Convert TTL Voltage Levels to MOS Levels
High Sink-Current Capability
Input Clamping Diodes Simplify System Design
Open-Collector Drivers for Indicator Lamps and Relays
Inputs Fully Compatible With Most TTL Circuits

These TTL hex inverter buffers/drivers feature high-voltage open-collector outputs for interfacing with high-level circuits (such as MOS) or for driving high-current loads (such as lamps or relays), and also are characterized for use as inverter buffers for driving TTL inputs. The SN5406 and SN7406 have minimum breakdown voltages of 30 V. The SN5416 and SN7416 have minimum breakdown voltages of 15 V. The maximum sink current is 30 mA for the SN5406 and SN5416, and 40 mA for the SN7406 and SN7416.

## ORDERING INFORMATION

<table>
<thead>
<tr>
<th>TA</th>
<th>PACKAGE†</th>
<th>ORDERABLE PART NUMBER</th>
<th>TOP-SIDE MARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SOIC – D</td>
<td>Tube</td>
<td>SN7406D</td>
</tr>
<tr>
<td></td>
<td>SOIC – D</td>
<td>Tape and reel</td>
<td>SN7406DR</td>
</tr>
<tr>
<td></td>
<td>PDIP – N</td>
<td>Tube</td>
<td>SN7406N</td>
</tr>
<tr>
<td></td>
<td>PDIP – N</td>
<td>Tube</td>
<td>SN7416N</td>
</tr>
<tr>
<td></td>
<td>SOP – NS</td>
<td>Tape and reel</td>
<td>SN7406NSR</td>
</tr>
<tr>
<td></td>
<td>CDIP – J</td>
<td>Tube</td>
<td>SNJ5406J</td>
</tr>
<tr>
<td></td>
<td>CDIP – W</td>
<td>Tube</td>
<td>SNJ5406W</td>
</tr>
<tr>
<td></td>
<td>CDIP – J</td>
<td>Tube</td>
<td>SNJ5416J</td>
</tr>
<tr>
<td></td>
<td>CDIP – W</td>
<td>Tube</td>
<td>SNJ5416W</td>
</tr>
<tr>
<td></td>
<td>LCCC – FK</td>
<td>Tube</td>
<td>SNJ5406FK</td>
</tr>
</tbody>
</table>

†Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
logic diagram (positive logic)

```
A    1A  1  2    2Y
     2
     3  4  4A  4
3A  5  5  6A  6  6
     8  8  8Y
5A  9  9  10  10  10
     11 11  11
6A 13  13  12  12  12

Y = A
```

schematic (each buffer/driver)

```
Input A

6 kΩ

1.4 kΩ

1 kΩ

2 kΩ

100 Ω

GND

Output Y

1.6 kΩ

V CC

06, '16

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage, V CC (see Note 1) ................................................................. 7 V
Input voltage, V I (see Note 1) ................................................................. 5.5 V
Output voltage, V O (see Notes 1 and 2): SN5406, SN7406 .......................... 30 V
SN5416, SN7416 ......................... 15 V
Package thermal impedance, θ JA (see Note 3): D package ......................... 86°C/W
N package ................................. 80°C/W
NS package .............................. 76°C/W
Storage temperature range, T stg ............................................................. −65°C to 150°C

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Voltage values are with respect to network ground terminal.
2. This is the maximum voltage which should be applied to any output when it is in the off state.
3. The package thermal impedance is calculated in accordance with JEDE 51-7.
### recommended operating conditions

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SN5406</th>
<th>SN5416</th>
<th>SN7406</th>
<th>SN7416</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>Supply voltage</td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
<td>4.75</td>
<td>5</td>
</tr>
<tr>
<td>VH</td>
<td>High-level input voltage</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VL</td>
<td>Low-level input voltage</td>
<td>0.8</td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOH</td>
<td>High-level output voltage</td>
<td>'06</td>
<td>30</td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>IOL</td>
<td>Low-level output current</td>
<td>30</td>
<td></td>
<td>40</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>TA</td>
<td>Operating free-air temperature</td>
<td>-55</td>
<td></td>
<td>125</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SN5406</th>
<th>SN5416</th>
<th>SN7406</th>
<th>SN7416</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIK</td>
<td>VCC = MIN, Ii = -12 mA</td>
<td>-1.5</td>
<td></td>
<td>-1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOH</td>
<td>VCC = MIN, VIL = 0.8 V, VOH = §</td>
<td>0.25</td>
<td></td>
<td>0.25</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>VOL</td>
<td>VCC = MIN, VIL = 2 V</td>
<td>IOL = 16 mA</td>
<td>0.4</td>
<td></td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>VCC = MAX,</td>
<td>VIL = 5.5 V</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IIL</td>
<td>VCC = MAX, VIL = 0.4 V</td>
<td>-1.6</td>
<td></td>
<td>-1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICCH</td>
<td>VCC = MAX</td>
<td>30</td>
<td></td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICCCL</td>
<td>VCC = MAX</td>
<td>32</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
‡ All typical values are at VCC = 5 V, TA = 25°C.
§ VOH = 30 V for '06 and 15 V for '16.
¶ IOL = 30 mA for SN54' and 40 mA for SN74'.

### switching characteristics, VCC = 5 V, TA = 25°C (see Figure 1)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>FROM (INPUT)</th>
<th>TO (OUTPUT)</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>tPLH</td>
<td>A</td>
<td>Y</td>
<td>RL = 110 Ω, CL = 15 pF</td>
<td>10</td>
<td>15</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tPHL</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>23</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>
PARAMETER MEASUREMENT INFORMATION

From Output
Under Test

\[ V_{CC} \]
\[ R_L \]

\[ C_L \text{ (see Note A)} \]

LOAD CIRCUIT

\[ t_w \]

\[ \text{High-Level Pulse} \]
\[ \text{Low-Level Pulse} \]

VOLTAGE WAVEFORMS
PULSE WIDTHS

\[ 1.5 \text{ V} \]

NOTES:
A. \( C_L \) includes probe and jig capacitance.
B. In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily.
C. All input pulses are supplied by generators having the following characteristics: PRR \( \leq 1 \text{ MHz} \), \( Z_0 = 50 \Omega \), \( t_r \leq 7 \text{ ns} \), \( t_f \leq 7 \text{ ns} \).
D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2001, Texas Instruments Incorporated