
Weight-Based Codes and Their Application to Concurrent Error Detection of
Multilevel Circuits

Debaleena Das and Nur A. Touba

Computer Engineering Research Center
Department of Electrical and Computer Engineering

University of Texas, Austin, TX 78712-1084
E-mail: {ddas, touba}@cat.ece.utexas.edu

Abstract
This paper proposes a new class of codes termed

“weight-based codes” where each output bit is assigned a
weight and the check bits represent the sum of the weights
of the output bits which have value ‘1’. A Berger code is a
special member of this proposed class of codes where
each output bit is assigned a weight of one. This paper
describes the application of these codes for the efficient
on-line error detection of arbitrary multilevel circuits. The
overall probability of detecting any number of erroneous
bits at the output caused by a single internal fault is shown
to be higher for weight-based codes than standard error
detecting codes. Further, a very efficient design exists for
the checker. The checker is area and speed efficient, has
low power consumption, and can be tested by a small set
of incoming code words. There is always a tradeoff
between the fault detection capability and area overhead
requirement of an error detecting code. Weight-based
codes present a controlled way of increasing the number
of check bits to achieve a desired fault detection
capability.

1. Introduction

The development of high-density low-cost integrated
circuits has made on-chip error detection techniques a
necessity. In applications where dependability and data
integrity are important, on-line (or concurrent) error
detection circuitry is used to detect transient and
intermittent errors. Early detection of errors is crucial for
preserving the state of the system and preventing data
corruption. The move towards deep-submicron
technologies with lower voltage levels and smaller noise
margins is increasing the susceptibility of systems to
transient and intermittent faults thereby making on-line
error detection increasingly important.

This paper focuses on on-line error detection based on
error detecting codes. The outputs of a circuit are encoded
with an error detecting code. A checker monitors the
outputs and gives an error indication if a non-codeword

occurs (as illustrated in Fig. 1). Such circuits, which
monitor their own faults during normal operation, are
termed self-checking circuits [Anderson 84].

Figure 1. General structure of On-Line Error Detection
Based on Systematic Codes

The operation of a self-checking circuit is critically
dependent on the correct functioning of the checker.
Correct functioning can be achieved by making the
checker totally self-checking (TSC) [Anderson 84]. A
TSC checker guarantees the detection of the first error to
appear at the output bits under the single fault assumption.
The single fault assumption for self-checking circuits is:
1) faults occur one at a time, and 2) there is a sufficient
time interval between the occurrence of any two faults;
the first fault will get detected before the occurrence of the
next fault. Thus, the checker should be capable of
detecting all errors at the output resulting from single
faults in the circuit.

The origin of error detecting codes is in
communications engineering. Error detecting codes were
first developed to monitor data transfer on channels.
These codes provided the tool to transmit messages
reliably over a noisy channel. Hence these codes were
optimally adapted to the error models prevalent in
channels which are independent single bit errors or error
bursts of certain maximum length. For arbitrary
multilevel circuits, however, a single fault in the circuit
can lead to any number of errors at the output depending
on the circuit structure. Thus, though the coding methods
developed in communications engineering can be used for
concurrent error detection in arbitrary multilevel circuits,

m

m

n

k

inputs

Checker

Function
Logic

Check Symbol
Generator

n

outputs

error
detection

they are effective only for circuits with a large degree of
regularity such as PLA’s [Mak 82], [Nicolaidis 91] and
ALU’s [Pradhan 86], [Lo 92], [Gorshe 96] where the
types of error are restricted.

In this paper, we propose a new class of codes termed
“weight-based codes” where each output bit is assigned a
weight and the check bits represent the sum of the weights
of the output bits which have value ‘1’. Note that a
Berger code [Berger 61] is a special member of this
proposed class of codes where each output bit is assigned
a weight of one. We describe the application of these
codes for the efficient on-line error detection of arbitrary
multilevel circuits. Weight-based codes are shown to be
superior to other standard codes used for on-line error
detection. Weight assignment has been used to reduce
aliasing in a compression technique called accumulator
compression testing (ACT) in [Saxena 86].

The highlights of weight-based codes that make it an
efficient solution for on-line error detection are:

1. They have high fault detection capability, i.e., the
overall probability of detecting any number of
erroneous bits at the output caused by a single internal
fault in the circuit is high.

