EE319K Fall 2004 Final A Page 1 of 12

First: Middle Initial: Last:

EE319K Final Exam

Fall 2004

Jonathan W. Valvano

This is a closed book exam. You must put your answers in these boxes only. You have 3 hours,
so allocate your time accordingly. Please read the entire exam before starting.

Jonathan W. Valvano December 9, 2004 2-5pm

EE319K Fall 2004 Final A

(5) Question 1. Precision in decimal digits

(2) Part 2a. Choose A-E

(2) Part 2b. Choose A-E

(2) Part 2¢. Choose A-E

(2) Part 2d. Choose A-E

(2) Part 2e. Choose A-E

(2) Part 3a. Specify RegB

(2) Part 3b. Specify 0 or 1

(1) Part 3c. Specify 0 or 1

(2) Part 4a. Give the value for xxx

(3) Part 4b. Give the value for yyy

(5) Question 5. Give the value for zzz

(5) Question 6. Give the value

(5) Question 7. Give the hexadecimal value

(5) Question 8. Give the op code

Jonathan W. Valvano

Page 2 of 12

December 9, 2004

2-5pm

EE319K Fall 2004 Final A

Page 3 of 12

(5) Question 9. Simplified memory cycles (you may or may not need all 5 entries)

R/W

Addr

Data

(5) Question 10. Show the assembly code

(10) Question 11. Hand assemble this program
Machine code

Address

aa

bb

TCNT

loop

ccC

Jonathan W. Valvano December 9, 2004

Source code

org

rmb
rmb
equ
org

1dx
1dx
ldaa
staa
bra
fcb

2-5pm

$3900
2

1
$0044
$4300
TCNT
#cc
2,X
bb
loop
0,1,2,3,4

EE319K Fall 2004 Final A Page 4 of 12

(15) Question 12. Show the assembly code

(20) Question 13. Show the assembly code

Jonathan W. Valvano December 9, 2004 2-5pm

EE319K Fall 2004 Final A Page 5 of 12

(5) Question 1. The measurement system range is 0 to 19.9 and a resolution of 0.1. What is the
precision in decimal digits?
(10) Question 2. Place letter code for the best answer in the answer boxes
(2) Part a) Which direction does data flow on the data bus during a read cycle?
A) From 6812 to memory, or from 6812 to output device
B) From memory to 6812, or from input device to 6812
C) From input device to memory
D) From memory to output device
E) None of these answers is correct
(2) Part b) Which term best describes a computer system with a response time to external
events that is short and bounded?
A) Real time
B) Dynamic
C) Busy-waiting
D) Nonintrusive
E) None of these answers is correct
(2) Part ¢) Which data structure has the following features? It can hold a variable number of
fixed-size elements. It has two main operations, one to store data into itself, and a second
operation to remove data. The data is removed in a “first come first served” order.
A) String
B) Binary tree
C) FIFO queue
D) MACQ
E) None of these answers is correct
(2) Part d) What is the difference between busy-waiting and gadfly synchronization?
A) Busy-waiting is used for I/O devices and gadfly is used for software events.
B) Busy-waiting allows you to perform other operations (so you can be busy) while
waiting for I/O devices and gadfly simply waits for the I/O device to be ready.
C) The two terms describe exactly the same synchronization method.
D) Gadfly involves software loops, while busy-waiting involves hardware interrupts.
E) None of these answers is correct.
(2) Part e) What is drop out?
A) Drop out is the error that occurs when the result of a calculation exceeds the range of
the number system.
B) Drop out is the error that occurs after a right shift or a divide, and the consequence is
that an intermediate result looses its ability to represent all of the values.
C) Drop out is when both the Carry and the Overflow bits are set.
D) Drop out is data is lost when the software does not respond fast to an I/O event.
E) None of these answers is correct.
(5) Question 3. Consider the result of executing the following two 6812 assembly instructions.
ldab #170
addb #125
(2) Part a) What will be the unsigned decimal value in Register B (0 to 255)?
(2) Part b) What will be the value of the carry (C) bit?
(1) Part ¢) What will be the value of the overflow (V) bit?

