
Using Your�
NanoCore12�

Microcontroller Module�

Revison 0c�

www.technologicalarts.com�

DISCLAIMER�

While we have made every effort to avoid errors in the preparation of this manual, we cannot be�
held responsible for any misinformation or omissions that may have occurred. Furthermore, as�
manufacturer of this product,�Technological Arts�’ sole liability and the buyer’s exclusive remedy�
shall be refund of the amount paid or repair or replacement of the product, at the manufacturer’s�
option. The manufacturer disclaims all other warranties, expressed or implied, including but not�
limited to implied warranties of merchantability and fitness for a particular purpose, with respect�
to the product and accompanying written material, hardware, and firmware. In no event shall the�
manufacturer or its suppliers be held liable for any damages whatsoever (including, without�
limitation, damages for loss of business profits, business interruption, loss of business�
information, or any other loss) arising out of the use of, or inability to use, the product, even if the�
manufacturer has been advised of the possibility of such damages. The product is not designed,�
intended, nor authorized for use in applications in which the failure of the product could bring�
about a scenario in which personal injury or death may occur. If used in any such unintended or�
unauthorized application, the manufacturer and its suppliers shall be held harmless against�
all claims, even if any such claim alleges that the manufacturer was negligent regarding the�
design or implementation of the product.�

Product features, availability, and prices may change without notice.�

All trademarks used in this document are the property of their respective holders.�

E S D W A R N I N G�

This product, like all microcontroller products, uses semiconductors that can be damaged by�
electrostatic discharge (ESD). When handling, care must be taken so that the devices are�
not damaged. Damage due to inappropriate handling is not covered by the warranty.�

The following precautions must be taken:�
• Do not open the protective conductive packaging until you have read the following, and are�
at an approved anti-static work station.�
• Use a conductive wrist strap attached to a good earth ground.�
• If working on a prototyping board, use a soldering iron or station that is marked as ESD-�
safe. Always disconnect the microcontroller from the prototyping board when it is being�
worked on.�
• Always discharge yourself by touching a grounded bare metal surface or approved anti-�
static mat before picking up an ESD-sensitive electronic component.�
• Use an approved anti-static mat to cover your work surface.�

 1 INTRODUCTION�

1.1 WELCOME!�
 With�NanoCore12�, you are now ready to explore the power and versatility of�

Freescale’s advanced 16-bit microcontroller family! Whether you’re new to Freescale�
microcontrollers or you’ve used some of the earlier ones (such as 68HC05, 68HC11, or�
68HC12), you’ll be impressed with the well thought-out design and implementation of the�
HCS12 family.�NanoCore12� gives you the opportunity to explore the 9S12C family’s�
potential at a very affordable price! Add to that the proven advantages of it’s popular DIP�
format, and you’ll see why you picked a real winner!�

1.2 SUPPORT�
 To help you get the most out of this product, and to make the experience as�

enjoyable and productive as possible, we’ve put together a comprehensive website, loaded�
with resources, support, and applications information. If you experience any difficulties, or�
need help with your application, the World Wide Web is arguably the most valuable re-�
source available to you. There you’ll find the latest information, software, and trouble-�
shooting help, as well as discussion groups where you can network with people around the�
globe to get the answers you need. So if you still need help, or have questions after�
reading this manual and perusing the contents of the included CD, visit our Support Forum:�
www.technologicalarts.net� and tap into the collective! Also, be sure to join Freescale’s�
16-bit Microcontroller� discussion group, at http://forums.freescale.com/freescale/�
board?board.id=16BITCOMM�

1.3 PRODUCT CONFIGURATION�
NanoCore12� was designed as a versatile evaluation and application tool for the�

Freescale HCS12 “C” family of microcontrollers. It is suitable for developing applications�
for any of the derivatives (e.g. 9S12C32, 9S12C128). All of the subsystems are identical,�
with the differentiating factor among the chips being the amounts of Flash and RAM�
included on the chip. NanoCore modules are completely self-contained, including RS232�
interface and 5V regulator circuitry right on the module. You can simply plug it into any�
solderless breadboard to use it.�

 For added convenience, though, a Docking Module is offered, which provides addi-�
tional support for working with the microcontroller. It includes a bigger voltage regulator�
which has extra available current to spare for your applications. The voltage regulator also�
has a jumper option for 3-Volt operation. Other features include a standard 9-pin D-sub�
connector for the RS232 serial interface, a socket for the MCU module, a couple of user�
LEDs and pushbuttons, and a snap-off prototyping area. A similar product, the School�
Board, has a section of solderless breadboard instead of the snap-off prototyping area.�
This configuration is ideal for quick experimentation and training purposes. Product�
bundles are offered for both, and include a power supply, a serial cable, and a resource CD�
containing this manual, example programs, software tools, and a collection of MCU docu-�
mentation from Freescale. An optional CD containing the free 32K Special Edition of�
Metrowerk’s CodeWarrior C compiler is available upon request.�

NanoCore12� modules are offered in 24-pin, 32-pin, and 40-pin DIP footprints that�
plug into the DIP socket on the Docking Module or the socket strips on a School Board.�
While the standard configuration incorporates the 9S12C32 MCU, a 9S12C128 version is�
also available on the 40-pin “MAX”, offering four times the program space (128K vs. 32K)�
and double the RAM (4K vs. 2K).�

1�

1.4 NC12 VS. TRADITIONAL EVALUATION BOARDS�
 Most available evaluation and development systems tend to be too expensive and�

bulky for embedding into a real application, so they lie on a shelf gathering dust once�
you’ve reached a certain point in the learning curve. Or maybe you think up some clever�
way to hack it apart and make it fit inside your robot or product prototype. Even then, the�
prototyping area provided is often limited, and does not lend itself to re-usability. And�
what if you burn out a chip the night before the contest or product demo? What a mess to�
repair or re-design!�

NanoCore12� solves all of these problems and more! Since the MCU modules are�
packaged in standard DIP footprints, they are modular and re-usable. They can simply be�
plugged into your application, or moved from one application board to another, allowing�
your whole system to be re-configured at the last minute. The prototyping area on the�
Docking Module offers you a platform for your initial application, which can be snapped off�
and discarded when you no longer need it. Two 40-pin connector footprints remain, and�
can be used with various types of connectors, ribbon cables, backplanes, prototyping cards,�
etc. that are available now or are under development. Make a point to visit our website�
from time to time, just to see what’s new. There you’ll find that various 40-pin connectors�
are offered for sale, if you have trouble locating them from your local electronics store.�

 The detachable nature of the prototyping card means that you can easily replace it�
with other cards, including some application cards available from Technological Arts. You�
can build up a collection of different application circuits, and use them all with the same�
microcontroller board. Of course, if the prototyping card approach doesn’t suit you, the�
standard DIP format of�NanoCore12� makes it easy for you to incorporate it into your own�
designs. In fact, it’s pinout is a superset of the popular 24-pin DIP MCU modules available�
from other vendors. You can plug it into a DIP socket or directly into a solderless bread-�
board. If you’ve already invested in an application board from another vendor, in most�
cases you can plug a NanoCore12 DIP module in and accomplish some serious applications.�

 The modular nature of this product is especially advantageous in an educational�
environment, where the student can progress from simple to more complex applications�
throughout a semester, or from one course to the next-- even incorporating the board into�
a final project. In fact, where budgets are tight, different students can share the same�
microcontroller module, and plug in their own interface cards when it’s their turn to use it.�

1.5 RESIDENT DEBUG/MONITOR�
 Residing in a 2K pro-�

tected block of on-chip flash�
memory is Freescale’s versatile�
Serial Monitor program. When�
used with uBug12 (a free�
Windows application created by�
Technological Arts), you can�
display and edit memory and�
registers, erase and program�
flash, set breakpoints, and do�
instruction tracing. Flip a�
switch on NanoCore to Run�
mode, and your program runs�
automatically from Flash,�
following reset or powerup.�
See Chapter 2 and Appendix A�
for details on uBug12 and the�
resident monitor.�

2�

1.6 COMMUNICATIONS�
 An RS-232C serial interface port connector (RX & TX only) is included on both the�

Docking Module and School Board, allowing communication with a PC com port, or any�
other device which has an RS-232 serial port, via a standard 9-pin serial port extension�
cable. The RS-232 channel is implemented via the SCI of the MCU, and when NanoCore is�
reset in Load mode, the resident Serial Monitor uses this port to communicate with an�
appropriate program running on your PC (e.g. uBug12). In Run mode, the RS-232 port is�
available for your application.�

 While the MCU does support Controller Area Network (CAN), no physical layer�
circuit is provided on the 24-pin and 32-pin versions of NanoCore12. If you would like to�
use CAN on either of these modules, you’ll need to add the appropriate transceiver circuit�
to PM0 and PM1 of the MCU module. However, the 40-pin module (NanoCore12MAX)�
includes an on-board CAN transceiver circuit, so the CAN interface can be used directly,�
without the need for additional circuitry.�

In passing, it should be mentioned that the MCU also supports Serial Peripheral Inter-�
face (SPI). Since this is a logic-level protocol, meant for local communications among�
peripheral chips, no transceivers are required nor are they provided. Commonly used SPI�
chips and modules include: serial memory (e.g. EEPROM, Flash), temperature controllers,�
clock/calendar chips, DACs, MP3 decoders, etc.�

See the 9S12C datasheets for details on all of these subsystems.�

3�

 2 GETTING STARTED�

¨� Be sure to read and follow the Safe Handling Procedures outlined inside the manual’s front cover�
¨� Perform a visual check of the hardware for any damage during transit�
¨� Connect the Docking Module’s (or School Board’s) RS232 port (J3) to a com port of a personal computer,�

using the cable supplied�
¨� Set switch SW2 to the LOAD position�
¨� Connect the supplied power source to J1�
¨� Locate and install the Windows application called uBug12, included on the CD (also on our website)�
¨� Launch uBug12�
¨� uBug12 will display a short message, followed by its command prompt�
¨� Activate the serial port connection by entering CON x (where x is the comport you are using; usually 1 or 2)�
¨� The Module is now ready for your commands (see Appendix B for a full list of uBug12 commands)�

To download one of the supplied example programs into flash and execute it, follow these steps:�
¨� Type�fbulk� <enter> at the uBug12 prompt to erase any existing program�
¨� Type�fload� <enter>�
¨� From the displayed file browser, select one of the example program’s output files (.s2 or .s28 file)�
¨� After loading has finished, move switch SW2 to the RUN postion, and press the Reset button (SW1)�
¨� The program will run�
¨� If you wish to debug the program, move SW2 back to the LOAD position and press Reset�
¨� The uBug12 prompt will appear�
¨� Use uBug12 commands to debug your code (see Appendix B for a full list of uBug12 commands)�

2.1 POWER OPTIONS�
 A DC power supply is included with most bundle configurations. It is the recom-�

mended power source when you’re starting out. If for some reason it’s not convenient (eg.�
you don’t want an extension cord trailing around behind your robot :>), there are a couple�
of alternatives:�

Option 1:� connect a DC voltage of 6 Volts or more (absolute maximum: 24 VDC)�
via the external power connector, J1, on the Docking Module or School Board. (If you�
aren’t using a Docking Module or School Board, apply a voltage of 6 to 12 V between the�
Vin (positive) pin and the Vss (Ground) pin on the NanoCore module. Refer to the�
NanoCore12 pinout diagrams on the back page of this manual to determine the correct�
connections.) Your DC supply does not need to be regulated, but it should be capable of�
supplying at least 100 mA (more if you will be using a BDM pod, or you’re driving other�
circuits as well). If your supply will also be driving motors, make sure to isolate it before�
feeding it into the module (to protect it from electrical noise generated by the motor coils).�
You can do this by putting inductors (10uH, nominal) in series with both the + and - leads.�
Preferably, use the red & black power wire provided (order code: PCJ1-8). Red is positive,�
and black is negative (ground).�CAUTION! Make sure you have the polarity correct!�

Option 2:� supply regulated 5VDC (or 3VDC if using 3-Volt mode) via the Vcc (+3V)�
pin and Vss (Ground) pin on the module. See module pinout diagram in Appendix C for the�
Vcc and GROUND pins to use.�CAUTION! Double-check your connections before applying�
power! If you are applying 3V, be sure to read the notes on 3-Volt operation in chapter 3.�

4�

2.2 DEMO PROGRAMS�
 We’ve included a few demo programs on the CD-ROM (also available from the�

product webpage) to give you a starting point. There are some examples in C and some in�
assembler. The source code is included, so you’re free to modify them all you want!�

2.3 USING THE DEBUG/MONITOR�
uBug12 is a Windows-based graphical user interface (GUI) for Freescale’s HCS12 Serial�

Monitor program. It aims to emulate the most common debug/monitor commands, and to�
provide an easy-to-use interface. The following paragraphs will help you get started with�
uBug12.�

One nice feature you’ll discover is command line history. Use the UP and DOWN arrows�
on your keyboard to recall previously typed commands. You can then edit them, as�
needed, before hitting <ENTER>.�

2.4 NEW TO FREESCALE MICROCONTROLLERS?�
 If you’ve come from an 8051, PIC, or other background (or have never used micro-�

controllers before), you should get up to speed on Freescale MCUs by reading�Understand-�
ing Small Microcontrollers,� found on the CD-ROM. Written by Freescale’s Jim Sibigtroth,�
principal design engineer of the HC12 family, this excellent book uses an earlier MCU�
(68HC05) to introduce you to the basic concepts and design philosophy upon which the�
9S12 was built. You should also make sure to have a copy of the MC68HC11 Reference�
Manual, since it contains detailed descriptions and examples for many of the hardware�
subsystems.�

2.6 MIGRATING FROM 68HC11�
 If you are already experienced with the 68HC11 family of microcontrollers, writing�

programs for the HCS12 family will not present a big challenge (don’t throw away your�
HC11 Reference Manual-- the trusty “pink book”). In fact, you can use your existing�
68HC11 assembly code and re-assemble it to run on the CPU12 core, but there are a few�
things to keep in mind.�

Assembler syntax.� You may need to edit your source file to conform to the syntax�
and directives of the HC12 assembler you’ll be using. There are several assemblers�
available (e.g. AS12, MiniIDE, IASM12, MCUez), and each has its own syntax to be aware�
of.�

Register Block.� Instead of $1000, the register block default location is $0000�
through $03FF, and there are a few hundred registers! You’ll need to locate the relevant�
registers for the subsystems you plan to use, and make sure they are properly configured.�
The good news is that you can safely ignore registers for the subsystems you are not�
using-- the reset defaults are at safe settings.�

RAM location.� Following reset, the memory map configuration has the register block�
overlapping RAM, starting at $0000, with registers taking priority, so the first 1K bytes of�
RAM are not usable. In order to free up all of the RAM. the monitor program re-maps RAM�
to start at $3800 and go to $3FFF (via the RAMinit register). This means you’ll need to�
initialize the Stack Pointer to $4000 (on the HCS12, the stack pointer points to the address�
following the top of the stack).�

High-speed Bus.� The default bus speed is half the crystal frequency of 8 MHz, so it�
is 4 MHz. If you enable the PLL, it will be even higher (up to 24 MHz). This will mean�
changing some initialization values for control registers and revising delay constants if you�
are using any software timing loops in your old 68HC11 code.�

I/O Ports.� The digital I/O ports on the HCS12 are more flexible than ever. Besides�
selecting the direction of each port pin via a Data Direction Register, there are registers�

5�

controlling output drive level (standard and reduced), internal pullup and pulldown resis-�
tors, and output logic polarity (ie. true or inverted logic).�

COP Watchdog.� On most flavours of HC11, this could be enabled via a bit in the�
non-volatile CONFIG register. On the HC12, it is dynamic, and automatically enabled�
following reset. Therefore you have to choose whether you’re going to service it, or disable�
it.�

Write-Once Registers.� On the HCS12, there is no 64-cycle startup window in which�
you have to write all the protected registers. Instead, the HC12 implements a WriteOnce�
rule on sensitive registers. What this means is that, following reset, you have one chance�
to write them, then they become “Read Only”. The advantage of this is that you have�
more control of when you alter these register values. To take advantage of this safeguard,�
you should initialize all the registers that are crucial, even if the default values are what�
you want. That way, if your code runs amok, or there are any glitches which try to change�
register values, they will be protected.�

 There are many more differences, and you should make sure to read through the�
Freescale App Note (AN1284) that details the new instructions and addressing modes of the�
68HC12, explaining differences from the 68HC11.�

2.7 MIGRATING FROM THE 68HC912�
 You gain a lot more speed, memory, and flexibility, but you have a lot more regis-�

ters to think about, and many of their addresses have changed. Gone are the Vfp genera-�
tor and flash voltage switch, since the new flash technology uses 5V, and has built-in�
self-timed algorithms for program and erase functions. But your s-records must contain an�
even number of bytes, and begin on an even address boundary if you’re going to “burn”�
them into flash. Some assemblers will generate this format for you but others (such as�
AS12) don’t. In the latter case, you’ll need to use the Freescale utility called SRECCVT.�

6�

 3 HARDWARE DESIGN FEATURES�

3.1 3-VOLT OPERATION�
One of the nice features of the MCU is that it can operate on 3 to 5 V, while maintaining�

full bus speed capability. To support 3 Volt operation, the Docking Module incorporates an�
adjustable regulator whose output voltage is set by a resistive voltage divider. The circuit�
has been designed such that simply inserting a shorting jumper causes the regulator’s�
output to shift from 5V to 3.3V. (Note: If you aren’t using a Docking Module (e.g. you’re�
just plugging the DIP module into a breadboard), you’ll need to supply your own 3 Volt�
regulated supply to the Vcc pin to take advantage of 3-Volt mode.) When operated at 3V,�
there are a few precautions that should be noted, however.�

The logic pins are not 5V-tolerant, so you will need to take the necessary steps to�
prevent damage to the I/O pins of the MCU. Also, the maximum VRH voltage is limited to�
3.3V, so any external voltage or precision voltage reference you supply for use with the�
Analog-to-Digital converter subsystem should be scaled accordingly. One last point is that�
some BDM pods (eg. MicroBDM12SX) will not work with 3V targets, so you should check�
the specs of the BDM pod you intend to use. A good choice is MicroBDM12LX, which works�
with both 3V and 5V targets.�

3.2 RESET�
Unlike previous HC11 and HC12 designs, the 9S12C MCU has an on-chip low-voltage�

inhibit (LVI) reset circuit, so it is not necessary to provide such a circuit externally. A�
momentary tact switch is provided for manual reset, and the LVI circuit will provide a clean�
reset signal upon power-up.�

3.3 ABOUT THE DOCKING MODULE VOLTAGE REGULATOR�
 The NanoCore12 Docking Module (also, the School Board) includes an LM1086CT-�

ADJ voltage regulator. Housed in a TO-220 package, it is capable of dissipating about 500�
mW at room temperature. Other nice features are: reasonably low quiescent current, and�
low dropout voltage-- it will work with an input voltage down to about 5 Volts (or 3 Volts,�
in 3-Volt Mode), making it quite well-suited to battery operation. It is also designed to�
withstand reverse polarity. One drawback, however, is that it can become unstable and�
start to oscillate at low temperatures, especially if the input voltage source is connected to�
J1 via long wires. If low-temperature operation is anticipated, the on-board 10uF tantalum�
capacitor can be replaced with a higher value (47uF or 100uF). To compensate for long�
lead-in wires, add capacitance of about 100uF at, or close to, the J1 connector.�

3.4 ABOUT THE ON-BOARD VOLTAGE REGULATOR�
 NanoCore12 modules include a tiny LP2981AIM-5 voltage regulator mounted be-�

neath the module. It is a low-dropout 5V regulator capable of supplying the on-board�
circuitry with the required current, with as much as 50 mA to spare for user applications, if�
the supplied input voltage to the regulator is limited to 6V. The higher the input voltage,�
the less current will be available for the user application before thermal shutdown occurs.�

3.5 PLL�
While the supplied crystal is only 8MHz, the MCU is capable of running at a much higher�

speed. The phase-locked loop feature of the MCU allows you to boost the bus speed by an�
integer multiple of the crystal frequency, so by enabling the PLL, you can actually run the�
MCU at 24Mhz.�

7�

 4 WRITING SOFTWARE�

4.1 IMPACT OF THE SERIAL MONTIOR�
When you are working without a BDM pod, the Serial Monitor program is the only�

method available to load and erase flash. It is in a protected block of flash, so there’s no�
way to accidentally erase it. There are two modes, controlled by switch SW2: Run and�
Load. The monitor mode is determined immediately following reset by checking the�
position of switch SW2. When working with the monitor program in place, there are a few�
points to be noted:�

1) while the user vectors are implemented by the monitor at 0xF780 to 0xF7FF, you�
don’t really have to worry about it, because the monitor program will automatically adjust�
them when your s-record is loaded.�

2) the monitor relocates RAM to the address range 0x3800 to 0x4000 from the default�
location after MCU reset of 0x0000 to 0x07FF. (On NanoCore12MAXC128, the RAM is�
remapped to the range 0x3000 to 0x4000).�

3) the monitor program enables the phase-locked loop (PLL), so the module runs at�
24Mhz instead of the MCU’s default startup speed of 4Mhz.�

4) the user code must clear the CCR I-Bit (e.g. via the CLI instruction in assembler or�
the INTR_ON() directive (in ICC12).�

5) the SCI cannot be used by the user program when in LOAD mode, since it is dedi-�
cated to the monitor program.�

6) COP cannot be disabled in LOAD mode.�

4.2 WRITING A SIMPLE C PROGRAM IN ICC12�
Before starting, you’ll need to set up your compiler settings, as follows:�
Program Memory = 0x4000.0x7FFF:0xC000.0xFFFF�
Data Memory = 0x3800 (use 0x3000 if using a ‘C128 module)�
Stack Pointer = 0x3FC0�

Note that the Data Memory and Stack Pinter addresses shown are valid only for a�
device with a resident monitor, since the monitor remaps the RAM following reset. If you�
are writing software for a completely blank chip, and loading it in via a BDM pod, you’ll�
need to change these values to work with the default RAM address range (see the MCU�
datasheet).�

//Flashes Docking Module or School Board LED D2 twice a second�

#include <hcs12c32.h>�

#define DUMMY_ENTRY (void (*)(void))0xFFFF�

#pragma nonpaged_function _startextern void _start(void); /* entry point in crt12.s */�
void main(){�
 INTR_ON(); //needed for the SerialMonitor�

8�

9�

 DDRT = 0x01; //Enable LED port (use 0x04 for NC12MAX)�

 RTICTL = 0x7F; //Set RTI divider for 4Hz time base�
 CRGFLG |= 0x80; //Clear the RTI Flag�

 CRGINT |= 0x80; //Enable the RTI�
}�

#pragma interrupt_handler rti_handler�
 void rti_handler(){�
 CRGFLG |= 0x80; // Clear the RTI Flag�
 PTT ^= 0x01; //Toggle LED (use 0x04 for NC12MAX)�

 INTR_ON(); //Enable Interrupts�
}�

#pragma abs_address:0xFFF0�

void (*interrupt_vectors[])(void) =�
{�
 rti_handler, /*Real Time Interrupt*/�

 DUMMY_ENTRY, /*IRQ*/�
 DUMMY_ENTRY, /*XIRQ*/�

 DUMMY_ENTRY, /*SWI*/�
 DUMMY_ENTRY, /*Unimplemented Instruction Trap*/�

 DUMMY_ENTRY, /*COP failure reset*/�
 DUMMY_ENTRY, /*Clock monitor fail reset*/�
 _start, /*Reset*/�

};�

4.3 OTHER ISSUES WITH ICC12�
Because the register addresses have changed from what they were in HC12, meaning�

the header file is different for the 9S12C32, some library files in ICC12 will need to be�
re-compiled, using the new header file, if you want to use them. Of course, if you’re not�
using library functions, or you are using functions that don’t involve registers, then there�
won’t be a problem with the existing versions. The modified functions are included on the�
CD-ROM to get you started.�

To use the SCI, make sure to include�C32_iochar.c� and�C32_serial.c�.� Also, you’ll�
need the complete vector file for the C32, which is called�C32_vectors.c�. Unzip�
C32_C.zip� and place�hcs12c32.h� in�c:\icc\include\� (or in your equivalent path). Make�
sure to place�C32_Vectors.c� in the same folder as your project, and add it to you project�
via the “add file menu item”. (By the way, the same files work for the C128.)�

4.4 “HELLO WORLD” PROGRAM�
First of all, create a new project from the Project menu.�
Then create a new file and save it as HelloWorld.c Add it to the Project by right�

clicking in the Project Panel and using Add Files to add it to the Files section.�

Next type in the following code:�

#define _SCI�
#include <hcs12c32.h>�

#pragma nonpaged_function _start�

extern void _start(void); /* entry point in crt12.s */�
extern int _textmode;�
int putchar(char c)�
 {�
 if (_textmode && c == ‘\n’)�
 putchar(‘\r’);�
 while ((SC0SR1 & TDRE) == 0)�
 ;�
 SC0DRL = c;�
 return c;�
 }�

void main(){�
 INTR_ON(); //need to enable interrupts for the SerialMonitor�
 SCI0BD = 26; //9600 Baud�
 SCI0CR2 = 0x0C; /* enable transmitter and receiver */�

 puts(“Hello, World!”);�
}�
#pragma abs_address:0xFFFE�
void (*interrupt_vectors[])(void) =�
{�
 _start, /*Reset*/�
};�

Since�puts� calls�putchar�, we define it before invoking it in�main�.�Main� has an implicit�
_Start� entry point, which is called after the setup by�CRT12.o�, which is a module that the�
ICC12 linker links in as the starting point of the program. Besides initializing the stack and�
other system features, it initializes memory, initialized variables and constants before�
transferring control to the Main.�

Compile and link the program, fixing any syntax errors that may have cropped up.�
Ensure that the Project Options | Device Configuration drop down box points to the�
9S12C32 Flash Mode. This sets the link address to start the code section at 0x4000 and�
the stack at top of RAM (0x4000).�

4.5 USING A BDM POD�
If you have a BDM pod, you can erase the resident monitor program completely. This�

will free up all the MCU resources for your program (most importantly, the SCI). Without�
the monitor in place, the RAM will be at the default location following reset, so make sure�
to use the correct compiler/linker settings. Also, the PLL won’t be enabled, so the bus�
speed will be 4 MHz.�

4.6 AUTOMATING S-RECORD CONVERSION IN ICC12�
You may have to convert the s-record file to get it into the proper format for your BDM�

pod to load correctly. ICC12 has a nice feature at�Project->Options->Compiler-�
>ExecuteCommandAfterBuild� where you can add the SRECCVT command mentioned earlier.�
Use the following command line:�

sreccvt.exe -m C0000 FFFFF 32 -lp -o�outfile�.s2�infile�.s19�
where� infile� refers to the file you are converting and�outfile� is the result.�

10�

 5 TUTORIAL�
NanoCore modules are shipped from the factory with a Demo program loaded into its�

memory. This program is useful for familiarizing yourself with the hardware features of the�
MCU. It was written in assembler, and the�sourcecode can be found on our Product CD or�
online our Support Library, if you would like to examine or modify it.�

If you’ve already erased the demo program, you may use uBug12 to re-load it. Then�
follow the relevant steps in the QuickStart Guide to open HyperTerminal and achieve the�
display shown below.�

5.1 Executing Demo Commands�

•Type the digit 0 repeatedly and observe that LED D2 toggles on and off.�
•Type the digit 1 repeatedly and observe that LED D3 toggles on and off.�
•Type the letter F to cause LED D2 to flash twice.�

Typing E, H, M, or T will cause a hex number to be displayed, whose bit values represent�
the logic levels of the respective pins. If the pins are unconnected to external circuitry, they�
will assume a logic 1 level, due to internal pullup resistors.�

5.2 A Simple Audio Circuit�

Connect a simple audio transducer cir-�
cuit, as shown, and type the letter F. LED D2�
will flash twice, and two audible “beep” tones�
will be emitted from the transducer. If you�
press and release the Reset button on the�
Docking module, LED D2 will flash four�
times, and you’ll hear four “beep” sounds�
from the transducer.�

11�

PI�N�27�on�H�1�H�EAD�ER�

LS1�1�
2�

PT�0�

D�1�
1N�4148�

VC�C�

Q1�
2N�3904�

2�
R�1�

4K7�

1� 2�

5.3 A Simple Analog Circuit�

Connect a CdS light sensitive resistor (photocell) in�
the configuration shown. Then type the letter R to see�
the value of AN00 change as you vary the amount of�
light reaching the photocell. The value displayed is a�
10-bit representation of the voltage level on the AN00�
pin, with fullscale being approximately 5V (represented�
by the hexadecimal number 3FF).�

12�

PI�N�5�on�H�1�H�EAD�ER�

R�1�
LI�GH�T�SEN�SOR�

VC�C�

R�1�
10K�

AN�00�

 6 GOING FURTHER�

If you’d like to get started interfacing�
common electronic devices such as LEDs,�
switches, relays, etc., you may consider pur-�
chasing the optional NanoCore12 School Board�
(#NC12SB, shown). The School Board has�
socket strips to accomodate all three�
NanoCore12 module sizes (i.e. 24-pin, 32-pin,�
and 40-pin), and provides a solderless bread-�
board section, a reset button, a couple of user�
LEDs, a 5V/3V regulator (jumper selectable),�
and 9-pin serial connector. 9-V battery snaps�
are provided with robotics applications in mind.�
Mounting hole locations are standardized so as�
to line up with most hobby robot bases cur-�
rently on the market.�

If you’re into robotics (or other�
mechatronics applications) you may�
be interested in the Servo/Sensor/�
Motor Interface board for�
NanoCore12DX (#NC12DXSSMI). It�
is similar to the School Board in that�
it includes a solderless breadboard,�
voltage regulator, and serial port�
connector. However, it also includes�
connectors for up to six hobby-style�
R/C servos, two Devantech sonar�
distance-measuring sensors�
(#SRF04), and up to four analog�
sensors (e.g. Sharp IR distance-�
measuring sensor GP2D120). But�
perhaps the highlight of the board is�
the set of two high-current H-bridges�
(#TLE5206) for driving two DC�

motors (up to 4 Amps and 24V). The H-bridge drivers are connected to the NanoCore12’s�
PWM pins, for easy speed control implementation. Additional features on the board are a�
microphone and an audio transducer. An op amp circuit adds battery-voltage monitoring�
capability, via one of the NanoCore12’s analog input pins.�

New application cards are being developed from time to time. Check the subcategory�
called Application Cards on the NanoCore12 webpage to browse the currently available�
selection.�

13�

14�

15�

APPENDIX A - SERIAL MONITOR�
INTRODUCTION�

This appendix describes the Freescale 2 Kbyte monitor program for the HC9S12 series�
MCU. This program supports 23 primitive debug commands to allow FLASH / EEPROM�
programming and debug through an RS232 serial interface to a personal computer. These�
include commands to reset the target MCU, read or modify memory (including FLASH�
/EEPROM memory), read or modify CPU registers, go, halt, or trace single instructions. In�
order to allow a user to specify the address of each interrupt service routine, this monitor�
redirects interrupt vectors to an unprotected portion of FLASH just below the protected�
monitor program. This monitor is intended to be device unspecific, this single application�
with very slight modification should execute on any HC9S12 derivative. A user on a tight�
budget can evaluate the MCU by writing programs, programming them into the MCU, then�
debug using only a serial I/O cable and free software (uBug12) for their personal computer.�

This monitor does not use any RAM other than the stack itself. The COP watchdog is�
utilized for a cold reset function; user code should not disable the COP (ie. by writing 0x00�
to COPCTL). This development environment assumes you reset to the monitor when you�
are going to perform debug operations. If your code takes control directly from reset, and�
then an SCI0 interrupt or a SWI attempts to enter the monitor, the monitor may not�
function because SCI0, the phase locked loop (PLL), and memory initialization registers�
may not be initialized as they would be for a cold reset into the monitor. There is no error�
handling for the PLL. If the frequency source is missing or broken, the monitor will not�
function. The monitor sets the operating speed of the MCU to 24 MHz. Modification of the�
MCU speed by the user with out considerations for the monitor program will render the�
monitor nonfunctional. If the PLL loses lock during operation, the monitor will fail.�

BLOCK PROTECTION�
In order to prevent accidental changes to the monitor program itself, the 2 Kbyte block�

of FLASH memory where it resides ($F800-$FFFF), is block protected. Additionally all write�
commands are restricted from modifying the monitor memory space. The only way to�
change the contents of this protected block is to use a BDM-based development. In the�
lowest cost applications where the monitor is used with an SCI serial interface to the�
RS232 serial port on a personal computer, there is no way to accidentally erase or modify�
the monitor software.�

COP CONFIGURATION�
The monitor as written creates hard reset function by using the COP watchdog timer. It�

does so by enabling the COP and waiting for a COP timeout reset to occur. If the user�
application uses the COP two issues must be considered.�

•If the COP is disabled in the user application, the monitor will be unable to perform a�
hard reset and will soft reset to the start of the monitor instead.�

•The monitor does not service the COP timer. If the user application implements COP�
timer servicing, upon re-entry into the monitor a hard reset is likely to occur.�

MEMORY CONFIGURATION�
1) Register space is $0000-$03FF.�
2) Flash memory is any address greater than $4000. All paged addresses are assumed�

to be Flash memory.�
3) RAM ends at $3FFF and builds down to the limit of the device’s available RAM.�
4) External devices attached to the multiplexed external bus interface are not support-�

ed.�

16�

SERIAL PORT USAGE�
In order for this monitor to function the SCI0 serial interface is used. It is assumed that�

the monitor has exclusive use of this interface. User application code should not implement�
communications on this serial channel. This monitor accommodates RS232 serial communi-�
cations through SCI0 at 115.2 kbaud. For applications requiring the use of SCI0, you�
should purchase a BDM pod which allows for more advanced debugging.�

VECTOR REDIRECTION AND INTERRUPT USE�
Access to the user vectors is accomplished via a jump table located within the monitor�

memory space. This table points all interrupt sources to a duplicate vector table located�
just below the monitor. ($F780-$F7FE). The monitor will automatically redirect vector�
programming operations to these user vectors. The user’s code should therefore continue�
to implement the normal (non-monitor) vector locations ($FF80-$FFFE). If execution of an�
interrupt with an un-programmed vector is attempted, behavior is undefined. For this�
reason, the user is strongly encouraged to implement a software trace for all vectors, as is�
good programming practice. The monitor depends on interrupts being available for monitor�
re-entry after GO or TRACE commands. Therefore, it is important that the user application�
executes with interrupts enabled.�

APPENDIX B - UBUG12 COMMAND LIST�

--------------------------------------�REGISTERS� ---�
RD - Register Display�
RM <RegisterName> <Data8/16> - Register Modify�
CCR <Data8> - Set CCR register�
D <Data16> - Set D register�
PC <Data16> - Set PC register�
PP <Data8> - Set PP register�
SP <Data16> - Set SP register�
X <Data16> - Set X register�
Y <Data16> - Set Y register�

-----------------------------------�MEMORY MODIFY� ------------------------------------�
BF <StartAdd> <EndAdd> <Data8> - Block fill�
BFW <StartAdd> <EndAdd> <Data16> - Block fill word�
MD <StartAdd> [<EndAdd>] - Memory display�
MDW <StartAdd> [<EndAdd>] - Memory display word�
MM <Address> <Data8> - Memory modify byte�
MMW <Address> <Data16> - Memory modify word�

---� FLASH� --�
FBULK - Flash bulk erase�
FLOAD [;B][;M] - Flash load�

---------------------------------------�DEVICE INFO� --------------------------------------�
DEVICE - Get device name�

--�GO/HALT� --�
GO [<StartAddress>] - Start execution�
HALT - Halt execution�
RESET - Reset target�

---�GUI� ---�
CON <Comport> - Connect to target�
DISCON - Disconnect from target�
EXIT - Terminate GUI�
HELP - Display help�
OP <Opacity%> - Set main GUI opacity�

17�

APPENDIX C - COMPONENT PLACEMENT AND PINOUT�

