. If an input in
a V 2 pattern is a ‘O’, then its corresponding complemented
and uncomplemented column entries are set equal to 1 and 0,
respectively. If an input in a V , pattern is a ‘l’, then its
corresponding complemented and uncomplemented column
entries are set equal to 0 and 1, respectively. If an input in a
V2 pattern is a don’t care (‘X’), then its corresponding
complemented and uncomplemented column entries are both
set equal to 1. A 1-entry in B is starred if it corresponds l:o a
bit difference between the Nextstate(V I) pattern and the V2
pattern. A rectangle in B is a subset of rows R and a subset
of columns C such that Be = 1 for all i E R and j E C. A
rectangle in B corresponds to a common bit-fixing function
between the outputs of the mapping logic. In the example
in Fig. 3, there are two rectangles that are shown; the larger
rectangle corresponds to a bit-fixing function that is active if
any of the NextState(V2) patterns that correspond to the
rows in the rectangle, i.e., 00Z0, 0101, and OZll, are
applied to the mapping logic. When the bit-fixing function
is active, it fixes the outputs that correspond to the columns
in the rectangle to a specific logic value, i.e., x I = ‘l’,
x3 = ‘O’, x4 = ‘0’. Thus, the larger of the two rectangles
shown in Fig. 3 corresponds to a transformation in which
the NextState(VI) patterns 00Z0, 11 01, and 01 11 are mapped
into the patterns 1000, 1100, and 1100, respectively,
thereby generating the required two-pattern tests. Each
rectangle in B corresponds to a bit-fixing function that forces
the logic value at a set of outputs. In order for the mapping
logic to transform all of the NextStute(Vl) patterns so that
they match their respective V2 patterns, each bit difference
(which corresponds to a starred entry in R) must be contained
in a rectangle that is implemented by the mapping logic.
The mapping logic is designed by finding a set of rectangles
that covers all of the starred entries in B and then
constructing logic to implement the transformations
corresponding to those rectangles. Minimizing the mapping
logic corresponds to finding a minimum set off rectangles
that covers all of the starred entries in B.

The set of stared entries in B depends on which V I
pattern is used for each V 2 pattern. Therefore, the problem
of selecting a mapping function to minimize the amount of
mapping logic corresponds to selecting the V I patterns for
the V 2 patterns in each two-pattern test in a way that
minimizes the number of rectangles required to cover all the
resulting stared entries. A heuristic procedure for solving
this problem is described in detail in [Touba95]. In
[Touba 951, the procedure is described for matching original
patterns with test cubes, however, the same procedure car1 be
used to match NextStute(Vl) patterns with V 2 patterns; to
select the mapping function that requires the least amount of
logic to implement.

2.3 Implementing the Mapping Logic
After the mapping function has been selected1 and the set

of rectangles that covers all the stared entries in the B-matrix
has been minimized, the mapping logic can be synthesized.

NextState(W1) Paltterns: 11 11, 0010, 0101, 01 11
Bit-Fixing Function 1 :

On-Set =: 11 11
Off-Set == 0010, 0101, 0111
Synthesized Logic <Q1 ,Qz,QrQ4> = Q1 Q

On-Set =: 0010,0101,0111
Off-Set -I 11 11
Synthesized Logic <Q1 ,Qz,Q ,Q4> = Q1‘ + Q’

Bit-Fixing Function 2:

Figure 5 . Bit-Fixing Functions Corresponding to Set of
Rectangles in Fig. 3

-Adz-

Figure 6 . Hardware Implementation of Mapping Logic for Set
of Rectangles in Fig. 3.

This is best explained with an example. In Fig. 5, the
bit-fixing functions corresponding to the two rectangles in
Fig. 3 are specifiedl. For each rectangle, the NextStute(V1)
patterns corresponding to the rows in the rectangle are placed
in the on-set since tlhe bix-fixing function must be active for
those patterns. The other NextStute(Vl) patterns should not
be transformed, so the bit-fixing function shouldn’t be active
for those patterns, therefore they are added to the off-set.
The on-set and off-set specify the bit-fixing function and can
be passed to a logic synthesis tool to generate a logic
implementation.

