
Test Point Insertion Based on Path Tracing

Nur A. Touba and Edward J. McCluskey

Center for Reliable Computing
Stanford University, Stanford, CA 94305

Abstract
This paper presents an innovative method for inserting

test points in the circuit-under-test to obtain complete fault
coverage for a specified set of test patterns. Rather than
using probabilistic techniques for test point placement, a
path tracing procedure is used to place both control and
observation points. Rather than adding extra scan elements
to drive the control points, a few of the existing primary
inputs to the circuit are ANDed together to form signals that
drive the control points. By selecting which patterns the
control point is activated for, the effectiveness of each
control point is maximized. A comparison is made with the
best previously published results for other test point
insertion methods, and it is shown that the proposed method
requires fewer test points and less overhead to achieve the
same or better fault coverage.

1. Introduction
Pseudo-random pattern testing is an atttactive technique

for built-in self-test (BIST) because very little hardware is
required for test pattern generation. A linear feedback shift
register (LFSR) or cellular automaton (CA) can be used to
generate the pseudo-random patterns. These circuits can also
be used as output response analyzers thereby serving two
purposes during BIST.

Unfortunately, the pseudo-random patterns that are
generated during BIST do not always provide high enough
fault coverage for a reasonable test length. There are two
ways to solve this problem: modify the pattern generator,
or modify the circuit-under-test. A pseudo-random pattern
generator can be modified by adding logic to weight the
patterns [Schnurmann 751, [Wunderlich 871, [Pomeranz 921;
map the patterns [Touba 95a,95b], [Chatterjee 95aI; or
reseed the generator [Venkataraman 931, [Hellebrand 951,
[Zacharia 951. The circuit-under-test can be modified by
inserting test points [Eichelberger 831; or by redesigning it
[Touba 941, [Chiang 941, [Chatterjee 95bJ. Each of these
techniques has its advantages, and the one that is most
suitable depends on the particular application. This paper
presents a new method for inserting test points in
combinational circuits that significantly reduces the number
of test points required for a particular fault coverage
compared with previous techniques.

Test point insertion involves adding control and
observation points to the circuit-under-test in a way that the
system function remains the same, but the testability is
improved. An observation point is an additional primary
output that is inserted in the circuit to increase the

observability of faults in the circuit. In the example in
Fig. 1, an observation point is inserted at the output of
gate GI such that faults are observable regardless of the
logic value at node y . A control point is inserted in the
circuit such that when it is activated, it fixes the logic value
at a particular node to increase the controllability of some
faults in the circuit. A control point can also affect the
observability of some faults in the circuit because it can
change the propagation paths for the faults. In the example
in Fig. 2, a control point is inserted to fix the logic value at
the output of gate G1 to a ‘1’ when the control point is
activated (this is called a control-l point). This is
accomplished by placing an OR gate at the output of
gate G1. In the example in Fig. 3, a control point is
inserted to fix the logic value at the output of gate GI to a
‘0’ when the control point is activated (this is called a
control-Opoint). This is accomplished by placing an AND
gate at the output of gate GI. During system operation, the
control points are not activated and thus don‘t affect the
system function. However, control points do add an extra
level of logic to some paths in the circuit. If a control point
is placed on a critical timing path, it can increase the delay
through the circuit.

Since test points add both area and performance overhead,
it is important to try to minimize the number of test points
that are inserted to achieve the desired fault coverage.
Optimal test point placement for circuits with reconvergent
fan-out has been shown to be NP-complete
[Krishnamurthy 871. Briers and Totton [Briers 861 were the
first to propose a systematic method for test point placement
to increase pseudo-random pattern testability. They use
simulation statistics to identify correlation between signals,