2. They present a controlled way of increasing the
number of check bits to achieve a desired fault
detection capability. The weights assigned to the
outputs can be chosen to achieve a desired percentage
of fault detection. The fault detection capability will
depend on the number of different weights used and
the relationship between the weights.

3. Weight-based codes also present a way of exploiting
the circuit structure to increase fault detection
capability. The fault detection capability of weight-
based codes can be enhanced by assigning weights to
the output bits based on the circuit structure.

4. A very efficient design exists for the checker. The
checker is area and speed efficient, has low power
consumption, and can be tested by a small set of
incoming code words.

The concurrent error detection of circuits requires the
design of a TSC checker. The reliability of the self-
checking circuit depends upon the ability of its checker to
function correctly despite the occurrence of faults.
Further, the checker size has to be kept at a minimum and
the speed of operation high. These checker requirements
are usually difficult to satisfy.

Recently a novel method for designing highly efficient
Berger Code checkers was proposed by Kavousianos and
Nikolos in [Kavousianos 98]. These checkers are testable
by a small set of code words, are near optimal with respect
to the number of transistors required for their

implementation, are speed efficient, and have low power
consumption. A major advantage of the codes proposed in
this paper is that the checker can be designed along the
same lines as in [Kavousianos 98] as will be described
later. Further, we present a general design for the checker
where any existent Berger code checker can be used as a
sub-module.

Special synthesis procedures have been proposed to
modify the original circuit so as to have only
unidirectional faults [Jha 93], [De94], [Saposhnikov 98] or
to control the number of erroneous bits at the output by
restricting fanout [Touba 94, 97], [Das 98]. While these
synthesis procedures are very efficient for medium size
circuits, they break down for large circuits. Moreover, in
most cases it may be highly undesirable to modify the
synthesis of the original circuit as this will affect timing
and other crucial parameters. In this paper, we propose a
method of on-line error detection that does not require any
modification of the circuit to be monitored.

One way to increase the fault detection capability for
standard error detection codes (e.g. Berger Codes) is to
partition the outputs. Partitioning of outputs and
computing check bits per partition will increase the
number of faults detected but will also tremendously
increase the number of check bits. For example, a circuit
with 120 output bits will require 18 check bits if 3
partitions of 40 bits each are made as compared with 7 bits
if no partitions are made. Also the area overhead of three
checkers with 46 inputs each will be higher than one
checker of 127 inputs. The weight-based codes proposed
here can be used to increase fault detection capability
without partitioning.

The paper is organized as follows: Section 2 explains
the proposed weight-based codes. Section 3 compares the
fault detection capabilities and size of check bits of
different codes. Section 4 explains the totally self-
checking checker design. Section 5 concludes the paper.

2. Weight-Based Codes

We propose the concept of weight-based codes where
each output bit is assigned a weight and the check bits
represent the sum of the weights of the output bits which
have value ‘1’. Consider the simplest case of weight-
based codes where each output is assigned a weight
according to its position, the first output is assigned a
weight of 1, the second a weight of 2 and so on. This is
an error detecting code that can detect all unidirectional
errors as well as any single or double error. By choosing
a specific set of weights instead of assigning consecutive
weights, the code can be made to guarantee detection of
more than two errors. Note that no aliasing can occur due
to a combination of errors in both the information bits and
check bits since the logic that generates them is

synthesized separately. Any single fault can affect either
the information bits or the check bits but not both.

Weight-based codes have a practical application in
on-line testing. For on-line error detection of multilevel
circuits, we need a code that detects output errors with a
high probability. Two properties are desirable for this:

1. The code should distinguish between 1→0 and 0→1
type errors. Thus aliasing will occur for a certain set
of erroneous bits only if the error in each bit is of a
specific type (1→0 or 0→1).

2. The code should be a “positional” code, i.e., the check
bits are a function of the erroneous bits as well as their
position in the output. For “non-positional” codes, the
check bits are a function of the erroneous bits alone
and not their position in the output. Thus Hamming
code is a “positional” code whereas Berger and parity
codes are “non-positional”. For random errors,
aliasing will be lower for “positional” codes.

Besides high fault detection capability, the error
detecting code should have a low number of check bits
and an efficient TSC checker.

Weight-based codes are both “positional” and
distinguish between 1→0 and 0→1 type errors. Thus they
can be expected to have high fault detection capabilities.
They can always detect all faults that cause only
unidirectional errors at the output irrespective of the
weights assigned.

