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Abstract 
This paper presents an innovative method for inserting 

test points in the circuit-under-test to obtain complete fault 
coverage for a specified set of test patterns. Rather than 
using probabilistic techniques for test point placement, a 
path tracing procedure is used to place both control and 
observation points. Rather than adding extra scan elements 
to drive the control points, a few of the existing primary 
inputs to the circuit are ANDed together to form signals that 
drive the control points. By selecting which patterns the 
control point is activated for, the effectiveness of each 
control point is maximized. A comparison is made with the 
best previously published results for other test point 
insertion methods, and it is shown that the proposed method 
requires fewer test points and less overhead to achieve the 
same or better fault coverage. 

1. Introduction 
Pseudo-random pattern testing is an atttactive technique 

for built-in self-test (BIST) because very little hardware is 
required for test pattern generation. A linear feedback shift 
register (LFSR) or cellular automaton (CA) can be used to 
generate the pseudo-random patterns. These circuits can also 
be used as output response analyzers thereby serving two 
purposes during BIST. 

Unfortunately, the pseudo-random patterns that are 
generated during BIST do not always provide high enough 
fault coverage for a reasonable test length. There are two 
ways to solve this problem: modify the pattern generator, 
or modify the circuit-under-test. A pseudo-random pattern 
generator can be modified by adding logic to weight the 
patterns [Schnurmann 751, [Wunderlich 871, [Pomeranz 921; 
map the patterns [Touba 95a,95b], [Chatterjee 95aI; or 
reseed the generator [Venkataraman 931, [Hellebrand 951, 
[Zacharia 951. The circuit-under-test can be modified by 
inserting test points [Eichelberger 831; or by redesigning it 
[Touba 941, [Chiang 941, [Chatterjee 95bJ. Each of these 
techniques has its advantages, and the one that is most 
suitable depends on the particular application. This paper 
presents a new method for inserting test points in 
combinational circuits that significantly reduces the number 
of test points required for a particular fault coverage 
compared with previous techniques. 

Test point insertion involves adding control and 
observation points to the circuit-under-test in a way that the 
system function remains the same, but the testability is 
improved. An observation point is an additional primary 
output that is inserted in the circuit to increase the 

observability of faults in the circuit. In the example in 
Fig. 1, an observation point is inserted at the output of 
gate GI such that faults are observable regardless of the 
logic value at node y .  A control point is inserted in the 
circuit such that when it is activated, it fixes the logic value 
at a particular node to increase the controllability of some 
faults in the circuit. A control point can also affect the 
observability of some faults in the circuit because it can 
change the propagation paths for the faults. In the example 
in Fig. 2, a control point is inserted to fix the logic value at 
the output of gate G1 to a ‘1’ when the control point is 
activated (this is called a control-l point). This is 
accomplished by placing an OR gate at the output of 
gate G1. In the example in Fig. 3, a control point is 
inserted to fix the logic value at the output of gate GI to a 
‘0’ when the control point is activated (this is called a 
control-Opoint). This is accomplished by placing an AND 
gate at the output of gate GI. During system operation, the 
control points are not activated and thus don‘t affect the 
system function. However, control points do add an extra 
level of logic to some paths in the circuit. If a control point 
is placed on a critical timing path, it can increase the delay 
through the circuit. 

Since test points add both area and performance overhead, 
it is important to try to minimize the number of test points 
that are inserted to achieve the desired fault coverage. 
Optimal test point placement for circuits with reconvergent 
fan-out has been shown to be NP-complete 
[Krishnamurthy 871. Briers and Totton [Briers 861 were the 
first to propose a systematic method for test point placement 
to increase pseudo-random pattern testability. They use 
simulation statistics to identify correlation between signals, 
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Figure 2 .  Example of Control-1 Point 

Figure 3 . Example of Control-0 Point 
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and then insert test points to break the correlation. The 
number of test points inserted by this method is 1,arge. 
Iyengar and Brand [Iyengar 891 proposed an improved 
method that uses fault simulation to identify gates that 
block fault propagation, and then insert test points to adlow 
propagation. Savaria et al., in [Savaria91] and 
[Youssef 931, use the COP testability measures [Brglez 841 
to guide the placement of test points. They identify selctors 
of hard-to-detect faults and insert test points at the origins of 
the sectors. Seiss et al., in [Seiss 911, form a cost function 
based on the COP testability measures and then compute, in 
linear time, the gradient of the function with respect to each 
possible test point. The gradients are used to approximate 
the global testability impact for inserting a particular test 
point. Based on these approximations, a test point is 
inserted and the COP testability measures are recomputed. 
This process iterates until the testability is satisfactory. 
Cheng and Lin, in [Cheng 951, enhance the procedure in 
[Seiss 911 to consider the performance impact of inserting a 
particular test point. They showed that by avoiding control 
point insertion on critical timing paths, high fault coverage 
can be achieved with zero performance degradation. In 
[Touba 941, a method is proposed for inserting test points 
during logic synthesis. The logic is factored in a way that 
minimizes the number of test poiints that are required. 