Fig. 6 shows a hardware implementation for the
mapping function specified in Fig. 3. The bit-fixing
functions were derived as shown in Fig. 5 . Each bit-fixing
function forces the logic value at the outputs corresponding
to the coluimns in its rectangle. When bit-fixing
function 1, Ql Q3, is active, it forces Dl = ‘0’ and D2 = ‘0’.
This is implemented by adding AND gates at the inputs of
DI and D2. When bit-fixing function 2, Q, ’+ Q3’, is active,
it forces D, = ‘1 ’, D3 = ‘0’ and D4 = ‘0’. This is
implemented by adding an OR gate at the input of D1, and
AND gates al. the inputs of D3 and D4. A “map enable”
signal is ANDed in at the output of each bit-fixing function
to control when scan-mapping is performed. When the
“map enable” signal is not active, then normal scan-shifting
is performed.

3. Application of Scan-Mapping to
Deterministic Testing
In deterministic testing, scan-shifting and functional

justification can be used to generate two-pattern tests for as
many faults as possible. If the fault coverage is not
sufficient, then there are two options. One is to use

395

enhanced scan elements, and the other is to use the proposed
scan-mapping technique. To use scan-mapping, a set of
two-pattern tests that will detect the remaining undetected
faults is determined, and then the mapping logic required to
apply those tests is synthesized using the procedure described
in Sec. 2. Scan-mapping is performed by shifting in the
first pattern (V I) , and then enabling the mapping logic on
the next cycle to produce the second pattern (V,).
Scan-mapping doesn't add any extra stages to the scan chain,
and therefore requires less test time and test storage compared
with using enhanced scan elements.

Table 1 shows some experimental results for using scan-
mapping to apply two-pattern tests for CMOS stuck-open
faults in some of the ISCAS 89 [Brglez 891 benchmark
circuits. Results are shown for this particular type of delay
fault because of the availability of the SOPRANO program
[Lee 901 for fault simulation and test pattern generation.
Note, however, that scan-mapping can be used for applying
any two-pattern test set regardless of what fault model or
software is used to generate it. The flip-flops and primary
inputs in each circuit were configured in a scan path using
the default ordering. The first two columns give the circuit
name and the number of elements in the scan chain. Then
results are shown for applying two-pattern tests using a
standard scan path. Fault simulation was performed using
all of the 2"" possible two-pattern tesis that can be applied
using a standard scan path. The fault coverage and number of
undetected faults are shown. Next, results are shown for
using an enhanced scan path. Since all possible two-pattern
tests can be applied, the fault coverage is 100%. The
overhead is an extra latch for each scan element. In order to
compare the overhead with scan-mapping, the number of
gate equivalents (GE's) are shown. The gate equivalents
were computed by counting each n-input NAND or NOR as
(0.5)(n) GE's and each latch as 2.5 GE's to reflect a static
CMOS technology. In the last columns, results are shown
for using scan-mapping. The mapping logic was designed
to provide 100% fault coverage, and the number of gate
equivalents required to implement the mapping logic is
shown. The results indicate that a small amount of
mapping logic can be used in a standard scan design to
significantly increase the fault coverage for faults requiring
two-pattern tests.

Table 1 . Experimental Results for Using Scan-Mapping for
Deterministic Testing of CMOS Stuck-Open Faults

4. Application of Scan-Mapping to BIST
One approach for BIST is to use a pseudo-random pattern

generator, e.g., an LFSR, to shift a pseudo-random sequence
into the scan chain. Faults requiring two-pattern tests may
go undetected for two reasons: (1) it impossible to generate
a two-pattern test for the fault due to the order of the scan
path, or (2) the probability of generating a two-pattern test
for the fault is so low that an unreasonably long test length
would be required to detect the fault. Using enhanced scan
elements can solve the first problem by making it possible
to generate all possible two-pattern tests, however, it doesn't
help with the second problem of low fault detection
probabilities. The proposed scan-mapping technique,
however, can solve both problems. If an initialization pattern
(V I) for some fault occurs in the pseudo-random sequence,
then the fault can be detected by using scan-mapping to
generate the second pattern (V,) of the two-pattern test.