Aliasing depends upon the weight assignment. An
erroneous output bit (with assigned weight w) will
increase or decrease the total sum of the weights by w,
depending on whether the error type is 0→1 or 1→0
respectively. Aliasing occurs for multiple erroneous bits
where the net effect on the total sum is zero. For
example, consider a fault that causes 1→0 errors in output
bits o1 and o2 and an 0→1 error in the output bit o3. Let
the weights assigned to o1, o2, and o3 be w1, w2, and w3.
Aliasing will occur iff (-w1-w2+w3) = 0.

Now, let us compare the fault detection capability of
the proposed weight-based codes with Berger code. The
advantage over Berger code is that being a “positional”
code, it can detect all faults that cause an equal number of
1→0 and 0→1 errors at the output where the two kinds of
errors do not have the same weights assigned to them.
The disadvantage is that some faults that cause an odd
number of errors at the output may get aliased. This
aliasing can be controlled by the weight assignment.

Fault detection capability is discussed further in
Section 3. Since Berger codes are a special case of
weight-based codes, where each output bit is assigned a
weight of one, the TSC checker for weight-based codes
can be designed as a modification of Berger code TSC

checkers. The TSC checker design is discussed in
Section 4.

3. Fault Detection Capability

In this section, the relationship between the fault
detection capability and the weight assignment scheme is
studied. Further, the fault detection capability of the
proposed weight-based codes is compared with that of
standard systematic error detecting codes that have been
mentioned in self-checking circuit literature. The codes
considered are parity [Goessel 93], [De 94],
[Touba 94, 97] and Berger [Jha 93], [Goessel 93],
[De 94].

Experiments have been performed to assess the fault
detection capability of the codes. There are two
assumptions. It is assumed that the original circuit is
intact, no modification has been made during synthesis to
increase fault detection capability. Second, the check bits
are synthesized separately from the information bits.
Under the single fault assumption, any fault can affect
either the information bits or the check bits but not both.
Since there is a many-to-one mapping between
information bits and check bits, errors in the check bits
will always get detected whereas errors in the information
bits can get aliased. We shall henceforth concentrate on
faults that affect the information bits, i.e. the bits at the
circuit output.

There are two degrees of freedom in the weight
assignment scheme: the choice of weights, and the
partitioning of the output bits for the weight assignment.
Presented below is a detailed study of the effect of weight
assignment on the fault detection capability. Let the
weight-set denote the set of unique weights used in the
weight assignment scheme. For example, if the output
bits are only assigned weights 2, 3, or 4, then the weight-
set is {2,3,4}.

An important issue is what choice of weights will have
low aliasing without greatly increasing the number of
check bits. There are two kinds of aliasing in weight-
based codes. The first is due to repetition of weights.
Output bits having the same weight assigned to them will
cause aliasing if they have errors in opposite directions.
Increasing the weight-set can reduce this aliasing.
Partitioning of the outputs based on circuit structure also
helps to control this aliasing. We have partitioned the
output bits into clusters such that there is minimal sharing
of logic between output bits in the same cluster. Output
bits in a cluster are assigned the same weight.

The second kind of aliasing is due to the sum of a
group of weights being zero. This aliasing increases with
increase in the weight-set as more such groups are
possible. As an example, consider the weight-set

{2,3,4,5}. Groups of weights involving at least two
different weights, with number of elements less than five
and sum of weights equal to zero are {2,2,-4}, {2,3,-5},
{2,-3,-3,4}, {2,-3,-4,5} and {3,-4,-4,5}. Aliasing can be
controlled by the choice of weights. Note that the weights
used should be small to keep the number of check bits
low. Thus there is a tradeoff. Increasing the number of
different weights used decreases the first kind of aliasing
and increases the second.

Experiments have been done on the ISCAS benchmark
circuits to compare different weight assignments. These
results supplement the deductions about the fault detection
capabilities. A set of 10,000 pseudo random test vectors
was applied to the benchmark circuits and the fault
detection capabilities of the codes measured. For each test
vector, all the faults in the circuit were simulated. Faults
were simulated one at a time since self-checking circuits
have a single fault assumption. If any fault was excited
and propagated to the circuit output by a test vector, it was
checked whether the error at the output was detectable by
the proposed weight-based codes. The fourth column in
Table 1 gives the total number of times that faults in the
circuit were excited and propagated to the output.