This paper presents a new method for test point 
insertion. Fault simulation is used to identify faults that are 
not detected by a specified set of test patterns. For each 
undetected fault, a path tracing procedure is used to identify 
the set of test points that will enable the fault to be detected, 
i.e., the set of test point solutions for the fault. Given the 
set of test points solutions for each undetected fault, a 
minimal set of test points to achieve the desired fault 
coverage is selected using a set covering procedure. A new 
technique is used for driving the control points. Rather than 
adding extra scan elements to drive the control points, a few 
of the existing primary inputs to the circuit are ANDed 
together to form signals that drive the control points. This 
logic selects which patterns the control points are activated 
for. A method is described for synthesizing this logic to 
maximize the effectiveness of each control point. 

Unlike other methods for test point placement that are 
based on signal probabilities or detection probabilities for 
pseudo-random patterns, the metlhod presented in this paper 
is not based on randomness properties of the test patterns 
and therefore can be used for any set of test patterns. The set 
of test patterns can be pseudo-random, quasi-random ((e.g., 
generated by a multiple input signature register), or not be 
random at all. Other test point placement methods that 
assume pseudo-random patterns may not be effective for 
BIST techniques that use multiple input signature registers 
to apply patterns to the circuit-under-test. 

2. Overview of Test Point Insertion 
Procedure 
The problem of interest is given a set of test patterns 

that will be applied to the circuit-under-test, insert as few 
test points as necessary to enable all of the faults in the 

circuit to be detected. An overview of the test point 
insertion procedure is as follows: 
1. Perform fault simulation to identify undetected faults. 

Fault simulation is performed for the set of test patterns 
applied to the circuit-under-test to determine which faults are 
already detected and which require test points in order to be 
detected. 
2. Computedhe set of test points that enable each Undetected 

fault to be: detected. 
For each of the faults that require test points, a set of test 

point solutions is computed such that if any test point in 
the set is inserted into the circuit, the fault will be detected. 
This is described in Sections 3 and 4. 
3. Select a minimal set of test points that provides complete 

~- fault cover- 
Given the set of test point solutions for each fault, a set 

covering procedure is used to find a minimal set of test 
points that enables all of the faults to be detected. This is 
described in Sec. 5 .  
4. Synthesizg logic to activate the control points. 

points for certain patterns. This is described in Sec. 6. 
Pattern decoding logic is synthesized to activate control 

3. Computing Test Point Solutions 
The faults that go undetectcd by the set of test pattern:; 

applied to the circuit-under-test are the faults that require test 
points in order to be detected. This section describes ii 

method for computing the set of test points solutions for a 
given undetected fault for a specified set of test patterns. 

Definition 1 : Test pointp is said to be a solution foir 
faultf if inserting test point p into the circuit enables fault jf 
to be detected for the specified set of test patterns. 

In order for a fault to be detected, it must be both 
provoked and propagated to a primary output. A stuck-at I. 
(stuck-at 0) fault is provoked if the logic value at the fault 
site is ‘0’ (‘I ’). A fault is propagated to a primary output if 
a sensitized path exists from the fault site to a primary 
output. An observation point can only help with 
propagating a fault, while a control point can help with both 
provoking and propagating a fault. 

Definition 2: A sensitizedpath exists from node x to 
node y in a circuit if complementing the logic value at node 
x complements the logic value at node y. 

Note that a sensitized path exists from an input of gate E: 
to the output of the gate g if all of the other inputs to gate g 
are at the non-controlling logic value (’0‘ for OR and NOR 
gates, and ‘I ’ for AND and NAND gate). 

