
EE319K Fall 2004 Final A Page 1 of 12

Jonathan W. Valvano December 9, 2004 2-5pm

First:________________ Middle Initial: _____ Last:____________________

EE319K Final Exam

Fall 2004

Jonathan W. Valvano

This is a closed book exam. You must put your answers in these boxes only. You have 3 hours,
so allocate your time accordingly. Please read the entire exam before starting.

EE319K Fall 2004 Final A Page 2 of 12

Jonathan W. Valvano December 9, 2004 2-5pm

(5) Question 1. Precision in decimal digits

(2) Part 2a. Choose A-E

(2) Part 2b. Choose A-E

(2) Part 2c. Choose A-E

(2) Part 2d. Choose A-E

(2) Part 2e. Choose A-E

(2) Part 3a. Specify RegB

(2) Part 3b. Specify 0 or 1

(1) Part 3c. Specify 0 or 1

(2) Part 4a. Give the value for xxx

(3) Part 4b. Give the value for yyy

(5) Question 5. Give the value for zzz

(5) Question 6. Give the value

(5) Question 7. Give the hexadecimal value

(5) Question 8. Give the op code

EE319K Fall 2004 Final A Page 3 of 12

Jonathan W. Valvano December 9, 2004 2-5pm

(5) Question 9. Simplified memory cycles (you may or may not need all 5 entries)
R/W Addr Data

(5) Question 10. Show the assembly code

(10) Question 11. Hand assemble this program

Address Machine code Source code
 org $3900
 aa rmb 2
 bb rmb 1
 TCNT equ $0044
 org $4300
 ldx TCNT
 loop ldx #cc
 ldaa 2,x
 staa bb
 bra loop
 cc fcb 0,1,2,3,4

EE319K Fall 2004 Final A Page 4 of 12

Jonathan W. Valvano December 9, 2004 2-5pm

(15) Question 12. Show the assembly code

(20) Question 13. Show the assembly code

EE319K Fall 2004 Final A Page 5 of 12

Jonathan W. Valvano December 9, 2004 2-5pm

(5) Question 1. The measurement system range is 0 to 19.9 and a resolution of 0.1. What is the
precision in decimal digits?
(10) Question 2. Place letter code for the best answer in the answer boxes

(2) Part a) Which direction does data flow on the data bus during a read cycle?
 A) From 6812 to memory, or from 6812 to output device
 B) From memory to 6812, or from input device to 6812
 C) From input device to memory
 D) From memory to output device
 E) None of these answers is correct
(2) Part b) Which term best describes a computer system with a response time to external
events that is short and bounded?
 A) Real time
 B) Dynamic
 C) Busy-waiting
 D) Nonintrusive
 E) None of these answers is correct
(2) Part c) Which data structure has the following features? It can hold a variable number of
fixed-size elements. It has two main operations, one to store data into itself, and a second
operation to remove data. The data is removed in a “first come first served” order.
 A) String
 B) Binary tree
 C) FIFO queue
 D) MACQ
 E) None of these answers is correct
(2) Part d) What is the difference between busy-waiting and gadfly synchronization?
 A) Busy-waiting is used for I/O devices and gadfly is used for software events.
 B) Busy-waiting allows you to perform other operations (so you can be busy) while

waiting for I/O devices and gadfly simply waits for the I/O device to be ready.
 C) The two terms describe exactly the same synchronization method.
 D) Gadfly involves software loops, while busy-waiting involves hardware interrupts.
 E) None of these answers is correct.
(2) Part e) What is drop out?
 A) Drop out is the error that occurs when the result of a calculation exceeds the range of

the number system.
 B) Drop out is the error that occurs after a right shift or a divide, and the consequence is

that an intermediate result looses its ability to represent all of the values.
 C) Drop out is when both the Carry and the Overflow bits are set.
 D) Drop out is data is lost when the software does not respond fast to an I/O event.
 E) None of these answers is correct.

 (5) Question 3. Consider the result of executing the following two 6812 assembly instructions.
 ldab #170
 addb #125

(2) Part a) What will be the unsigned decimal value in Register B (0 to 255)?
(2) Part b) What will be the value of the carry (C) bit?
(1) Part c) What will be the value of the overflow (V) bit?

EE319K Fall 2004 Final A Page 6 of 12

Jonathan W. Valvano December 9, 2004 2-5pm

(5) Question 4. Consider the following assembly subroutine that creates two local variables,
called p and q. The variable p is 8 bits and initialized to 50. The variable q is 16 bits and
initialized to 500. The local variable binding is created using the set pseudo-ops.
p set xxx ; binding
q set yyy ; binding
sub1 pshx ; save register X
 movb #50,1,-sp ; allocate and initialize p
 movb #500,2,-sp ; allocate and initialize q
;... stuff
 ldaa P,sp ; read from p
 ldx Q,sp ; read from q
;... more stuff
 leas 3,s ; deallocate p,q
 pulx ; restore register X
 rts ; return
(2) Part a) What value should you use in the xxx position to implement the binding of p?
(3) Part b) What value should you use in the yyy position to implement the binding of q?
(5) Question 5. Consider the following main program that calls an assembly subroutine using
call by reference parameter passing on the stack. An address to an output port is pushed on the
stack, and this subroutine will set bit 0 of that port. The subroutine uses Register X stack frame.
port set zzz ; binding
main lds #$4000
 ldd #PTT ; address to PTT
 pshd ; pass 16-bit port parameter on stack
 jsr Set0
 leas 2,sp
 stop
Set0 pshx ; save register X
 tsx ; create Register X stack frame
 leas -4,sp ; allocate locals
 ldy port,x ; get port parameter
 bset 0,y,#$01 ; set bit0 of the port
 leas 4,sp ; deallocate locals
 pulx ; restore register X
 rts ; return
What value should you use in the zzz position to implement the binding of this parameter?
(5) Question 6. A signed 16-bit decimal fixed-point number system has a ∆ resolution of 1/100.
What is the corresponding value of the number if the integer part stored in memory is $C000?
(5) Question 7. Assume RegX is initially $4321, RegD is initially $8765. What is resulting
hexadecimal value in RegD after these instructions execute?
 psha
 pshb
 pshx
 pula
 leas 2,s
 pulb

EE319K Fall 2004 Final A Page 7 of 12

Jonathan W. Valvano December 9, 2004 2-5pm

(5) Question 8. Assume PTT is a signed 8-bit input and PTM is an output. The goal of this code
is to clear PTM if PPT is larger than 100. Which op code should be used in the ??? position?
 ldaa PTT
 cmpa #100
 ??? skip
 clr PTM
loop
(5) Question 9. Give the simplified memory cycles produced when the following one
instruction is executed. Assume the PC contains $4000, Register Y contains $3900, each
memory location from $3800 to $3FFF contains a value equal to the least significant byte of its
address. I.e., $3800 contains $00, $3801 contains $01, etc. Just show R/W=Read or Write,
Address, and Data for each cycle.
$4000 EE71 ldx 2,y+
(5) Question 10. Consider a table with 25 entries and 4 fields. Each entry has different values,
but the same size and format. The assembly code for table entry number 5 is shown below
Entry5 fcb 100 8-bit count field
 fdb 1000 16-bit time field
 fcb “happy,”,0,0,0 8-byte name field
 fdb -50,300,-200 three 16-bit yaw,pitch,roll fields
Assume Register X is pointing to this entry
 ldx #Entry5
Using Register X, write assembly code that reads the pitch value of Entry5 into a register
(10) Question 11. Hand assemble the program shown on the answer pages
(15) Question 12. The SCISR1 register contains the TDRE and RDRF flags

The SCIDRL register serial input/output data. Write a subroutine that inputs one ASCII
character from the serial port. Your subroutine should wait for new input using gadfly
synchronization. The subroutine uses return by value parameter passing with RegB. You don’t
need to write the initialization ritual. COMMENTS WILL BE GRADED.
SCISR1 equ $00CC ; SCI Status Register 1
SCIDRL equ $00CF ; SCI Data Register Low

EE319K Fall 2004 Final A Page 8 of 12

Jonathan W. Valvano December 9, 2004 2-5pm

(20) Question 13. The objective of this problem is to implement the following two-input two-
output Mealy finite state machine. The state graph and ROM-based data structure are given.
Your job is to write the entire main program, including reset vector, to run this machine. The
FSM repeats over and over the following sequence
 1) Input from PTT;
 2) Output to PTM (depends on input and state);
 3) Change states (depends on input and state).
The initial state is Stop.