I Observation
Point

Figure 1 . Example of Observation Point

Figure 2 . Example of Control-1 Point

Figure 3 . Example of Control-0 Point

2
0-8186-7304-4/96 $05.00 0 1996 IEEE I4Ih VLSl Test Symposium - 1996

and then insert test points to break the correlation. The
number of test points inserted by this method is 1,arge.
Iyengar and Brand [Iyengar 891 proposed an improved
method that uses fault simulation to identify gates that
block fault propagation, and then insert test points to adlow
propagation. Savaria et al., in [Savaria91] and
[Youssef 931, use the COP testability measures [Brglez 841
to guide the placement of test points. They identify selctors
of hard-to-detect faults and insert test points at the origins of
the sectors. Seiss et al., in [Seiss 911, form a cost function
based on the COP testability measures and then compute, in
linear time, the gradient of the function with respect to each
possible test point. The gradients are used to approximate
the global testability impact for inserting a particular test
point. Based on these approximations, a test point is
inserted and the COP testability measures are recomputed.
This process iterates until the testability is satisfactory.
Cheng and Lin, in [Cheng 951, enhance the procedure in
[Seiss 911 to consider the performance impact of inserting a
particular test point. They showed that by avoiding control
point insertion on critical timing paths, high fault coverage
can be achieved with zero performance degradation. In
[Touba 941, a method is proposed for inserting test points
during logic synthesis. The logic is factored in a way that
minimizes the number of test poiints that are required.

This paper presents a new method for test point
insertion. Fault simulation is used to identify faults that are
not detected by a specified set of test patterns. For each
undetected fault, a path tracing procedure is used to identify
the set of test points that will enable the fault to be detected,
i.e., the set of test point solutions for the fault. Given the
set of test points solutions for each undetected fault, a
minimal set of test points to achieve the desired fault
coverage is selected using a set covering procedure. A new
technique is used for driving the control points. Rather than
adding extra scan elements to drive the control points, a few
of the existing primary inputs to the circuit are ANDed
together to form signals that drive the control points. This
logic selects which patterns the control points are activated
for. A method is described for synthesizing this logic to
maximize the effectiveness of each control point.

Unlike other methods for test point placement that are
based on signal probabilities or detection probabilities for
pseudo-random patterns, the metlhod presented in this paper
is not based on randomness properties of the test patterns
and therefore can be used for any set of test patterns. The set
of test patterns can be pseudo-random, quasi-random ((e.g.,
generated by a multiple input signature register), or not be
random at all. Other test point placement methods that
assume pseudo-random patterns may not be effective for
BIST techniques that use multiple input signature registers
to apply patterns to the circuit-under-test.

2. Overview of Test Point Insertion
Procedure
The problem of interest is given a set of test patterns

that will be applied to the circuit-under-test, insert as few
test points as necessary to enable all of the faults in the

circuit to be detected. An overview of the test point
insertion procedure is as follows:
1. Perform fault simulation to identify undetected faults.

Fault simulation is performed for the set of test patterns
applied to the circuit-under-test to determine which faults are
already detected and which require test points in order to be
detected.
2. Computedhe set of test points that enable each Undetected

fault to be: detected.
For each of the faults that require test points, a set of test

point solutions is computed such that if any test point in
the set is inserted into the circuit, the fault will be detected.
This is described in Sections 3 and 4.
3. Select a minimal set of test points that provides complete

~- fault cover-
Given the set of test point solutions for each fault, a set

covering procedure is used to find a minimal set of test
points that enables all of the faults to be detected. This is
described in Sec. 5 .
4. Synthesizg logic to activate the control points.

points for certain patterns. This is described in Sec. 6.
Pattern decoding logic is synthesized to activate control

3. Computing Test Point Solutions
The faults that go undetectcd by the set of test pattern:;

applied to the circuit-under-test are the faults that require test
points in order to be detected. This section describes ii

method for computing the set of test points solutions for a
given undetected fault for a specified set of test patterns.

Definition 1 : Test pointp is said to be a solution foir
faultf if inserting test point p into the circuit enables fault jf
to be detected for the specified set of test patterns.

In order for a fault to be detected, it must be both
provoked and propagated to a primary output. A stuck-at I.
(stuck-at 0) fault is provoked if the logic value at the fault
site is ‘0’ (‘I ’). A fault is propagated to a primary output if
a sensitized path exists from the fault site to a primary
output. An observation point can only help with
propagating a fault, while a control point can help with both
provoking and propagating a fault.

Definition 2: A sensitizedpath exists from node x to
node y in a circuit if complementing the logic value at node
x complements the logic value at node y.

Note that a sensitized path exists from an input of gate E:
to the output of the gate g if all of the other inputs to gate g
are at the non-controlling logic value (’0‘ for OR and NOR
gates, and ‘I ’ for AND and NAND gate).

The method presented here for computing test point
solutions involves identifying sensitized paths to and from
fault sites in ihe circuit. Fault-free simulation is performed
for a pattern, and then path tracing from the fault sites is
used to identify the sensitized paths. A fast approximate
method for path tracing is given in [Abramovici 841.
Techniques for faster operation are suggested in
[Ramakrishnan 901. An exact method for path tracing is
given in [Menon 911. These three papers describe path
tracing from the primary outputs (called critical path

3

tracing), however the techniques can be easily generalized for
path tracing from a fault site.

3.1 Computing Observation Point Solutions
Some patterns may provoke a fault but not propagate it

to a primary output. If a fault is provoked by a pattern, then
an observation point that is inserted at a node that the fault
can propagate to will enable the fault to be detected and
therefore is a solution for the fault. To find the set of
observation point solutions for a fault that is provoked by a
particular pattern, path tracing can be used to identify the
nodes that the fault can propagate to. An example is shown
in Fig. 4. Fault-free simulation is performed for a pattern
that provokes the fault, and forward path tracing from the
fault site is used to identify the propagation path for the
fault. The fault propagates through gates G3 and G5, but is
blocked at gates G6 and G8 and therefore doesn't propagate to
a primary output. Inserting an observation point at node a
or node b would enable the fault to be detected, so those two
nodes form the set of observation point solutions for the fault
for that pattern. The union of the set of observation point
solutions for each pattern that provokes a particular fault
gives the full set of observation point solutions for the fault.

1

Figure 4 . Example: Observation Point at Nodea orb is a
Solution

3.2 Computing Control Point Solutions
Some patterns may propagate a fault to a primary output

but not provoke the fault. In that case, a control point is a
solution for the fault if it complements the logic value at
the fault site thereby provoking the fault. For a fault that is
propagated to a primary output by a particular pattern, path
tracing can be used to find the nodes that have a sensitized
path to the fault site for that pattern. Control points that
complement the logic value at a node that has a sensitized
path to the fault site are solutions for the fault provided that
they don't block fault propagation to a primary output. An
example is shown in Fig. 5. Fault-free simulation is
performed for a pattern that propagates the fault to a primary
output, and backward path tracing from the fault site is used
to identify sensitized paths. Both inputs of gate G6 have a
sensitized path to the output of gate G6. Neither of the
inputs of gate G4 have a sensitized path to the output of
gate G4. One of the inputs of gate G3 has a sensitized path
to the output of gate G3. Inserting a control-1 point at node
a, c, d, or e would complement the value at the fault site
thereby provoking the fault. However, forward path tracing
from node e identifies that it has a sensitized path to gate
G9, so inserting a control-1 point at node e would block the
fault from propagating to a primary output. Therefore, only
control- 1 points at nodes a, c, and d are solutions.

Figure 5 . Example': Control-1 Point at Node a, c, ord is a
Solution, but Node e is Not a Solution Because It Blocks

Propagation to a Primary Output

Some patterns may provoke a fault but a single gate may
block propagation to a primary output. In that case, a
control point can enable propagation to a primary output if
it complements the logic value at the controlling input of
the blocking gate. For a provoked fault for which fault
propagation is blocked by a single gate, path tracing can be
used to find the nodes that have a sensitized path to the
controlling input of the blocking gate. Control points that
complement the logic value at a node that has a sensitized
path to the controlling input of a blocking gate are solutions
for the fault provided that they still provoke the fault. An
example is shown in Fig. 6. Fault-free simulation is
performed for a pattern that provokes the fault, and backward
path tracing from the controlling input of the blocking gate
is iised identify sensitized paths. Both of the inputs of gate
G7 are sensitized to the output of G7. Both of the inputs to
G4 are sensitized to the output of G4. The output of G4
fans out to gate G6, and forward path tracing identifies that
it has a sensitized path to the fault site. Inserting control
points at the nodes before the fanout would cause the fault to
not be provoked, and therefore they are not solutions.
Control-0 points at nodes f, g, and h form the solution set
for the fault for that pattern. The union of the set of control
point solutions for a particular fault for each pattern gives
the full set of control point solutions for the fault.

1

Figure 6 . Example: Control-0 Point at Nodef, g , or h are
Solutions, but Nodes e, i , a n d j are Not Solutions Because They

Don't Provoke the Fault

4. Faults Requiring Multiple Test Points
Some faults may not have single test point solutions. If

none of the patterns provoke or propagate the fault, then
multiple test points are required. The existence of a single
test point solution for a fault can easily be checked when fault
simulation is performed to identify the undetected faults.

In Sec. 3, a method was described for computing a set of

4

single test point solutions for a fault such that if any test
point in the set is inserted in the circuit, the fault will be
detected. This method can be extended to handle faults that
require multiple test points. If a fault requires n test points,
then n sets of single test points cain be computed such thiat if
one test point from each set is inserted in the circuit, the
fault will be detected. For each pattern, path tracing can be
used to find a set of test points that provoke the fault and the
set of test points that propagate the fault to a primary output
as was described in Sec. 3. In the example in Fig. 7, the
sensitized paths that provoke the fault and the paths where
the fault can propagate are identifiled using path tracing. The
control points that provoke the fault form one set (control-0
at node m and control-0 at node n) , and the observation
points that enable the fault to propagate to a primary output
form another set (observation point at node a and node b) . If
a test point from each set is inserted in the circuit, then the
fault will be detected. For faults with single test point
solutions, the full set of solutions was formed by taking the
union of the sets of single test points solutions for each
pattern, however this cannot be done for faults with multiple
test point solutions. The reason is that if the union of the
sets is taken, then a test point from one set will provoke the
fault for some pattern, but the test point from the other set
may propagate the fault to a primary output for a different
pattern, thus there is no guarantee that the fault will be
detected. So instead of computing the full set of multiple
test point solutions, the largest set of multiple test point
solutions for a single pattern is used.

&L . _ _ _ _ _

m n e G7 9
-

Figure 7 . Example: A Control-0 Point at Nodem orn
Provokes the Fault, and an Observation Point at Nodea 01 b

Propagates the Fault to a Primary Output.

5. Selecting a Set of Test Points to Insert
Once the set of test point sollutions for each undetected

fault has been computed, a set covering procedure can be
used to select a minimal set of test points that will enable
all of the faults to be detected. A matrix ILS constructed in
which each column corresponds to a test point solution.
For each undetected fault, a row is added to the matrix in
which an ‘X’ is placed in each column that corresponds to a
test point solution for the fault. If the fault requires a
multiple test point solution, then multiple rows are added.
An example is shown in Fig. 8. The first irow corresponds
tofault 1 for which the set of single test point solutions is
an observation point at node w , a control-1 point at node U,
and a control-0 point at nodev. Fault 2 requires a multiple
test point solution, so both the second and the third row
correspond to it. The set of control points that provokes
fault 2 is a control-1 point at node U, a control-0 point at

nodev, and a control-1 point at nodey. The set of
observation points that propagate fault 2 to a primary
output is an observation point at node v and an observation,
point at node x.

0 - v o w 0-x c1-U CO-v CO-w c1-v c1-z
Fault 1
Fault 2

Fault 3
Fault 4
Fault 5

Figure 8 Example: Matrix of Test Point Solutions for
Each Fault

A set covt:ring procedure is used to select a minimal set
of columns that has at least one ‘X’ in each row (set
covering is NP-complete, but good heuristics exist
[Christofedes 751). One ‘X’ in each row ensures that all of’
the faults will be detected. In the example in Fig. 8, one
such solution is the third column (observation point at node
x) and the fourth column (control-1 point at node U). The
test points corresponding to the selected columns are inserted
into the circuit. Note that for the example in Fig. 8, if the
test points were inserted one at a time based on maximizing
the fault coverage that results after each test point was
inserted (as is the case in other test point insertion methods),
then the first test point to be inserted would be a control-0
point at node 11 because that would detect fault 1, fault 3, and
fault 4. However, in order to detect fault 2 and fault 5, at
least two more test points would have to be inserted. Thus,
for this example, the greedy method results in 3 test points
compared with only 2 if the set covering procedure is used.

6. Control Point Activation
Once the test points have been inserted, the remaining

task is to destgn the logic that drives the control points. A
control point must be activated for certain patterns in order
to detect the faults for which it was inserted. However, a
control point cannot be activated for all patterns because that
would reduce the fault coverage. Previous test point
insertion techniques add extra scan elements to drive the
control points. This is illustrated in Fig. 9 where two extra
scan elements are added to drive the two control points. The
pseudo-random pattern generator is used to apply values to
the extra scan elements. Thus a control point is randomly
activated for roughly half of the patterns. This approach
limits the potential of each control point. There may be
some patterns for which a control point is not activated, but
if the controll point had been activated, some faults would
have been detected. Conversely, there may be some patterns
for which the control point is activated, but if it hadn’t been
activated, some faults would have been detected.

A new approach for activating control points is presented1
here. Pattern decoding logic is used to drive the control
points. An example is shown in Fig. 10 where AND gates
are used to drive each of the control points. Control point 1
is activated for any pattern that has a ‘1’ in the last two bil
positions. Control point 2 is activated for any pattern thal

5

;:;y 1 1 Circuit Under Test
Est- *

Figure 9 . Control Points Driven by Extra Scan Elements

L-J+

T
. Test
Mode

Control
Point 1

Circuit Under Test
Control
Point 2

Figure 1 0 . Control Points Driven by Pattem Decoding Logic

has a ‘1‘ in the third to last bit position, and a ‘0’ in the
second to last bit position. The decoding logic function for
activating each control point is formed by placing all of the
patterns for which the control point should be activated in
the on-set, all of the patterns for which the control point
should not be activated for in the off-set, and the remaining
patterns in the don’t care set (how to determine which
patterns to place in the on-set and off-set will be explained
later). This function is then passed to a logic synthesis tool
to generate the pattern decoding logic. Using this pattern
decoding logic to activate the control point maximizes the
control point‘s effectiveness while ensuring that it won’t
cause faults that were previously detected to become
undetected. Moreover, because of the large number of don’t
cares, the pattern decoding logic usually amounts to only
one or two gates (as indicated by the experimental results in
Sec. 7) and therefore results in less area overhead than
adding an extra scan element. A test mode line is used to
disable the control points during system operation. The
delay introduced by a control point during system operation
is the same regardless of which method is used to drive the
control point. In either case, the signal driving the control
point is a static ‘0’ during system operation, so the delay
through the control point is equal to the delay through the
control gate (see Figs. 2 and 3).

Now the process of determining which patterns should be
placed in the on-set and off-set of the pattern decoding logic

function for each control point will be explained. First
consider the off-set. A fault that was detected by pattern v
before inserting a control point may no longer be detected if
the control point is activated for pattern v. So one way to
ensure that inserting control points doesn’t cause faults to
no longer be detected is to place one pattern that detects each
fault into the off-set so that the control points won’t be
activated for those patterns. During the initial fault
simulation, when a new fault is detected, the pattern that
detected it is recorded. These patterns are placed in the
off-set of the decoding logic function for each control point.
This is a conservative approach since some of the patterns
may detect the same faults regardless of whether the control
point is activated or not. An optional step to reduce the
off-set for a control point is use fault simulation to check
which patterns are really affected by the control point. Fault
simulation can be done with the control point activated for
each pattern in the off-set, and the patterns which drop the
same set of faults as before (i.e., with no control point) can
be removed from the off-set since it doesn’t matter for those
patterns whether the control point is activated or not.

The on-set of the decoding logic function contains the
patterns for which the control point is activated. The
purpose of a control point is to enable detection of the faults
for which it is a solution. It must be activated for a pattern
that detects each of the faults for which it is a solution.
When the set of control point solutions are computed for
each undetected fault, the patterns for which each control
point enables the fault to be detected are recorded. For a
control point that is selected for insertion, one of the
recorded patterns is added to the on-set for each fault for
which the control point is a solution. The patterns that are
added to the on-sets for each of the inserted control points are
chosen so that the on-sets are disjoint. This ensures that
there are no conflicts with more than one control point
being activated for the same pattern. An example of selecting
the on-sets for 3 control points is shown in Fig. 11. For
each fault, the set of patterns for which each control point
will enable the fault to be detected are listed. One pattern for
each fault is selected and added to the appropriate control
point’s on-set. The patterns are selected so that the on-set
for each control point is disjoint. If controlpoint 1 is
activated for the pattern 101110, it enables fault 1 and
fault 3 to be detected. If control point 2 is activated for the
same pattern, 101110, it enables fault 2 to be detected.
However, if both control point 1 and control point 2 are
activated for the same pattern, then it is possible that there
would be a conflict such that one of the faults would not be
detected. So in order to avoid that, control point 2 can be
activated for the pattern OlllOO instead.

Control Point 1 Control Point 2 Control Point 3

Figure 1 1 . Example: Selecting On-Sets for 3 Control Points

6

Table 1 . Results for Test Point Insertion in Benchmark Circuits

Table 2 . Comparison of Number of Test Points and Fault Coverage

7. Experimental
The method described in this paper was used to insert test

points in some of the ISCAS 85 [Brglez 83’1 and ISCAS 89
[Brglez 891 benchmark circuits that contain
random-pattern-resistant faults. ILFSRs were used to apply
32,000 pseudo-random test patterns to each circuit. It was
assumed that the flip-flops in the ISCAS 89 circuits were
configured as part of the LFSR during testing so that the
circuits are tested like combinatiional circuits. The nuimber
of stages in the LFSR for each circuit vvas equal to the
number of primary inputs plus the number of flip-flops.

The procedure described in this paper vvss used to insert
test points into each circuit so that all single stuck-at faults
were detected for the set of 32,000 pseudo-random test
patterns. The results are shown in Table 1. The total
number of faults is shown folllowed by the number of
redundant faults. The redundant faults are made testable by
the test point insertion procedure. Simplified versions of
the circuits C2670 and C7552 were made by removing the
redundant logic; these circuits are labeled C2670.s and
C7552.s. The fault coverage before test point insertion and
after test point insertion is shown. The fault coverage is for
a41 faults including redundant faults. The number of control
points (Num Con) and the nurnber of observation points
(Num Obs) that were inserted are shown. The amount of
pattern decoding logic that was needed to drive the control
points is shown. It is measured in gate equivalents (IGEs)

that reflect a static CMOS technology: (0.5)(n) GE’s for am
n-input WAND or NOR, and (2.5)(n-I) GE’s for an n-input
XOR. The total hardware overhead added to each circuit is
shown for two cases. The first case is where no
condensation network is used to combine the observation
points; each observation point is fed into an extra scan
element. The number of extra gate equivalents and extra
scan elements added to the circuit are shown for this case:.
The extra gates are due to the pattern decoding logic plus the
control gate for each control point. There is one extra scan
element for each observation point. The second case that is
shown is where the observation points are combined through
a condensation network which is constructed using the
techniques in [Fox 771 to ensure that no aliasing occurs.
The condensation network adds more gates, but reduces the
number of extra scan elements. As can be seen, very few
gates are required for the pattern decoding logic. The average
number of gate equivalents for the pattern decoding logic for
each control point is less than 2 GEs. The fault coverage
after test point insertion is 100% of all faults including
those in the pattern decoding logic.

In Table 2, the results for the path tracing method
described in this paper are compared with the published
results for the test point insertion methods in [Briers 861,
[Seiss 911, and [Youssef 931. The number of control points
(Con) and observation points (O h) that were inserted by
each method is shown along with the resulting fault

7

coverage(Cov). As can be seen, the path tracing method
uses significantly fewer test points to achieve the same or
better fault coverage than the other methods.