The method presented here for computing test point 
solutions involves identifying sensitized paths to and from 
fault sites in ihe circuit. Fault-free simulation is performed 
for a pattern, and then path tracing from the fault sites is 
used to identify the sensitized paths. A fast approximate 
method for path tracing is given in [Abramovici 841. 
Techniques for faster operation are suggested in 
[Ramakrishnan 901. An exact method for path tracing is 
given in [Menon 911. These three papers describe path 
tracing from the primary outputs (called critical path 
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tracing), however the techniques can be easily generalized for 
path tracing from a fault site. 

3.1 Computing Observation Point Solutions 
Some patterns may provoke a fault but not propagate it 

to a primary output. If a fault is provoked by a pattern, then 
an observation point that is inserted at a node that the fault 
can propagate to will enable the fault to be detected and 
therefore is a solution for the fault. To find the set of 
observation point solutions for a fault that is provoked by a 
particular pattern, path tracing can be used to identify the 
nodes that the fault can propagate to. An example is shown 
in Fig. 4. Fault-free simulation is performed for a pattern 
that provokes the fault, and forward path tracing from the 
fault site is used to identify the propagation path for the 
fault. The fault propagates through gates G3 and G5, but is 
blocked at gates G6 and G8 and therefore doesn't propagate to 
a primary output. Inserting an observation point at node a 
or node b would enable the fault to be detected, so those two 
nodes form the set of observation point solutions for the fault 
for that pattern. The union of the set of observation point 
solutions for each pattern that provokes a particular fault 
gives the full set of observation point solutions for the fault. 

1 

Figure 4 . Example: Observation Point at Nodea orb is a 
Solution 

3.2 Computing Control Point Solutions 
Some patterns may propagate a fault to a primary output 

but not provoke the fault. In that case, a control point is a 
solution for the fault if it complements the logic value at 
the fault site thereby provoking the fault. For a fault that is 
propagated to a primary output by a particular pattern, path 
tracing can be used to find the nodes that have a sensitized 
path to the fault site for that pattern. Control points that 
complement the logic value at a node that has a sensitized 
path to the fault site are solutions for the fault provided that 
they don't block fault propagation to a primary output. An 
example is shown in Fig. 5. Fault-free simulation is 
performed for a pattern that propagates the fault to a primary 
output, and backward path tracing from the fault site is used 
to identify sensitized paths. Both inputs of gate G6 have a 
sensitized path to the output of gate G6. Neither of the 
inputs of gate G4 have a sensitized path to the output of 
gate G4. One of the inputs of gate G3 has a sensitized path 
to the output of gate G3. Inserting a control-1 point at node 
a, c, d, or e would complement the value at the fault site 
thereby provoking the fault. However, forward path tracing 
from node e identifies that it has a sensitized path to gate 
G9, so inserting a control-1 point at node e would block the 
fault from propagating to a primary output. Therefore, only 
control- 1 points at nodes a, c, and d are solutions. 

Figure 5 . Example': Control-1 Point at Node a, c, ord is a 
Solution, but Node e is Not a Solution Because It Blocks 

Propagation to a Primary Output 

Some patterns may provoke a fault but a single gate may 
block propagation to a primary output. In that case, a 
control point can enable propagation to a primary output if 
it complements the logic value at the controlling input of 
the blocking gate. For a provoked fault for which fault 
propagation is blocked by a single gate, path tracing can be 
used to find the nodes that have a sensitized path to the 
controlling input of the blocking gate. Control points that 
complement the logic value at a node that has a sensitized 
path to the controlling input of a blocking gate are solutions 
for the fault provided that they still provoke the fault. An 
example is shown in Fig. 6. Fault-free simulation is 
performed for a pattern that provokes the fault, and backward 
path tracing from the controlling input of the blocking gate 
is iised identify sensitized paths. Both of the inputs of gate 
G7 are sensitized to the output of G7. Both of the inputs to 
G4 are sensitized to the output of G4. The output of G4 
fans out to gate G6, and forward path tracing identifies that 
it has a sensitized path to the fault site. Inserting control 
points at the nodes before the fanout would cause the fault to 
not be provoked, and therefore they are not solutions. 
Control-0 points at nodes f, g, and h form the solution set 
for the fault for that pattern. The union of the set of control 
point solutions for a particular fault for each pattern gives 
the full set of control point solutions for the fault. 
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Figure 6 . Example: Control-0 Point at Nodef, g , or h are 
Solutions, but Nodes e, i ,  a n d j  are Not Solutions Because They 

Don't Provoke the Fault 

4. Faults Requiring Multiple Test Points 
Some faults may not have single test point solutions. If 

none of the patterns provoke or propagate the fault, then 
multiple test points are required. The existence of a single 
test point solution for a fault can easily be checked when fault 
simulation is performed to identify the undetected faults. 

In Sec. 3, a method was described for computing a set of 
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single test point solutions for a fault such that if any test 
point in the set is inserted in the circuit, the fault will be 
detected. This method can be extended to handle faults that 
require multiple test points. If a fault requires n test points, 
then n sets of single test points cain be computed such thiat if 
one test point from each set is inserted in the circuit, the 
fault will be detected. For each pattern, path tracing can be 
used to find a set of test points that provoke the fault and the 
set of test points that propagate the fault to a primary output 
as was described in Sec. 3. In the example in Fig. 7, the 
sensitized paths that provoke the fault and the paths where 
the fault can propagate are identifiled using path tracing. The 
control points that provoke the fault form one set (control-0 
at node m and control-0 at node n) ,  and the observation 
points that enable the fault to propagate to a primary output 
form another set (observation point at node a and node b) .  If 
a test point from each set is inserted in the circuit, then the 
fault will be detected. For faults with single test point 
solutions, the full set of solutions was formed by taking the 
union of the sets of single test points solutions for each 
pattern, however this cannot be done for faults with multiple 
test point solutions. The reason is that if the union of the 
sets is taken, then a test point from one set will provoke the 
fault for some pattern, but the test point from the other set 
may propagate the fault to a primary output for a different 
pattern, thus there is no guarantee that the fault will be 
detected. So instead of computing the full set of multiple 
test point solutions, the largest set of multiple test point 
solutions for a single pattern is used. 

&L . _ _ _ _ _  

m n e G7 9 
- 

Figure 7 . Example: A Control-0 Point at Nodem orn 
Provokes the Fault, and an Observation Point at Nodea 01 b 

Propagates the Fault to a Primary Output. 

5. Selecting a Set of Test Points to Insert 
Once the set of test point sollutions for each undetected 

fault has been computed, a set covering procedure can be 
used to select a minimal set of test points that will enable 
all of the faults to be detected. A matrix ILS constructed in 
which each column corresponds to a test point solution. 
For each undetected fault, a row is added to the matrix in 
which an ‘X’ is placed in each column that corresponds to a 
test point solution for the fault. If the fault requires a 
multiple test point solution, then multiple rows are added. 
An example is shown in Fig. 8. The first irow corresponds 
tofault 1 for which the set of single test point solutions is 
an observation point at node w ,  a control-1 point at node U, 
and a control-0 point at nodev. Fault 2 requires a multiple 
test point solution, so both the second and the third row 
correspond to it. The set of control points that provokes 
fault  2 is a control-1 point at node U, a control-0 point at 

nodev, and a control-1 point at nodey. The set of 
observation points that propagate fault  2 to a primary 
output is an observation point at node v and an observation, 
point at node x. 

0 - v  o w  0-x c1-U CO-v CO-w c1-v c1-z 
Fault 1 
Fault 2 

Fault 3 
Fault 4 
Fault 5 

Figure 8 Example: Matrix of Test Point Solutions for 
Each Fault 

A set covt:ring procedure is used to select a minimal set 
of columns that has at least one ‘X’ in each row (set 
covering is NP-complete, but good heuristics exist 
[Christofedes 751). One ‘X’ in each row ensures that all of’ 
the faults will be detected. In the example in Fig. 8, one 
such solution is the third column (observation point at node 
x )  and the fourth column (control-1 point at node U). The 
test points corresponding to the selected columns are inserted 
into the circuit. Note that for the example in Fig. 8, if the 
test points were inserted one at a time based on maximizing 
the fault coverage that results after each test point was 
inserted (as is the case in other test point insertion methods), 
then the first test point to be inserted would be a control-0 
point at node 11 because that would detect fault 1, fault 3, and 
fault 4. However, in order to detect fault 2 and fault 5, at 
least two more test points would have to be inserted. Thus, 
for this example, the greedy method results in 3 test points 
compared with only 2 if the set covering procedure is used. 

