
Scan Vector Compression/Decompression Using Statistical Coding

Abhijit Jas, Jayabrata Ghosh-Dastidar, and Nur A. Touba

Computer Engineering Research Center
Department of Electrical and Computer Engineering

University of Texas, Austin, TX 78712-1084
E-mail: {jas, dghosh, touba}@cat.ece.utexas.edu

Abstract

A compression/decompression scheme based on
statistical coding is presented for reducing the amount of
test data that must be stored on a tester and transferred
to each core in a core-based design. The test vectors
provided by the core vendor are stored in compressed
form in the tester memory and transferred to the chip
where they are decompressed and applied to the core.
Given the set of test vectors for a core, a statistical code
is carefully selected so that it satisfies certain properties.
These properties guarantee that it can be decoded by a
simple pipelined decoder (placed at the serial input of the
core’s scan chain) which requires very small area.
Results indicate that the proposed scheme can use a
simple decoder to provide test data compression near
that of an optimal Huffman code. The compression
results in a two-fold advantage since both test storage
and test time are reduced.

1. Introduction

One of the increasingly difficult challenges in testing
systems-on-a-chip is dealing with the large amount of test
data that must be transferred between the tester and the
chip [Chandramouli 96], [Zorian 97]. Systems-on-a-chip
are commonly constructed from pre-designed functional
blocks called cores. Each core has a specified set of test
vectors that must be applied to it. The test vectors must
be stored on the tester and then transferred to the inputs
of the core during testing. As more and more cores (each
with its own test set) are placed on a single chip, the
amount of test data is growing rapidly. This poses a
serious problem because of the cost and limitations of
ATE (automated test equipment). Testers have limited
speed, channel capacity, and memory. The amount of
time required to test a chip depends on how much test
data needs to be transferred to the cores and how fast the
data can be transferred (i.e., the test data bandwidth to
each core). This depends on the speed and channel
capacity of the tester and the organization of the scan
chains on the chip. Both test time and test storage are
major concerns for systems-on-a-chip.

One solution to this problem is to use built-in self-test
(BIST) where on-chip hardware is used to test the cores.
However for pre-designed logic cores, this is only
practical if the core was originally designed to achieve
high fault coverage with BIST. Many legacy designs
cannot be efficiently tested with BIST without significant
re-design effort. Currently there are few commercially
available cores that include BIST features. Usually only
a set of test vectors for the core is available. The amount
of BIST hardware required to apply a large set of
deterministic test vectors is generally prohibitive.

This paper presents a statistical compression/
decompression scheme to reduce the amount of test data
that must be stored on the tester and transferred to a core.
The idea is to store the test vectors for a core in the tester
memory in compressed form, and then transfer the
compressed vectors to the chip where a small amount of
on-chip circuitry is used to decompress the test vectors.
Instead of having to transfer each entire test vector from
the tester to the core, a smaller amount of compressed
data is transferred instead. The approach presented here
significantly reduces both test storage requirements and
the overall test time.

Transferring compressed test vectors takes less time
than transferring the full vectors at a given bandwidth.
However, in order to guarantee a reduction in the overall
test time, the decompression process should not add
additional delay (which would subtract from the time
saved in transferring the test data). Moreover, the on-
chip decompression circuitry must be small so that it
doesn’t add significant area overhead. Given a set of test
vectors, a method is presented here for choosing a
statistical code (similar to Huffman coding) which can be
decoded with a simple pipelined decoder. The properties
of the code are chosen such that the pipelined decoder
has a very small area and is guaranteed to be able to
decode the test data as fast as the tester can transfer it.
Thus, if the amount of test data is compressed by a factor
of c, then that means both the tester memory
requirements and the total test time are reduced by a
factor of c. The test data is compressed by exploiting
inherent correlations in the test vectors due to the
structural relationship among the faults.

The compression/decompression scheme presented in
this paper can be used for generating any set of
deterministic scan vectors. It preserves the sequence of
the vectors and requires no modifications to the circuit-
under-test. It does not require any knowledge of the
internal design of the circuit-under-test, and thus is
suitable for testing intellectual property cores where the
core supplier does not provide any information about the
internal structure of the core.

2. Related Work

Novel approaches for compressing test data using the
Burrows-Wheeler transform and run-length coding were
presented by Yamaguchi, et al., [Yamaguchi 97],
[Ishida 98]. These schemes were developed for reducing
the time to transfer test data from a workstation across a
network to a tester (not for use on chips). The
decompression process is implemented with software. It
is much too complex and slow for an on-chip hardware
implementation as described here.

Iyengar, et. al [Iyengar 98] presented the idea of
statistically encoding test data. They described a BIST
scheme for non-scan circuits based on statistical coding
using comma codes (very similar to Huffman codes) and
run-length coding. It takes advantage of the fact that
sequential test sets often contain many repeated patterns
which can be encoded efficiently with statistical
encoding. Results indicate that the approach works well
for circuits with a small number of primary inputs.

A scheme for compression/decompression of test data
using cyclical scan chains is described in [Jas 98]. It uses
careful ordering of the test set and formation of cyclical
scan chains to achieve compression with run-length
codes. A drawback of this approach is the need to
configure the cyclical scan chains during testing.

This paper presents a statistical coding scheme for
testing cores with internal scan. One of the novel
features of this approach is that the code that is used for a
particular core is carefully chosen such that only a small
decoder circuit is required. There are no restrictions on
the order of the test set, and no modifications need to be
made to the core-under-test. The small decoder circuit is
simply placed at the serial input of the core’s scan chain.
As will be shown, the decoder provides a significant
reduction in the amount of test data that must be
transported from the tester to the core.

3. Statistical Coding

The compression/decompression scheme described in
this paper is based on statistical coding. In statistical
coding, variable length codewords are used to represent
fixed-length blocks of bits in a data set. For example, if

a data set is divided into 4-bit blocks, then there are 24 or
16 unique 4-bit blocks. Each of the 16 possible 4-bit
blocks can be represented by a binary codeword. The
size of each codeword is variable (it need not be 4 bits).
The idea is to make the codewords that occur most
frequently have a smaller number of bits, and those that
occur least frequently to have a larger number of bits.
This minimizes the average length of a codeword. The
goal is to obtain a coded representation of the original
data set that has the smallest number of bits.

A Huffman code [Huffman 52] is an optimal
statistical code that is proven to provide the shortest
average codeword length among all uniquely decodable
variable length codes. A Huffman code is obtained by
constructing a Huffman tree. The path from the root to
each leaf gives the codeword for the binary string
corresponding to the leaf. An example of constructing a
Huffman code can be seen in Table 1 and Figs. 1 and 2.
An example of a test set divided into 4-bit blocks is
shown in Fig. 1. Table 1 shows the frequency of
occurrence of each of the possible blocks (referred to as
symbols). There are a total of 60 4-bit blocks in the
example in Fig. 1. Figure 2 shows the Huffman tree for
this frequency distribution and the corresponding
codewords are shown in Table 1.

0010 0100 0010 0110 0000 0010 1011 0100 0010 0100 0110 0010
0010 0100 0010 0110 0000 0110 0010 0100 0110 0010 0010 0000
0010 0110 0010 0010 0010 0100 0100 0110 0010 0010 1000 0101
0001 0100 0010 0111 0010 0010 0111 0111 0100 0100 1000 0101
1100 0100 0100 0111 0010 0010 0111 1101 0010 0100 1111 0011

Figure 1. Example of Test Set Divided into
4-Bit Blocks

Table 1. Statistical Coding Based on Symbol
Frequencies for Test Set in Fig. 1

 Sym. Freq Pat. Huff. Code Sel. Code
 S0 22 0010 10 10
 S1 13 0100 00 110
 S2 7 0110 110 111
 S3 5 0111 010 00111
 S4 3 0000 0110 00000
 S5 2 1000 0111 01000
 S6 2 0101 11100 00101
 S7 1 1011 111010 01011
 S8 1 1100 111011 01100
 S9 1 0001 111100 00001
 S10 1 1101 111101 01101
 S11 1 1111 111110 01111
 S12 1 0011 111111 00011
 S13 0 1110 - -
 S14 0 1010 - -
 S15 0 1001 - -

An important property of Huffman codes is that they
are prefix-free. No codeword is a prefix of another
codeword. This greatly simplifies the decoding process.
The decoder can instantaneously recognize the end of a
codeword uniquely without any lookahead.

The amount of compression that can be achieved with
statistical coding depends on how skewed the frequency
of occurrence is for the different codewords. If all of the
codewords occur with equal frequency, then no
compression can be achieved. It is well known, however,
that the test vectors in a test set tend to have a lot of
correlations. This arises from the fact that faults in the
CUT that are structurally related require similar input
value assignments in order to be provoked and sensitized
to an output. This often results in skewed frequency of
occurrence for different codewords. Moreover, for test
cubes (which are test vectors that are not fully specified,
i.e., contain X’s), the compression can be very large.
The X’s provide flexibility to allow a block to be
encoded with more than one possible codeword. The
shortest possible codeword can be chosen for each block
to maximize the compression.

To fully exploit the correlations in a test set, the
number of bits in each scan vector should be a multiple
of the fixed-length block size used for the statistical code.
When dividing the test set into b-bit blocks for coding, if

the size of the scan vectors is not a multiple of b, then
X’s can be added to pad the start of the vectors (first bits
shifted into the scan chain) to make the length a multiple
of b. Shifting some extra bits (at the start of the vector)
into the scan chain doesn’t matter provided the final
contents of the scan chain contains the correct test vector
when it is applied to the core-under-test. Having each
scan vector be a multiple of the block size aligns the
blocks within the vectors so that the correlations between
the bits will skew the frequencies.

4. Overview Of Proposed Scheme

The compression/decompression scheme proposed
here involves statistically coding the scan vectors for a
core and then placing an on-chip decoder at the serial
input of the core’s scan chain to decompress the vectors.
A block diagram illustrating the scheme is shown in
Fig. 4. The tester channel shifts a constant stream of
variable length codewords (corresponding to compressed
scan data) to the decoder. The decoder generates the
corresponding fixed-length blocks. The number of bits in
the fixed-length block will often be greater than the
number of bits in the codeword, so the rate at which data
is coming out of the decoder is higher than the rate at
which the data is coming into the decoder. This means
that the decompressed scan vectors must be shifted into
the core’s scan chain faster than the compressed scan
vectors are shifted into the decoder. There are two ways
to achieve this:

1. Use scan chain with faster clock than tester clock
This is illustrated in Fig. 4. If the system clock rate is
faster than the tester clock rate, then it may be possible to
clock the scan chain at a faster clock rate than the tester’s
clock rate (as described in [Heidel 98]). A serializer is
placed between the decoder and the core’s scan chain.
The serializer is loaded in parallel by the decoder
(allowing the decoder to generate multiple bits of data in
a slower tester clock cycle) and serially shifted out into
the core’s scan chain at a faster clock rate. One
advantage of this approach is that it can be used to
provide at-speed scan with a slow tester [Heidel 98].

2. Use single tester channel to feed multiple scan chains
This is illustrated in Fig. 5. If it is not possible to clock
the scan chain with a faster clock than the tester clock,
then another approach is to have the tester channel rotate
between n scan chains (each scan chain has its own
decoder). Each clock cycle, the tester shifts in a bit for a
different decoder for each of the n scan chains. Each of
the n decoders simply samples its input once every n
clock cycles in a different phase from the other decoders.
For example, if there are two scan chains (n = 2), then

60

23

13 10

5 5

3 2

37

22 15

7 8

44

2 2

1 1

2

1 1

2

1 1

s1

s3

s4 s5

s0

s2

s6

s7 s8 s9 s10 s11 s12

10

0 1 0 1

0 1

0 1

0 1

0 1

0
1

0 1 0 1 0 1

1
0

Figure 2. Huffman Tree for the Code Shown in Table 1

42

22 20

13 7

s0

s1 s2

0 1

0 1

Figure 3. Huffman Tree for the 3 Highest Frequency
Symbols in Table 1

the decoder for scan chain 1 would sample its input on
even tester clock cycles and the decoder for scan chain 2
would sample its input on odd tester clock cycles. With
this approach, the “effective clock rate” for each of the
decoders is divided by n. However, the scan chain
corresponding to each decoder is still clocked at the
normal tester clock rate and thus its clock rate is n times
faster than the decoder. Each time the decoder is clocked
once, the scan chain is clocked n times.

Tester

Compressed
Test Data

Chip

Core Under Test
(CUT)

Decoder

Slow Clock

Fast Clock

Slow Clock

Serializer

Scan Chain

Fast Clock

Figure 4. Block Diagram Illustrating Scheme
for a Slower Tester Clock

Tester

Compressed
Test Data

Chip

Clock

Clock
Core Under Test

(CUT)

Decoder 1

Fast Clock

Slow Clock

Serializer

Scan Chain

Fast Clock

Clock
Core Under Test

(CUT)

Decoder N

Fast Clock

Slow Clock

Serializer

Scan Chain

Fast Clock

Figure 5. Block Diagram Illustrating Scheme Using
Single Tester Channel to Feed Multiple Cores

In the remainder of this paper, without loss of
generality, it will be assumed that the scan clock is faster
than the tester clock (i.e., corresponding to scenario #1
above). However, all of the concepts apply equally as
well for scenario #2 where the tester channel feeds
multiple scan chains such that the “effective clock rate”
seen by each decoder is slower than the clock rate of the
scan chain.

To illustrate how the decoder and serializer work,
consider the following example. Suppose the scan
vectors are divided into 4-bit blocks, and each 4-bit block
is replaced by a variable length codeword. The
compressed test data stored on the tester consists of the
variable length codewords. These codewords are shifted
into the decoder as a continuous stream of bits. If the
codewords are prefix-free, than the decoder can easily
recognize when it has received a complete codeword.
When the decoder has received a complete codeword, it
loads the corresponding 4-bit block in parallel into the
serializer. The contents of the serializer are then shifted
into the core’s scan chain. If the core’s scan chain is
clocked at twice the clock rate that the tester operates at,
then after two tester clock periods the entire contents of
the serializer will have been shifted into the core’s scan
chain. During the two tester clock periods that the
serializer is being shifted into the scan chain, the decoder
can be receiving the next codeword.

The key to making the scheme work is careful
selection of the statistical code that is used for
compressing the test set. There are two important issues
that must be considered in selecting the code: one is that
the decoder must be small in order to keep the area
overhead down, and the other is that the decoder must not
output the decompressed bits into the serializer faster
than they can be shifted out into the core’s scan chain.
While a Huffman code gives the optimal compression for
a test set divided into a particular fixed-length block size,
it generally requires a very large decoder. A Huffman
code for a fixed-length block size of b bits requires a
finite state machine (FSM) decoder with 2b-1 states.
Thus the size of the decoder for a Huffman code grows
exponentially as the block size is increased. A method
for selecting an efficient statistical code for the proposed
scheme is described in the following section.

5. Statistical Code Selection For Scheme

Given the test set for a core, a statistical code for
compressing the test set must be selected. There is a
tradeoff in selecting the code between the amount of
compression that is achieved and the complexity of the
decoder. Moreover, if the clock rate of the tester is
Clock_Rate(tester) and the clock rate of the core’s scan

chain is Clock_Rate(scan) then the ratio of the clock
rates, Clock_Rate(tester) / Clock_Rate(scan), limits the
minimum size of a codeword. If the test set is divided
into fixed-length blocks of b bits, then the serializer will
hold b bits, and thus it takes b scan clock cycles to shift
the serializer’s contents into the core’s scan chain.
During the time that the contents of the serializer are
being shifted into the core’s scan chain, the tester is
shifting bits into the decoder. When the decoder receives
a complete codeword, then it needs to output the
corresponding block of b bits into the serializer. If the
codeword is too short, then the serializer may not have
been emptied yet which would cause a problem for the
decoder. So, in order to ensure that the serializer is
always empty when the decoder finishes decoding a
codeword, the minimum size of a codeword,
Min_Size(codeword), must be no smaller than the ratio of
the tester and scan clock rates times the size of each
block:

Min Size(codeword) ≥
Clock_Rate(tester)

Clock_Rate(scan)
x b

For example, if the block size is 8 and the scan clock
rate is twice the tester clock rate, then the minimum size
of a codeword is 4. (Remember that one way to make
the scan clock rate be twice as fast as the “effective clock
rate” as seen by the decoder is to simply have the tester
channel feed two scan chains so that the rate that the
decoder receives data from the tester is half as fast as the
rate at which data can be shifted into the scan chain.)

Note that there is no constraint on the maximum size
of a codeword. When the serializer finishes shifting the
data into the scan chain, it will wait (hold the scan clock)
until the decoder is ready to load the next block into the
serializer.

Using a Huffman code would provide the maximum
compression, however, it would require a complex
decoder and may not satisfy the constraint on the
minimum size of a codeword. Therefore, some
alternative statistical code must be selected. The
approach taken here involves using a selective coding
approach for which a very simple decoder can be
constructed. Consider the case where the test set is
divided into fixed-length blocks of b bits, then there will
be 2b codewords. The first bit of each codeword will be
used to indicate whether the following bits are coded or
not. If the first bit of the codeword is a ‘0’, then the next
b bits are not coded and can simply be passed through the
decoder as is (hence the complete codeword has b+1
bits). If the first bit of the codeword is a ‘1’, then the
next variable number of bits form a prefix-free code that
will be translated by the decoder into a b-bit block. The
idea is to only code the most frequently occurring b-bit

blocks using codewords with small numbers of bits (less
than b, but greater than or equal to Min_Size(codeword)).
Compression is achieved by having the most common b-
bit blocks be represented by codewords with less than b-
bits. The decoder is simple because only a small number
of blocks are coded. The vast majority of the blocks are
not coded and can be simply passed through the decoder.
If n blocks are coded, then the decoder can be
implemented with an FSM with no more than n + b states
(compared with a Huffman code which requires 2b-1
states).

An example to illustrate the proposed approach for
selecting a statistical code is shown in Fig. 3. Consider
the test set in Fig. 1. If we divide the entire test set into
4-bit blocks then we get the frequency distribution as
shown in the second column of Table 1. As can be seen
from Table 1, the patterns having the highest frequencies
are 0010, 0100 and 0110. So these are the patterns that
are coded while the rest of them will be left unchanged.
We construct a Huffman tree for the three patterns to get
their codewords (as shown in Fig. 3). The codewords for
the remaining 13 symbols is simply a 0 followed by the
symbol itself (as shown in the last column of Table 1).

The two important parameters in selecting the code
are the block size b and the number of coded blocks n.
Once those have been chosen, then the procedure for
constructing the code is mechanical. A Huffman tree is
formed for the n most frequently occurring b-bit blocks.
The codewords for the most frequently occurring blocks
is simply a ‘1’ followed by the Huffman code obtained
from the Huffman tree. The codewords for the remaining
blocks are simply a ‘0’ followed by the b-bit block itself.
The amount of area overhead for the decoder can be
controlled by placing an upper bound on the values of n
and b. For a particular value of b, the amount of
compression that will be achieved can be computed in
linear time with respect to the size of the test set. Thus,
the best value of b can be efficiently determined through
experimentation. Several values of b can be tried for a
particular test set to determine which gives the best
compression.

To summarize, the statistical code that is selected
using the approach described here has the following
properties:
1. No codeword is smaller than the Min_Size(codeword)

constraint based on the ratio of the tester clock rate to
the scan clock rate.

2. No codeword is larger than b+1 bits.
3. Any codeword that is b+1 bits long is always a ‘0’

followed by the b-bit block that it corresponds to.
4. A decoder for the code can be implemented by an

FSM with n + b states.

6. Implementation

Once the statistical code has been chosen, then a
decoder for the code is synthesized. One way to
implement the decoder is to use a simple FSM. There are
two inputs to the decoder, one is the tester clock and the
other is the serial input from the tester channel. For a
block size of b, the decoder has b data outputs and two
control outputs. The two control outputs are:
parallel_load (Par) and serial_load (Ser). These two
signals control the buffering and loading of data into the
serializer when the data has been decoded. The state
transition diagram for the decoder FSM can be easily
formed from the tree representation of the code. An
example is shown in Fig. 6. If the first bit of the
codeword is a ‘0’ indicating that the next b bits are not
coded, then the decoder simply passes the bits through by
serially loading them into an internal buffer and when
done loads them in parallel into the serializer. If the first
bit of the codeword is a ‘1’ indicating that the subsequent
bits form a prefix-free variable length code, then the
decoder branches on each bit one at a time until it
reaches the end of the codeword at which point it does a
parallel load of the appropriate b-bit block into the
serializer.

Note than each codeword has a bit indicating whether
the pattern that follows is encoded or not. In our scheme
we use a ‘0’ to indicate “no coding” and a ‘1’ to indicate
coding. The state transition diagram of the FSM for the
decoder is shown in Fig. 6.

 Another way to implement the decoder is to use a
ROM or RAM by placing a further restriction on the
selection of the statistical code. The additional
restriction is that all codewords must be one of two fixed
sizes. If the first bit of the codeword is a ‘0’, then the
next b-bits are the block itself. If the first bit of the
codeword is a ‘1’, then the next a-bits form an address
into a ROM/RAM whose contents contain the
corresponding b-bit block. For example, if the block size
is 8 (b = 8), and the address size is 4 (a = 4), then there
are 28=64 different 8-bit blocks and 24=16 of them can be
encoded with (a+1 = 5) bit codewords while the remaining
48 of them would have (b+1 = 9) bit codewords. The
decoding would be done using a 16x8 bit ROM or RAM.
If a RAM is used, it could be reused for different cores
by simply changing its contents to correspond to the
appropriate code for each core. Note also that a RAM
that is already present in the functional design could be
adapted for this purpose during testing. If the RAM is
bigger than what is needed, it can be used by simply
padding the high-order address bits with 0’s and looking
only at the low-order data bits when decoding the
statistical codes.

a

b c

d e f

g

1/-

1/-

0/
s 0

(P
a

r)

0/s1
(P

ar)

1/s2
(P

ar)

0/-

0/0(Ser)

1/1(Ser)

0/0(Ser)

1/1(Ser)

0/0(Ser) 1/1(Ser)

0/0(Ser)

1/1(Ser)

Initial
State

Figure 6. State Transition Diagram of the FSM
Decoder for Selected Code

7. Experimental Results

The proposed compression/decompression scheme
was used to compress test sets for the largest
ISCAS benchmark circuits. An ATPG tool was used to
generate test vectors that provided 100% coverage of
detectable faults in each circuit. Static compaction of the
test set was performed by merging the test cubes when
possible and doing reverse 3-valued fault simulation to
remove superfluous test cubes that aren’t needed to
detect faults. Unspecified input assignments were left as
X’s when selecting the statistical code to enable better
compression. When encoding a block containing X’s, the
value of the X’s can be chosen to match the codeword
whose representation requires the smallest number of
bits. After all of the X’s have been filled to minimize the
statistically encoded data, then fault simulation can be
done to remove any superfluous test vectors. After
specifying the X’s, some of the vectors may detect more
faults than they did before thus rendering other vectors
superfluous which can thus be removed. Normally, the
X’s in test cubes are filled with random values to try to
reduce the number of vectors needed to detect all the
faults thereby providing some compression. However, as
can be seen in Table 2, the proposed statistical coding
approach provides a much greater compression than
doing a random fill. For each circuit, Table 2 shows the
amount of compression that can be achieved with random
fill, and then compares it with the results for using
statistical coding with 3 different block sizes: 4, 6, and 8.
For each block size, the compression achieved by using a
normal Huffman coding is shown followed by the
compression achieved using the scheme described here.
The percentage of compression is computed as:

[(Original Bits - Compressed Bits /(Original Bits)] x 100

The number of states required in a FSM decoder for each
code is shown. As can be seen, the code selected for the
proposed scheme provides slightly less compression than
a Huffman code, but it allows the use of a much simpler
decoder. This is essential for making the scheme an area
efficient approach for reducing test time and test storage
requirements.

While the number of states for the Huffman decoder
grows exponentially, the number of states for the
proposed scheme grows linearly. The block size provides
an easy way to tradeoff between area overhead and
compression with the proposed scheme. Larger block
sizes generally give greater compression, but require a
more complex decoder and larger serializer.

8. Conclusion

Statistical coding provides a powerful way to
compress test data. It provides a two-fold advantage in

both reducing the amount of test data that needs to be
stored on the tester and reducing the time for transferring
test data from the tester to the circuit-under-test. The
drawback of using statistical coding is the on-chip
circuitry needed for decompressing the test vectors. The
scheme described in this paper addresses this problem by
selecting a “simple-to-decode” statistical code for a
particular test set. Results indicate that a small FSM
decoder can be used to provide compression near that of
an optimal Huffman code.