Table 1. Benchmark Circuits

Circuits Primary
Inputs

Primary
Outputs

Total Faults
Detected

C432 36 7 282582
C499 41 32 1260334
C880 60 26 167976
C1355 41 32 1547371
C1908 33 25 1402446
C2670 233 140 2934479
C3540 50 22 2121782
C5315 178 123 3773836
C6288 32 32 15745993
C7522 207 108 5934156

Cases involving different choices of weights, keeping
the cardinality of the weight-set constant, are analyzed
first. Tables 2, 3 and 4 present experimental results for
different choice of weights for weight-sets with cardinality
two, three and four respectively.

The variation in fault detection capability in these
tables will be entirely due to variations in aliasing of the
second kind. Aliasing of the first kind occurs due to
repetition of weights and involves output bits having the
same weight assigned to them (irrespective of the
magnitude of the weights). Thus, keeping the number of
different unique weights constant and changing the
magnitude of the weights will not vary aliasing of the first
kind.

Consider the case where a set of two weights
{w1,w2} is repeated for the output bits. This will have
very low aliasing of the second kind if w1 and w2 are
chosen to be mutually prime. The lowest number of
erroneous bits that can cause aliasing of the second type
will be w1+w2, w1 bits of assigned weight w2 having
errors in one direction and w2 bits of assigned weight w1
having errors in the opposite direction. As an example, if
the weight set {5,6} is repeated, aliasing can occur when
six bits of weight 5 have 1→0 type error and five bits of
weight 6 have 0→1 type error or vice versa. Since the
multiplicity of errors falls after a certain point, there is a
ceiling to the increase in fault detection capability that can
be obtained through choosing the weights.

Table 2. Fault Detection with a Set of Two Weights

Percentage of Faults Detected with Weights
Used

Circuits

{1,2} {2,3} {3,4}

C432 95.8 96.8 96.8
C499 98.1 98.2 98.2
C880 99.0 99.0 99.0

C1355 98.4 98.4 98.5
C1908 96.8 97.2 97.5
C2670 99.2 99.4 99.5
C3540 95.9 97.4 97.4
C5315 95.6 96.4 96.5
C6288 99.6 99.7 99.7
C7552 97.2 98.0 98.0

The results presented in Table 2 are in sync with the
analytic deductions. There is a considerable increase in
the percentage of faults detected by the weigh-set {2,3} as
compared to {1,2}. However, the increase is significantly
lower from {2,3} to {3,4}. This indicates that the
multiplicity of errors beyond 5 drops sharply for these
circuits.

Next consider the case where three weights
{w1,w2,w3} are repeated for the output bits. This case
will have higher aliasing of the second kind. Aliasing can
be kept at a minimum by the following guidelines for the
weight assignment: The weights should be mutually
prime, and the sum of two weights should not be a
multiple of the third. The lowest number of erroneous bits
required to cause aliasing for the weight set {3,7,10} is
just three since 3+7=10. No one weight should be much
larger than the other two, example {3,5,11}, since the
largest weight can easily alias with the smaller two
(3+3+5=11).

Increasing the number of weights used increases the
groups of weights that alias out. The choice of weights
can keep a ceiling on such groups. Thus the weight-set
{3,4,5} does not have any group of three weights which

alias out, whereas {2,3,4} has. Table 3 shows the
resulting increase in the percentage of faults.

Table 3. Fault Detection with a Set of Three Weights

Percentage of Faults Detected with Weights
Used

Circuits

{1,2,3} {2,3,4} {3,4,5}

C432 96.4 98.2 98.9
C499 98.9 99.1 99.1
C880 98.7 99.2 99.2

C1355 99.0 99.1 99.1
C1908 97.8 98.1 98.5
C2670 99.7 99.8 99.8
C3540 97.0 98.5 98.6
C5315 98.1 99.2 99.4
C6288 96.3 99.9 100.0
C7552 98.0 98.9 99.1

Table 4 presents the percentage of faults detected with
four weights. As there can be considerable aliasing within
four weights, some of the circuits show significant
increase in fault detection capability from {1,2,3,4} to
{2,3,4,5} to {3,4,5,6}.

Table 4. Fault Detection with a Set of Four Weights

Percentage of Faults Detected with Weights
Used

Circuits

{1,2,3,4} {2,3,4,5} {3,4,5,6}

C432 97.4 98.8 99.0
C499 99.2 99.2 99.3
C880 99.6 99.6 99.7
C1355 99.4 99.5 99.5
C1908 98.8 99.2 99.5
C2670 99.6 99.7 99.7
C3540 95.3 96.8 99.0
C5315 98.6 98.9 99.1
C6288 97.2 99.8 99.9
C7552 98.6 98.9 98.8

Table 5 summarizes the results of fault detection.
Columns two to four give the percentage of these faults
detected by parity, Berger and weight-based codes
respectively. Assume that the required fault detection
capability is ≥ 99%. An efficient weight-based code was
chosen for each circuit based on the results presented in
Table 2 through 4. Columns five and six give the
particulars of the weight-based code used. Column five
gives the weight assignment. Column six gives the
number of check bits required; the number of check bits
required by Berger Code is given along side in
paranthesis.

Table 5. Comparison of Fault Detection Capability of
Error Detecting Codes

Percentage of Faults
Detected by

Particulars of
Weight Codes

Cir-
Cuits

Parity Berger Weight
Codes

Weight-
Set

Check
Bits

C432 69.6 91.3 99.0 {3,4,5,6} 5 (3)
C499 92.4 96.1 99.1 {2,3,4} 7 (6)
C880 91.3 96.9 99.0 {1,2} 6 (5)
C1355 93.3 96.7 99.0 {1,2,3} 6 (6)
C1908 86.0 93.6 99.2 {2,3,4,5} 7 (5)
C2670 85.0 95.4 99.2 {1,2} 8 (8)
C3540 78.6 91.7 99.0 {3,4,5,6} 7 (5)
C5315 81.0 88.5 99.2 {2,3,4} 9 (7)
C6288 69.0 77.0 99.6 {1,2} 6 (6)
C7552 84.5 92.4 99.1 {3,4,5} 9 (7)

The results presented in Table 5 show that the fault
detection capability of weight-based codes is much higher
than that of the other codes. It can be made significantly
higher than that of a Berger code (special member of
weight-based codes) by a slight increase in the number of
check bits. Thus we have presented a class of codes
where the fault detection capability can be increased by a
controlled increase in the number of check bits.

Recent literature on on-line error detection of
multilevel circuits [Jha 93], [De 94], [Das 98],
[Touba 94, 97], [Saposhnikov 98] has been focussed on
modifying the circuit structure based on the code chosen
for on-line error detection. In this paper, we have
presented a method of choosing an efficient error
detecting code from the proposed class of weight-based
codes based on the circuit structure.

Currently, the area overhead of the proposed weight-
based codes is slightly higher than a Berger code.
However, the area overhead can be reduced by taking a
modulus of the total sum of weights. For example, the
number of check bits will be 3 if we take modulo 8 of the
total sum of weights. The fault detection capability in this
case will be lower than the values presented in this paper.
However, this can be offset by refining the output clusters
such that the probability of non-unidirectional faults
occurring in a group is minimal.

4. TSC Checker

In this section we present two designs for the TSC
checker for weight-based codes. The first design is a
transistor-level design and is based on the efficient Berger
code checker design proposed by Kavousianos and
Nikolos in [Kavousianos 98]. The second is a more
general design comprising of two or more Berger code
checkers followed by a small adder circuit. Any design
for Berger code checker can be used in this design.

4.1 TSC Checker: Transistor Level Design
The design of a totally self-checking checker is crucial

to the working of a self-checking circuit. Experimental
results in [De 94], [Das 98] have shown that the area
overhead of the TSC checker is usually very large.
However, a novel method for designing highly efficient
Berger code checkers has been proposed in very recent
literature [Kavousianos 98]. The highlights of these
checkers are:

1. They are near optimal with respect to the number of
transistors required for their implementation.

2. All faults, including stuck-at, transistor stuck-open,
transistor stuck-on, resistive bridging faults and
breaks, are testable by a very small set of code words.
The number of code words does not increase with the
number of information bits (C-testable).

3. They have efficient speed of operation and low power
consumption.

The design is based on a circuit called “(r,n)
aggregate-weight threshold circuit” [Kavousianos 98],
which have also been used to design k-order comparators
in [Kavousianos 97]. The (r,n) aggregate-weight
threshold circuit is a ratioed circuit where the W/L ratios
of the transistors (Fig. 2) are chosen such that:
Number of ones in X ≥ Cr-12

r-1 +Cr-22
r-2 + … +C0

gives OUT=1 else OUT=0.

Figure 2. Single Output TSC Checker [Kavousianos 98]

For the Berger code checker, based on the (r,n)
aggregate-weight threshold circuit, X corresponds to the
information bits and Cr-1, Cr-2, …, C0 correspond to the
check bits. When the input vector is a Berger code word
the output OUT gets the value (0,1) during a period of the
signal I otherwise it gets the value (1,1) or (0,0). The
nmos transistors are chosen to have the same width and
length, the W/L ratio of the pmos transistor corresponding
to Ci is chosen to give it an equivalent weight of 2

i. Thus
the aggregate weight of the conductive pmos transistors is:
Cr-12

r-1 +Cr-22
r-2 + … +C0.

A Berger code can be considered a special case of
weight-based codes where each output bit is assigned a
weight of one. Thus, the modification of the checker for
the general weight-based code would be to ratio the nmos
transistors corresponding to each output bit according to
its assigned weight. Consider the weight-based code
where the weight set used is {2,3} i.e. each odd output bit
is assigned a weight of two and each even output bit a
weight of three. Here, the W/L ratio of the nmos
transistors have to be such that the equivalent weight for
each odd transistor is two and that for each even transistor
is three.

4.2 TSC Checker: General Design
We present an efficient solution for reducing the

problem of checker design for the general weight-based
code to the Berger code checker design. The output bits
are partitioned in a manner such that the problem reduces
to computing the number of ones for a group of bits.

The design is illustrated with an example where the
weight set used is {2,3}, i.e., each odd output bit is
assigned a weight of two and each even output bit a
weight of three. The binary representation of these bits
will require log2(3+1) = 2 bits. Form partitions
corresponding to each bit in the binary representation of
the weights. The output bits are distributed in the
partitions as follows: an output bit is included in all
partitions where its assigned weight’s binary
representation is ‘1’ for that bit. There will be two
partitions corresponding to the least significant binary bit
of weight 20 and the higher binary bit of weight 21. The
partitions formed for this example will be (all output bits
with weight 3) and (all output bits with weights 2 and 3)
respectively.

Compute the number of ones for each partition using
the ones counter’s module in any Berger code checker.
For the partition corresponding to the binary bit of weight
2i, assign a weight of 2i to the number of ones computed.
Add the number of ones after the weighting to get the final
result. Assigning a weight of 2i, simply means shifting i
bits to the left with respect to the number of ones
corresponding to 20. It can be trivially verified that the
sum so obtained is the sum of the weights whose
corresponding information bit is one. The example is
illustrated in Figure 3. Outputs with assigned weight w2

contribute 1 to bit0; outputs with assigned weight w1 and w2

contribute 1 to bit1. The ones counter of any Berger code
checker design can be used to compute sum0 and sum1.

Vdd Vdd

OUT

C0 Cr -1 1 X0 Xn -1

p0 pr -1

q0 qr -1

Figure 3. Reduction of the Problem of Summing Weights
to Counting Number of Ones

The design can easily be generalized for any set of
weights. Thus we have effectively reduced the problem of
designing TSC checkers for weight-based codes to the
problem of designing a Berger code checker. The
modules in the proposed weight-based code checker are
Berger code checkers followed by a small adder block.
The TSC property of the checker follows from the TSC
property of the Berger code checker.

5. Conclusion

This paper has presented the concept of weight-based
codes, which can be considered a generalization of Berger
codes. Existing checker designs for Berger codes can be
modified to design checkers for weight-based codes.
Weight-based codes present a controlled method of
increasing the number of check bits over the number
required by Berger codes to achieve a desired fault
detection capability. Experimental results have been
presented which show the superior fault detection
capability of weight-based codes as compared to standard
error detecting codes.

In this paper, we have presented an approach of
choosing an efficient error detecting code from the
proposed class of weight-based codes based on the circuit
structure. In several scenarios the original circuit
structure cannot be modified. For example, reuse of
legacy designs (having optimized layout), or custom
design of circuits with little or no automation of synthesis.
In such cases, the approach presented in this paper is the
effective solution for on-line error detection.