10/00
00/00
01/00
initial 10/00

00/00

11/00

11/10

01/00

WaitStop Go

01/00

11/01

Error

01/01 00/00

10/00
10/00

00/01

11/00

You will use the following linked data structure (without copying it to the answer sheet)
 org $4000 Put in ROM
Stop fcb 0,0,0,1 Outputs
 fdb Stop,Stop,Wait,Error Next states
Wait fcb 0,1,0,2
 fdb Stop,Error,Wait,Go
Go fcb 1,0,0,0
 fdb Error,Stop,Wait,Go
Error fcb 0,0,0,0
 fdb Error,Error,Error,Error

The inputs are connected to PTT bits 1,0 and the outputs are connected to PTM bits 1,0.

PT1
PT0

PM1
PM0

inputs

outputs

You may use the following I/O port definitions (without copying them to the answer sheet)
DDRM equ $0252 ; Port M Direction
DDRT equ $0242 ; Port T Direction
PTM equ $0250 ; Port M I/O Register
PTT equ $0240 ; Port T I/O Register

EE319K Fall 2004 Final A Page 9 of 12

Jonathan W. Valvano December 9, 2004 2-5pm

postbyte,xb syntax mode explanations rr register
rr000000 ,r IDX 5-bit constant, n=0 00 X
rr00nnnn n,r IDX 5-bit constant, n=0 to +15 01 Y
rr01nnnn -n,r IDX 5-bit constant, n=-16 to -1 10 SP
rr100nnn n,+r IDX pre-increment, n=1 to 8 11 PC
rr101nnn n,-r IDX pre-decrement, n=1 to 8
rr110nnn n,r+ IDX post-increment, n=1 to 8
rr111nnn n,r- IDX post-decrement, n=1 to 8
111rr100 A,r IDX Reg A accumulator offset
111rr101 B,r IDX Reg B accumulator offset
111rr110 D,r IDX Reg D accumulator offset
111rr000 ff n,r IDX1 9-bit cons, n 16 to 255
111rr001 ff -n,r IDX1 9-bit const, n -256 to -16
111rr010 eeff n,r IDX2 16-bit const, any 16-bit n
111rr111 [D,r] [D,IDX] Reg D offset, indirect
111rr011 eeff [n,r] [IDX2] 16-bit constant, indirect