Fault simulation can be done to determine which faults
are detected by the pseudo-random sequence that is generated
during BIST. For each fault that is not detected, an
initialization pattern (V I) for the fault can be identified (if
one exists) in the pseudo-random sequence. The mapping
logic can then be synthesized using the procedure described
in Sec. 2 so that scan-mapping can be used to produce the
corresponding V 2 patterns to generate a two-pattern test for
each undetected fault. This method is capable of detecting
all faults provided that an initialization pattern (V I) for the
fault is generated in the pseudo-random sequence.

Table 2 shows some experimental results for using scan-
mapping to increase the fault coverage for pseudo-random
pattern testing of CMOS stuck-open faults in some of the
ISCAS 89 benchmark circuits. The flip-flops and primary
inputs in each circuit were configured into a scan chain, and
an LFSR was used to shift a pseudo-random sequence of
100,000 bits into the scan chain. The first two columns
give the circuit name and the number of scan elements in the
scan chain. Then the fault coverage obtained using a
standard scan path is shown. Next the fault coverage using
an enhanced scan path is shown. The overhead is an extra
latch for each scan element which is shown in terms of gate
equivalents. The last two columns show results for using
scan-mapping. The mapping logic was designed to generate
V2 patterns for all undetected faults for which a V I pattern
appears in the pseudo-random pattern sequence. The number
of gate equivalents required to implement the mapping logic
is shown.

The results indicate that a small amount of mapping
logic is capable of significantly increasing the fault coverage
during BIST. Using an enhanced scan path improves the
fault coverage compared with using a standard scan path
because it eliminates the shift correlation between V I and
Va, however, it doesn't help for faults with low detection
probabilities. Scan-mapping improves the fault coverage
more than using an enhanced scan path because it only
requires that a V I pattern be generated for the fault thereby
improving the detection probability. Scan-mapping was
able to provide 100% coverage in all of the circuits except

396

for s420 and s641. In those two circuits, there were some
faults for which no V , pattern was generated in the
pseudo-random sequence. Techniques such as those in
[Konemann 911, [Dufaza 911, [Hellebrand 951, ,and
[Zacharia 953, can be used to reseed the LFSR to ensure ithat
a V I pattern for each fault is generated.

Table 2 . Experimental Results for Using Scan-Mapping for
Pseudo-Random Testing of CMOS Stuck-Open Faults

5. Conclusions
Scan-mapping can be used to obtain high coverage: of

delay faults for either deterministic testing or BIST. For
deterministic testing, scan-mapping enables 100% coverage
of detectable delay faults while providing the: following
advantages compared to using enhanced scan elements: less
performance degradation, less area overhead, faster test time,
and less test storage requirements. For BIST, scan-mapping
improves the fault coverage of not only the delay faults that
can‘t be detected due to shift correlation, but also the
“random-pattern-resistant’’ delay faults.

Acknowledgments
The authors would like to thank Piero Franco for his

helpful comments. This work was supported in part by the
Ballistic Missile Defense Organization, Innovative Science
and Technology (BMDOLST) Directorate and administered
through the Department of the Navy, Office of Naval
Research under Grant No. N00014-92-5-1782, by the
National Science Foundation under Grant No. MIP-
9107760, and by the Advanced Research Projects Agency
under prime contract No. DABT63-94-C-0045.

References
[Brglez 851 Brglez, F., and H. Fujiwara, “A Neutral Netlist of 10

Combinational Benchmark Circuits and a Target Translator
in Fortan,” Proc. of International Symposium on Circuits
and Systems, pp. 663-698, 1985.

[Brglez 891 Brglez, F., D. Bryan, and K. Kozminski,
“Combinational Profiles of Sequential Benchmark Circuits,”
Proc. of Int. Symp. on Cir. and Sys., pp. 1929-1934, 1989.