Acknowledgments
This work is part of the ROAR project and is based

upon work supported in part by the Defense Advanced
Research Projects Agency (DARPA) under Contract
Number DABT63-97-C-0024.

References
[Anderson 84] Anderson, D. A., “Design of Self-Checking

Digital Network, Using Coding Techniques,” Coordinated

Sci. Lab. Univ. Illinois, Urbana-Champaign, Rep R-527,
June 1984.

[Berger 61] Berger, J.M., “A Note on Error Detecting Codes for
Asymmetric Channels,” Information and Control, Vol. 4, pp.
68-73, Mar. 1961.

[Das 98] Das, D., and N. A. Touba, “Synthesis of Low-Cost
Concurrent Error Detection Based on Bose-Lin Codes,”
Proc. of VLSI Test Symposium, pp. 309-315, 1998.

[De 94] De, K., C. Natarajan, D. Nair, and P. Banerjee, “RSYN:
A System for Automated Synthesis of Reliable Multilevel
Circuits,” IEEE Trans. VLSI Systems, pp. 186-195, Jun.
1994.

[Goessel 93] Goessel, M., and S. Graf, Error Detection Circuits,
London, NY: McGraw-Hill, 1993.

[Gorshe 96] Gorshe, S., and B. Bose, “A Self-Checking ALU
Design with Efficient Codes,” Proc. of VLSI Test
Symposium, pp. 157-161, 1996.

[Jha 93] Jha, N.K., and S.Wang, “Design and Synthesis of Self-
Checking VLSI Circuits,” IEEE Trans. Computer-Aided
Design, Vol. 12, No.6, pp. 878-887, Jun. 1993.

[Kavousianos 97] Kavousianos, X., and D. Nikolos, “Self-
Exercising, Self-Testing k-order Comparators,” Proc. of
VLSI Test Symposium, pp. 216-221, 1997.

[Kavousianos 98] Kavousianos, X., and D. Nikolos, “Novel
single and Double Output TSC Berger Code Checkers,”
Proc. of VLSI Test Symposium, pp. 348-353, 1998.

[Lo 92] Lo, J.-C., S. Thanawastein, and M. Nicolaidis, “An SFS
Berger Check Prediction ALU and Its Application to Self-
Checking Processor Designs,” IEEE Trans. on Computer
Aided-Design, Vol. 11, No. 4, pp. 525-540, Apr. 1992.

[Mak 82] Mak, G.P, J.A. Abraham, and E.S. Davidson, “The
Design of PLAs with Concurrent Error Detection,” Proc.
FTCS, pp. 303-310, Jun. 1982.

[Nicolaidis 91] Nicolaidis, M., and M. Boudjit, “New
Implmentations, Tools, and Experiments for Decreasing
Self-Checking PLAs Area Overhead,” Proc. of International
Conference on Computer Design, pp. 275-281, 1991.

[Pradhan 86] Pradhan, D.K., Fault Tolerant Computing:
Theory and Techniques, Vol. 1, Englewood Cliffs, NJ:
Prentice-Hall, 1986, Chap. 5.

[Touba 94] Touba, N.A., and E.J. McCluskey, “Logic Synthesis
Techniques for Reduced Area Implementation of Multilevel
Circuits with Concurrent Error Detection,” International
Conf. Computer-Aided Design, pp. 651-654, 1994.

[Touba 97] Touba, N.A., and E.J. McCluskey, “"Logic
Synthesis of Multilevel Circuits with Concurrent Error
Detection", IEEE Transactions on Computer-Aided Design,
Vol. 16, No. 7, pp. 783-789, Jul. 1997.

[Saposhnikov 98] Saposhnikov, V. V., A. Morosov, VL. V.
Saposhnikov, and M. Goessel, “A New Design Method for
Self-Checking Unidirectional Combinational Circuits,”
Jouranl of Electronic Testing:Theory and Applications, pp.
41-53, 1998.

[Saxena 86] Saxena N.R., and J.P. Robinson, “Accumulator
compression testing,” IEEE Transactions on Computers,
vol.C-35, no.4, pp. 317-21, April 1986.

o1 o2 o3 o4 o5

w1 w2 w1 w2 w1

sum0 sum1

 bit1 bit0

w1=2 1 0

w2=3 1 1

sum0*20 + sum1*21 = final sum