EE319K Fall 2004 Final A Page 10 of 12

Jonathan W. Valvano December 9, 2004 2-5pm

aba 8-bit add RegA=RegA+RegB
abx unsigned add RegX=RegX+RegB
aby unsigned add RegY=RegY+RegB
adca 8-bit add with carry to RegA
adcb 8-bit add with carry to RegB
adda 8-bit add to RegA
addb 8-bit add to RegB
addd 16-bit add to RegD
anda 8-bit logical and to RegA
andb 8-bit logical and to RegB
andcc 8-bit logical and to RegCC
asl/lsl 8-bit left shift Memory
asla/lsla 8-bit left shift RegA
aslb/lslb 8-bit arith left shift RegB
asld/lsld 16-bit left shift RegD
asr 8-bit arith right shift Memory
asra 8-bit arith right shift
asrb 8-bit arith right shift to RegB
bcc branch if carry clear
bclr clear bits in memory
bcs branch if carry set
beq branch if result is zero (Z=1)
bge branch if signed ≥
bgnd enter background debug mode
bgt branch if signed >
bhi branch if unsigned >
bhs branch if unsigned ≥
bita 8-bit and with RegA, sets CCR
bitb 8-bit and with RegB, sets CCR
ble branch if signed ≤
blo branch if unsigned <
bls branch if unsigned ≤
blt branch if signed <
bmi branch if result is negative (N=1)
bne branch if result is nonzero (Z=0)
bpl branch if result is positive (N=0)
bra branch always
brclr branch if bits are clear,
brn branch never
brset branch if bits are set
bset set bits in memory
bsr branch to subroutine
bvc branch if overflow clear
bvs branch if overflow set
call subroutine in expanded memory
cba 8-bit compare RegA with RegB
clc clear carry bit, C=0
cli clear I=0, enable interrupts
clr 8-bit Memory clear
clra RegA clear
clrb RegB clear
clv clear overflow bit, V=0
cmpa 8-bit compare RegA with memory
cmpb 8-bit compare RegB with memory
com 8-bit logical complement to Memory
coma 8-bit logical complement to RegA
comb 8-bit logical complement to RegB
cpd 16-bit compare RegD with memory
cpx 16-bit compare RegX with memory
cpy 16-bit compare RegY with memory
daa 8-bit decimal adjust accumulator
dbeq decrement and branch if result=0
dbne decrement and branch if result≠0
dec 8-bit decrement memory
deca 8-bit decrement RegA
decb 8-bit decrement RegB
des 16-bit decrement RegSP
dex 16-bit decrement RegX
dey 16-bit decrement RegY
ediv RegY=(Y:D)/RegX, unsigned divide
edivs RegY=(Y:D)/RegX, signed divide
emacs 16 by 16 signed mult, 32-bit add
emaxd 16-bit unsigned maximum in RegD
emaxm 16-bit unsigned maximum in memory
emind 16-bit unsigned minimum in RegD

eminm 16-bit unsigned minimum in memory
emul RegY:D=RegY*RegD unsigned mult
emuls RegY:D=RegY*RegD signed mult
eora 8-bit logical exclusive or to RegA
eorb 8-bit logical exclusive or to RegB
etbl 16-bit look up and interpolation
exg exchange register contents
fdiv 16-bit unsigned fractional divide
ibeq increment and branch if result=0
ibne increment and branch if result≠0
idiv 16-bit unsigned divide, X=D/X
idivs 16-bit signed divide, X=D/X
inc 8-bit increment memory
inca 8-bit increment RegA
incb 8-bit increment RegB
ins 16-bit increment RegSP
inx 16-bit increment RegX
iny 16-bit increment RegY
jmp jump always
jsr jump to subroutine
lbcc long branch if carry clear
lbcs long branch if carry set
lbeq long branch if result is zero
lbge long branch if signed ≥
lbgt long branch if signed >
lbhi long branch if unsigned >
lbhs long branch if unsigned ≥
lble long branch if signed ≤
lblo long branch if unsigned <
lbls long branch if unsigned ≤
lblt long branch if signed <
lbmi long branch if result is negative
lbne long branch if result is nonzero
lbpl long branch if result is positive
lbra long branch always
lbrn long branch never
lbvc long branch if overflow clear
lbvs long branch if overflow set
ldaa 8-bit load memory into RegA
ldab 8-bit load memory into RegB
ldd 16-bit load memory into RegD
lds 16-bit load memory into RegSP
ldx 16-bit load memory into RegX
ldy 16-bit load memory into RegY
leas 16-bit load effective addr to SP
leax 16-bit load effective addr to X
leay 16-bit load effective addr to Y
lsr 8-bit logical right shift memory
lsra 8-bit logical right shift RegA
lsrb 8-bit logical right shift RegB
lsrd 16-bit logical right shift RegD
maxa 8-bit unsigned maximum in RegA
maxm 8-bit unsigned maximum in memory
mem determine the membership grade
mina 8-bit unsigned minimum in RegA
minm 8-bit unsigned minimum in memory
movb 8-bit move memory to memory
movw 16-bit move memory to memory
mul RegD=RegA*RegB
neg 8-bit 2's complement negate memory
nega 8-bit 2's complement negate RegA
negb 8-bit 2's complement negate RegB
oraa 8-bit logical or to RegA
orab 8-bit logical or to RegB
orcc 8-bit logical or to RegCC
psha push 8-bit RegA onto stack
pshb push 8-bit RegB onto stack
pshc push 8-bit RegCC onto stack
pshd push 16-bit RegD onto stack
pshx push 16-bit RegX onto stack
pshy push 16-bit RegY onto stack
pula pop 8 bits off stack into RegA
pulb pop 8 bits off stack into RegB
pulc pop 8 bits off stack into RegCC
puld pop 16 bits off stack into RegD

EE319K Fall 2004 Final A Page 11 of 12

Jonathan W. Valvano December 9, 2004 2-5pm

pulx pop 16 bits off stack into RegX
puly pop 16 bits off stack into RegY
rev Fuzzy logic rule evaluation
revw weighted Fuzzy rule evaluation
rol 8-bit roll shift left Memory
rola 8-bit roll shift left RegA
rolb 8-bit roll shift left RegB
ror 8-bit roll shift right Memory
rora 8-bit roll shift right RegA
rorb 8-bit roll shift right RegB
rtc return sub in expanded memory
rti return from interrupt
rts return from subroutine
sba 8-bit subtract RegA=RegA-RegB
sbca 8-bit sub with carry from RegA
sbcb 8-bit sub with carry from RegB
sec set carry bit, C=1
sei set I=1, disable interrupts
sev set overflow bit, V=1
sex sign extend 8-bit to 16-bit reg
staa 8-bit store memory from RegA
stab 8-bit store memory from RegB
std 16-bit store memory from RegD
sts 16-bit store memory from SP
stx 16-bit store memory from RegX

sty 16-bit store memory from RegY
suba 8-bit sub from RegA
subb 8-bit sub from RegB
subd 16-bit sub from RegD
swi software interrupt, trap
tab transfer A to B
tap transfer A to CC
tba transfer B to A
tbeq test and branch if result=0
tbl 8-bit look up and interpolation
tbne test and branch if result≠0
tfr transfer register to register
tpa transfer CC to A
trap illegal op code, or software trap
tst 8-bit compare memory with zero
tsta 8-bit compare RegA with zero
tstb 8-bit compare RegB with zero
tsx transfer S+1 to X
tsy transfer S+1 to Y
txs transfer X-1 to S
tys transfer Y-1 to S
wai wait for interrupt
wav weighted Fuzzy logic average
xgdx exchange RegD with RegX
xgdy exchange RegD with RegY

example addressing mode Effective Address
ldaa #u immediate none
ldaa u direct EA is 8-bit address (0 to 255)
ldaa U extended EA is a 16-bit address
ldaa m,r 5-bit index EA=r+m (-16 to 15)
ldaa v,+r pre-increment r=r+v, EA=r (1 to 8)
ldaa v,-r pre-decrement r=r-v, EA=r (1 to 8)
ldaa v,r+ post-increment EA=r, r=r+v (1 to 8)
ldaa v,r- post-decrement EA=r, r=r-v (1 to 8)
ldaa A,r Reg A offset EA=r+A, zero padded
ldaa B,r Reg B offset EA=r+B, zero padded
ldaa D,r Reg D offset EA=r+D
ldaa q,r 9-bit index EA=r+q (-256 to 255)
ldaa W,r 16-bit index EA=r+W (-32768 to 65535)
ldaa [D,r] D indirect EA={r+D}
ldaa [W,r] indirect EA={r+W} (-32768 to 65535)

Motorola 6812 addressing modes

Pseudo op meaning
 org org Specific absolute address to put subsequent object code
 = equ Define a constant symbol
 set Define or redefine a constant symbol
 dc.b db fcb byte Allocate byte(s) of storage with initialized values
 fcc Create an ASCII string (no termination character)
 dc.w dw fdb .word Allocate word(s) of storage with initialized values
 dc.l dl .long Allocate 32-bit long word(s) of storage with initialized values
 ds ds.b rmb .blkb Allocate bytes of storage without initialization
 ds.w .blkw Allocate bytes of storage without initialization
 ds.l .blkl Allocate 32-bit words of storage without initialization

EE319K Fall 2004 Final A Page 12

Jonathan W. Valvano December 9, 2004 2-5pm