6. Control Point Activation 
Once the test points have been inserted, the remaining 

task is to destgn the logic that drives the control points. A 
control point must be activated for certain patterns in order 
to detect the faults for which it was inserted. However, a 
control point cannot be activated for all patterns because that 
would reduce the fault coverage. Previous test point 
insertion techniques add extra scan elements to drive the 
control points. This is illustrated in Fig. 9 where two extra 
scan elements are added to drive the two control points. The 
pseudo-random pattern generator is used to apply values to 
the extra scan elements. Thus a control point is randomly 
activated for roughly half of the patterns. This approach 
limits the potential of each control point. There may be 
some patterns for which a control point is not activated, but 
if the controll point had been activated, some faults would 
have been detected. Conversely, there may be some patterns 
for which the control point is activated, but if it hadn’t been 
activated, some faults would have been detected. 

A new approach for activating control points is presented1 
here. Pattern decoding logic is used to drive the control 
points. An example is shown in Fig. 10 where AND gates 
are used to drive each of the control points. Control point 1 
is activated for any pattern that has a ‘1’ in the last two bil 
positions. Control point 2 is activated for any pattern thal 
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Figure 9 .  Control Points Driven by Extra Scan Elements 
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Figure 1 0 .  Control Points Driven by Pattem Decoding Logic 

has a ‘1‘ in the third to last bit position, and a ‘0’ in the 
second to last bit position. The decoding logic function for 
activating each control point is formed by placing all of the 
patterns for which the control point should be activated in 
the on-set, all of the patterns for which the control point 
should not be activated for in the off-set, and the remaining 
patterns in the don’t care set (how to determine which 
patterns to place in the on-set and off-set will be explained 
later). This function is then passed to a logic synthesis tool 
to generate the pattern decoding logic. Using this pattern 
decoding logic to activate the control point maximizes the 
control point‘s effectiveness while ensuring that it won’t 
cause faults that were previously detected to become 
undetected. Moreover, because of the large number of don’t 
cares, the pattern decoding logic usually amounts to only 
one or two gates (as indicated by the experimental results in 
Sec. 7) and therefore results in less area overhead than 
adding an extra scan element. A test mode line is used to 
disable the control points during system operation. The 
delay introduced by a control point during system operation 
is the same regardless of which method is used to drive the 
control point. In either case, the signal driving the control 
point is a static ‘0’ during system operation, so the delay 
through the control point is equal to the delay through the 
control gate (see Figs. 2 and 3). 

Now the process of determining which patterns should be 
placed in the on-set and off-set of the pattern decoding logic 

function for each control point will be explained. First 
consider the off-set. A fault that was detected by pattern v 
before inserting a control point may no longer be detected if 
the control point is activated for pattern v. So one way to 
ensure that inserting control points doesn’t cause faults to 
no longer be detected is to place one pattern that detects each 
fault into the off-set so that the control points won’t be 
activated for those patterns. During the initial fault 
simulation, when a new fault is detected, the pattern that 
detected it is recorded. These patterns are placed in the 
off-set of the decoding logic function for each control point. 
This is a conservative approach since some of the patterns 
may detect the same faults regardless of whether the control 
point is activated or not. An optional step to reduce the 
off-set for a control point is use fault simulation to check 
which patterns are really affected by the control point. Fault 
simulation can be done with the control point activated for 
each pattern in the off-set, and the patterns which drop the 
same set of faults as before (i.e., with no control point) can 
be removed from the off-set since it doesn’t matter for those 
patterns whether the control point is activated or not. 

The on-set of the decoding logic function contains the 
patterns for which the control point is activated. The 
purpose of a control point is to enable detection of the faults 
for which it is a solution. It must be activated for a pattern 
that detects each of the faults for which it is a solution. 
When the set of control point solutions are computed for 
each undetected fault, the patterns for which each control 
point enables the fault to be detected are recorded. For a 
control point that is selected for insertion, one of the 
recorded patterns is added to the on-set for each fault for 
which the control point is a solution. The patterns that are 
added to the on-sets for each of the inserted control points are 
chosen so that the on-sets are disjoint. This ensures that 
there are no conflicts with more than one control point 
being activated for the same pattern. An example of selecting 
the on-sets for 3 control points is shown in Fig. 11. For 
each fault, the set of patterns for which each control point 
will enable the fault to be detected are listed. One pattern for 
each fault is selected and added to the appropriate control 
point’s on-set. The patterns are selected so that the on-set 
for each control point is disjoint. If controlpoint 1 is 
activated for the pattern 101110, it enables fault 1 and 
fault 3 to be detected. If control point 2 is activated for the 
same pattern, 101110, it enables fault 2 to be detected. 
However, if both control point 1 and control point 2 are 
activated for the same pattern, then it is possible that there 
would be a conflict such that one of the faults would not be 
detected. So in order to avoid that, control point 2 can be 
activated for the pattern OlllOO instead. 