This paper presented two innovations for test point
insertion: (1) a path tracing method for test point placement
of both control and observation points, and (2) the use of
pattern decoding logic to activate control points. These two
innovations greatly improve the effectiveness of control
points thereby reducing the total number of test points that
are required to provide a desired fault coverage. Experimental
results indicate a significant reduction in the number of test
points compared with previous methods. Fewer test points
means less area and performance overhead for BIST.
Furthermore, unlike other test point insertion methods, the
method described in this paper is not based on signal
probabilities or fault detection probabilities, so it can be
used to increase fault coverage for any set of test patterns,
not just pseudo-random test patterns.

The method described in this paper can be extended to
minimize the performance impact of inserting test points.
Critical timing paths in the circuit can be identified, and
then when the matrix of test point solutions is formed (as
described in Sec. 5) , the columns that correspond to control
points on a critical timing path can be removed. The set
covering procedure will then select a set of test points to
satisfy the fault coverage requirement without adding any
delay to the critical timing paths. This technique is
currently being investigated as a way to achieve complete
fault coverage during BIST with no performance degradation.

Acknowledgments
This work was supported in part by the Ballistic Missile

Defense Organization, Innovative Science and Technology
(BMDOLST) Directorate and administered through the
Department of the Navy, Office of Naval Research under
Grant No. NOOO14-92-J-1782, by the National Science
Foundation under Grant No. MIP-9107760, and by the
Advanced Research Projects Agency under prime contract
NO. DABT63-94-C-0045.

References
[Abramovici 841 Abramovici, M., P.R. Menon, and D.T. Miller, “Critical

Path Tracing: An Altemative to Fault Simulation,” IEEE Design &
Test of Computers, Vol. 1, pp. 89-93, Feb. 1984.

[Briers 861 Briers, A.J., and K.A.E. Totton, “Random Pattem Testability
by Fast Fault Simulation,” Proc. rflZnt. Test Con$, pp. 274-281, 1986.

[Brglez 841 Brglez, F., “On Testability of Combinational Networks,”
Proc. of lnt. Symposium on Circuits and Systems, pp. 221-225, 1984.

[Brglez 851 Brglez, F., and H. Fujiwara, “A Neutral Netlist of 10
Combinational Benchmark Circuits and a Target Translator in
Fortan,” Proc. of Int. Symp. on Circuits and Sys., pp. 663-698, 1985.

[Brglez 891 Brglez, F., D. Bryan, and K. Kozminski, “Combinational
Profiles of Sequential Benchmark Circuits,” Proc. of International
Symposium on Circuits and Systems, pp. 1929.1934, 1989.

[Chatterjee 95aj Chatterjee, M., and D.K. Pradhan, “A Novel Pattern
Generator for Near-Perfect Fault-Coverage,” Proc. of VLSI Test
Symposium, pp. 417-425, 1995.

[Chatterjee 95b] Chatterjee, M., D.K. Pradhan, and W. Kunz, “LOT:
Logic Optimization with Testability - New Transformations using
Recursive Learning,” Proc. of International Conference on Computer-
Aided Design (ICCAD), pp. 318-325, 1995.

[Chiang 941 Chiang, C.-H., and S.K. Gupta, “Random Pattern Testable
Logic Synthesis,” Proc. of International Conference on
Computer-Aided Design (ICCAD), pp. 125-128, 1994.

[Cheng 951 Cheng, K.-T., and C.J. Lin, “Timing-Driven Test Point
Insertion for Full-Scan and Partial-Scan BIST,” Proc. of International
Test Conference, pp. 506-514, 1995.

[Chnstofedes 751 Christofedes, N., and K. Korman, “A Computational
Survey of Methods for the Set Covering Problem,” Management
Science, Vol. 21, No. 5, pp. 591-599, Jan. 1975.

pichelberger 831 Eichelberger, E.B., and E. Lindbloom, “Random
Pattem Coverage Enhancement and Diagnosis for LSSD Logic Self-
Test,’’ IBM Journal of Research and Development, Vol. 27, No. 3,
pp. 265-272, May 1983.