The key ideas presented in this paper can be applied
to other types of compression codes as well. One area for
further research is to consider variable-to-variable length
codes for compressing test data. The complexity of the
decoding process could be constrained by careful
selection of the code.

Acknowledgements

This material is based on work supported in part by
the National Science Foundation under Grant No. MIP-
9702236, and in part by the Texas Advanced Research
Program under Grant No. 1997-003658-369.

References

[Chandramouli 96] Chandramouli, R., and S. Pateras, “Testing
Systems on a Chip,” IEEE Spectrum, pp. 42-47, Nov. 1996.

[Heidel 98] Heidel, D., S. Dhong, P. Hofstee, M. Immediato,
K. Nowka, J. Silberman, K. Stawiasz, “High Speed
Serializing/De-Serializing Design-For-Test Method for
Evaluating a 1GHz Microprocessor,” Proc. of VLSI Test
Symposium, pp. 234-238, 1998.

[Huffman 52] Huffman, D.A., “A Method for the Construction
of Minimum Redundancy Codes,” Proc. of IRE, Vol. 40,
No. 9, pp. 1098-1101, Sep. 1952.

[Ishida 98] Ishida, M., D.S. Ha, T. Yamaguchi, “COMPACT: A
Hybrid Method for Compressing Test Data,” Proc. of VLSI
Test Symposium, pp. 62-69, 1998.

[Iyengar 98] Iyengar, V., K. Chakrabarty, and B.T. Murray,
“Built-in Self Testing of Sequential Circuits Using
Precomputed Test Sets,” Proc. of VLSI Test Symposium, pp.
418-423, 1998.

[Jas 98] Jas, A., and N.A. Touba, “Test Vector Decompression
Via Cyclical Scan Chains and Its Application to Testing
Core-Based Designs,” Proc. of International Test
Conference, pp. 458-464, 1998.

[Yamaguchi 97] Yamaguchi, T., M. Tilgner, M. Ishida, and
D.S. Ha, “An Efficient Method for Compressing Test
Data,” Proc. of International Test Conference, pp. 191-199,
1997.

[Zorian 97] Zorian, Y., “Test Requirements for Embedded
Core-based Systems and IEEE P1500,” Proc. of
International Test Conference, pp. 191-199, 1997.

Table 2. Compression Achieved for Test Cubes Providing
100% Fault Coverage of Detectable Faults

R-Fill Huffman Code Selected Code
Circuit
Name

Comp.
(%)

Blk
Size

FSM
States

Comp.
(%)

Blk
Size

FSM
States

Comp.
(%)

c2670 15.9
4
6
8

15
63
255

59.0
67.3
72.1

4
6
8

5
8
16

41.5
58.3
61.3

c3540 17.4
4
6
8

15
63
255

34.8
42.7
49.5

4
6
8

5
12
21

26.7
35.7
40.6

c5315 11.5
4
6
8

15
63
255

60.1
65.4
71.4

4
6
8

5
8
10

43.9
57.2
63.6

c6288 7.3
4
6
8

15
63
255

45.8
55.3
56.0

4
6
8

5
12
24

36.1
43.2
44.6

c7552 17.5
4
6
8

15
63
255

44.9
61.7
66.2

4
6
8

7
8
17

31.0
53.1
56.4

s5378 0
4
6
8

15
63
255

61.2
67.8
73.1

4
6
8

5
8
20

45.6
59.5
62.0

s9234 23.2
4
6
8

15
63
255

50.8
76.7
76.8

4
6
8

6
5
9

40.1
70.9
67.1

s13207 6.0
4
6
8

15
63
255

61.2
82.0
86.0

4
6
8

6
5
9

48.8
80.2
83.5

s15850 10.6
4
6
8

15
63
255

53.7
81.1
78.8

4
6
8

5
7
10

35.8
78.9
70.5

s38417 21.3
4
6
8

15
63
255

53.9
60.1
63.5

4
6
8

8
13
17

32.7
47.0
53.6