Control Point 1 Control Point 2 Control Point 3 

Figure 1 1 .  Example: Selecting On-Sets for 3 Control Points 
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Table 1 . Results for Test Point Insertion in Benchmark Circuits 

Table 2 .  Comparison of Number of Test Points and Fault Coverage 

7. Experimental 
The method described in this paper was used to insert test 

points in some of the ISCAS 85 [Brglez 83’1 and ISCAS 89 
[Brglez 891 benchmark circuits that contain 
random-pattern-resistant faults. ILFSRs were used to apply 
32,000 pseudo-random test patterns to each circuit. It was 
assumed that the flip-flops in the ISCAS 89 circuits were 
configured as part of the LFSR during testing so that the 
circuits are tested like combinatiional circuits. The nuimber 
of stages in the LFSR for each circuit vvas equal to the 
number of primary inputs plus the number of flip-flops. 

The procedure described in this paper vvss used to insert 
test points into each circuit so that all single stuck-at faults 
were detected for the set of 32,000 pseudo-random test 
patterns. The results are shown in Table 1. The total 
number of faults is shown folllowed by the number of 
redundant faults. The redundant faults are made testable by 
the test point insertion procedure. Simplified versions of 
the circuits C2670 and C7552 were made by removing the 
redundant logic; these circuits are labeled C2670.s and 
C7552.s. The fault coverage before test point insertion and 
after test point insertion is shown. The fault coverage is for 
a41 faults including redundant faults. The number of control 
points (Num Con) and the nurnber of observation points 
(Num Obs) that were inserted are shown. The amount of 
pattern decoding logic that was needed to drive the control 
points is shown. It is measured in gate equivalents (IGEs) 

that reflect a static CMOS technology: (0.5)(n) GE’s for am 
n-input WAND or NOR, and (2.5)(n-I) GE’s for an n-input 
XOR. The total hardware overhead added to each circuit is 
shown for two cases. The first case is where no 
condensation network is used to combine the observation 
points; each observation point is fed into an extra scan 
element. The number of extra gate equivalents and extra 
scan elements added to the circuit are shown for this case:. 
The extra gates are due to the pattern decoding logic plus the 
control gate for each control point. There is one extra scan 
element for each observation point. The second case that is 
shown is where the observation points are combined through 
a condensation network which is constructed using the 
techniques in [Fox 771 to ensure that no aliasing occurs. 
The condensation network adds more gates, but reduces the 
number of extra scan elements. As can be seen, very few 
gates are required for the pattern decoding logic. The average 
number of gate equivalents for the pattern decoding logic for 
each control point is less than 2 GEs. The fault coverage 
after test point insertion is 100% of all faults including 
those in the pattern decoding logic. 

In Table 2, the results for the path tracing method 
described in this paper are compared with the published 
results for the test point insertion methods in [Briers 861, 
[Seiss 911, and [Youssef 931. The number of control points 
(Con) and observation points ( O h )  that were inserted by 
each method is shown along with the resulting fault 
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coverage(Cov). As can be seen, the path tracing method 
uses significantly fewer test points to achieve the same or 
better fault coverage than the other methods. 

This paper presented two innovations for test point 
insertion: (1) a path tracing method for test point placement 
of both control and observation points, and (2) the use of 
pattern decoding logic to activate control points. These two 
innovations greatly improve the effectiveness of control 
points thereby reducing the total number of test points that 
are required to provide a desired fault coverage. Experimental 
results indicate a significant reduction in the number of test 
points compared with previous methods. Fewer test points 
means less area and performance overhead for BIST. 
Furthermore, unlike other test point insertion methods, the 
method described in this paper is not based on signal 
probabilities or fault detection probabilities, so it can be 
used to increase fault coverage for any set of test patterns, 
not just pseudo-random test patterns. 

The method described in this paper can be extended to 
minimize the performance impact of inserting test points. 
Critical timing paths in the circuit can be identified, and 
then when the matrix of test point solutions is formed (as 
described in Sec. 5) ,  the columns that correspond to control 
points on a critical timing path can be removed. The set 
covering procedure will then select a set of test points to 
satisfy the fault coverage requirement without adding any 
delay to the critical timing paths. This technique is 
currently being investigated as a way to achieve complete 
fault coverage during BIST with no performance degradation. 
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