Fox 771 Fox, J.R., “Test-point Condensation in the Diagnosis of Digital
Circuits,” Proc. of the IEE, Vol. 124, No. 2, Feb. 1977, pp. 89-94.

[Hellebrand 951 Hellebrand, S., J. Rajski, S. Tamick, S. Venkataraman,
and B. Courtois, “Generation of Vector Pattems Through Reseeding
of Multiple-Polynomial Linear Feedback Shift Registers,” ZEEE
Transactions on Computers, Vol. 44, No. 2, pp. 223-233, Feb. 1995.

[Iyengar 891 Iyengar, V.S., and D. Brand, “Synthesis of Pseudo-Random
Pattem Testable Designs,” Proc. International Test Conference,

[Krishnamurthy 871 Krishnamurthy, B., “A Dynamic Programming
Approach to the Test Point Insertion Problem,” Proc. of the 24th
Design Automation Conference, pp. 695-704, 1987.

[Menon 911 Menon, P., Y. Levendel, and M. Abramovici, “SCRIPT: A
Critical Path Tracing Algorithm for Synchronous Sequential Circuits,”
IEEE Trans. on CAD, Vol. 10, No. 6, pp. 738-747, Jun. 1991.

[Pomeranz 921 Pomeranz, I., and S.M. Reddy, “3-Weight Pseudo-Random
Test Generation Based on a Deterministic Test Set for Combinational
and Sequential Circuits,” IEEE Transactions on Computer-Aided
Design, Vol. 12, No. 7, pp. 1050-1058, Jul. 1993.

[Ramakrishnan 901 Ramakrishnan, T., and L. Kinney, “Extension of the
Critical Path Tracing Algorithm,” Proc. of the 27th Design Automation
Conference, pp. 720-723, 1990.

[Savaria 911 Savaria, Y., M. Youssef, B. Kaminska, and M. Koudil,
“Automatic Test Point Insertion for Pseudo-Random Testing,” Proc. of
Int. Symposium on Circuits and Systems, pp. 1960-1963, 1991.

[Schnurmann 751 Schnurmann, H.D., E. Lindbloom, and R.G. Carpenter,
“The Weighted Random Test-Pattern Generator,” IEEE Trans. on
Computers, Vol. C-24, No. 7, pp. 695-700, Jul. 1975.

[Seiss 911 Seiss, B.H., P.M. Trouborst, and M.H. Schulz, “Test Point
Insertion for Scan-Based BIST,” Proc. of European Test Conference,

[Touba 941 Touba, N.A., and E.J. McCluskey, “Automated Logic
Synthesis of Random Pattern Testable Circuits,” Proc. of International
Test Conference, pp. 174-183, 1994.

[Touba 95a] Touba, N.A., and E.J. McCluskey, “Transformed Pseudc-
Random Patterns for BIST,” Proc. of V U 1 Test Symposium,
pp. 410-416, 1995.

[Touba 95b] Tonba, N.A., and E.J. McCluskey, “Synthesis of Mapping
Logic for Generating Transformed Pseudo-Random Pattems for
BIST,” Proc. of International Test Conference, pp. 674-682, 1995.

[Venkataraman 931 Venkataramann, S . , J. Rajski, S . Hellebrand, and S .
Tamick, “An Efficient BIST Scheme Based on Reseeding of Multiple
Polynomial Linear Feedback Shift Registers,” Proc. of Int. Con$ on
Computer-Aided Design (ICCAD), pp. 572-577, 1993.

[Youssef 931 Youssef, M., Y. Savaria, and B. Kaminska, “Methodology
for Efficiently Inserting and Condensing Test Points,” ZEE
Proceedings-E, Vol. 140, No. 3, pp. 154-160, May 1993.

[Wunderlich 871 Wunderlich, H.-J., “Self-Test Using Unequiprobable
Random Patterns,” Proc. of FTCS-17, pp. 258-263,1987.

[Zacharia 951 Zacharia, N., J. Rajski, and J. Tyszer, “Decompression of
Test Data Using Variable-Length Seed LFSRs,” Proc. of VLSI Test
Symposium, pp. 426-433, 1995.

pp. 501-508, 1989.

pp. 253-262, 1991.

8