[Cheng 931 Cheng, K.-T., S . Devadas, and K. Keutzer, “Dday-
Fault Test Generation and Synthesis for Testability Under a
Standard Scan Design Methodology,” IEEE Trrans. on CAD,
Vol. 12, No. 8, pp. 1217-1231, Aug. 1993.

[Dervisoglu 911 Dervisoglu, B.I., and G.E. Strong, “Design for
Testability: Using ScanPath Techniques for Path-Delay Test
and Measurement,” Proc. of International Test Conference,

[Dufaza 911 Dufaza, C., and G. Cambon, “LFSR based
Deterministic ancl Pseudo-Random Test Pattern Generator
Structures,” Proc. of European Test Con$, pp. 27-34, 1991.

[Furuya 911 Furuya, E L , and E.J. McCluskey, “Two-Pattem Test
Capabilities of Autonomous TPG Circuits,” Proc. of
International Test Conference, pp. 704-71 1, 1991.

[Glover 881 Glover, C.T., and M.R. Mercer, “A Method of Delay
Fault Test Generation,” Proc. of the 25th Design Automation
Conference, pp. 90-95, 1988.

[Hellebrand 951 Hdlebrand, S., J. Rajski, S. Tamick, S .
Venkataraman, and B. Courtois, “Generation of Vector
Pattems Through Reseeding of Multiple-Polynomial Linear
Feedback Shift Registers,” IEEE Transactions on Computers,
Vol. 44, No. 2, pp. 223-233, Feb. 1995.

[Konemann 911 Konemann, B., “LFSR-Coded Test Patterns for
Scan Designs,”P,roc. ofEurp. Test Con$, pp.237-242,1991.

[Lee 901 Lee, H.K., and D.S. Ha, “SOPRANO: An Efficient
Automatic ‘Test Fattem Generator for Stuck-Open Faults in
CMOS Combinational Circuits,” Proc. of the 27th Design
Automation Conjerence, pp. 90-95, 1990.

[Mao 901 Mao, W., and M. Ciletti, “Arrangement of Latches in
Scan-Path Design to Improve Delay Fault Coverage,” Proc.
of International Test Conference, pp. 387-393, 1990.

[Malaiya 841 Malaiya, Y.K., and R. Narayanaswamy, “Modeling
and Testing for Timing Faults in Synchronous Sequential
Circuits,” IEEE Dlesign and Test, pp. 62-74, Nov. 1984.

[Patil 921 Patil, S., and J. Savir, “Skewed-Load Transition Test:
Part 11, Coverage,” Proc. of International Test Conference,

[Savir 861 Savir, J., and W.H. McAnney, “Random Pattern
Testability of Delay Faults,” Proc. of International Test
Conference, pp. 263-273, 1986.

[Savir 911 Savir, J . , and R. Berry, “At-Speed Test is Not
Necessarily an AC Test,” Proc. of International Test
Conference, pp. 722-728, 1991.

[Savir 931 Savir, J., and S. Patil, “Scan-Based Transition Test,”
IEEE Transactions on Computer-Aided Design, Vol. 12,

[Touba 951 Touba, N.A., and E.J. McCluskey, “Synthesis of
Mapping L.ogic for Generating Transformed Pseudo-Random
Pattems for IBIST,” Proc. of International Test Conference,

[Underwood 941 LJndlerwood, B., W.-0. Law, S. Kang, and H.
Konuk, “Fastpath: A Path-Delay Test Generator for Standard
Scan Designns,”Proc. of Int. Test Con$, pp. 154-163, 1994.

[Varma 941 Varma, P., “On Path Delay Testing in a Standard
Scan Environment,” Proc. of International Test Conference,

[Zacharia 95.1 Zacharia, N., J. Rajski, and J. Tyszer,
“Decompression of Test Data Using Variable-Length Seed
LFSRs,” Puoc. of VLSI Test Symp., pp. 426-433, 1995.

pp. 365-3’14, 19191.

pp. 714-722, 1992.

NO. 8, pp. 1232-1241, Aug. 1993.

pp. 674-682, 1995.

pp. 164-15‘3, 1994.

397