Jonathan W. Valvano December 9, 2004 2-5pm

EE319K Fall 2004 Final A Page 6 of 12

(5) Question 4. Consider the following assembly subroutine that creates two local variables,
called p and q. The variable p is 8 bits and initialized to 50. The variable q is 16 bits and
initialized to 500. The local variable binding is created using the set pseudo-ops.

P set XXX ; binding
q set yyy ; binding
subl pshx ; save register X
movb #50,1,-sp ; allocate and initialize p
movb #500,2, -sp ; allocate and initialize g
;... stuff

ldaa P,sp ; read from p
ldx Q,sp ; read from g

;... more stuff
leas 3,s ; deallocate p,qg
pulx ; restore register X
rts ; return

(2) Part a) What value should you use in the xxx position to implement the binding of p?

(3) Part b) What value should you use in the yyy position to implement the binding of g?

(5) Question 5. Consider the following main program that calls an assembly subroutine using
call by reference parameter passing on the stack. An address to an output port is pushed on the
stack, and this subroutine will set bit 0 of that port. The subroutine uses Register X stack frame.

port set zzz ; binding
main 1lds #54000
ldd #PTT ; address to PTT
pshd ; pass 16-bit port parameter on stack
jsr SetO
leas 2,sp
stop
Set0 pshx ; save register X
tsx ; create Register X stack frame
leas -4,sp ; allocate locals

ldy port, x ; get port parameter
bset 0,y,#$01 ; set bit0 of the port

leas 4,sp ; deallocate locals
pulx ; restore register X
rts ; return

What value should you use in the zzz position to implement the binding of this parameter?
(5) Question 6. A signed 16-bit decimal fixed-point number system has a A resolution of 1/100.
What is the corresponding value of the number if the integer part stored in memory is $C000?
(5) Question 7. Assume RegX is initially $4321, RegD is initially $8765. What is resulting
hexadecimal value in RegD after these instructions execute?

psha

pshb

pshx

pula

leas 2,s

pulb

Jonathan W. Valvano December 9, 2004 2-5pm

EE319K Fall 2004 Final A Page 7 of 12

(5) Question 8. Assume PTT is a signed 8-bit input and PTM is an output. The goal of this code
is to clear PTM if PPT is larger than 100. Which op code should be used in the ??? position?
ldaa PTT
cmpa #100
??? skip
clr PTM
loop
(5) Question 9. Give the simplified memory cycles produced when the following one
instruction is executed. Assume the PC contains $4000, Register Y contains $3900, each
memory location from $3800 to $3FFF contains a value equal to the least significant byte of its
address. ILe., $3800 contains $00, $3801 contains $01, etc. Just show R/W=Read or Write,
Address, and Data for each cycle.
$4000 EE71 1dx 2,y+
(5) Question 10. Consider a table with 25 entries and 4 fields. Each entry has different values,
but the same size and format. The assembly code for table entry number 5 is shown below
Entry5 fcb 100 8-bit count field
fdb 1000 16-bit time field
fcb “happy,”,0,0,0 8-byte name field
fdb -50,300,-200 three 16-bit yaw,pitch,roll fields
Assume Register X is pointing to this entry
ldx #Entry5
Using Register X, write assembly code that reads the pitch value of Entry5 into a register
(10) Question 11. Hand assemble the program shown on the answer pages
(15) Question 12. The SCISR1 register contains the TDRE and RDRF flags

T G 5 4 3 2 1 4]
R TORE TC RORF IOLE OR MNF FE PF
W
HESET: 1 1 i [i] [i] [i] i} 4]

TDRE — Transmit Data Register Empty Flag
TDRE 1s set when the transmit shift register receives a byte from the SCI data register. When TDRE
is |, the transmit data register (SCIDREH/L) is empty and can receive a new value to transmit.Clear
TDRE by reading SCI status register 1 {SCISR 1), with TDRE set and then writing to SCI data register
low (SCIDRL).
| = Byte transferred to transmit shift register; transmit data register empty
0 = Mo byte transferred to transmit shift register
RDREF — Receive Data Register Full Flag
RDRF is set when the data i the receive shift register transfers to the SCI data register. Clear RDRF
by reading SCI status register | { SCISR1) with RDRF set and then reading SC1 data register low
(SCIDRL).
| = Received data available in SCI data register
0 = Data not available in SC1 data register
The SCIDRL register serial input/output data. Write a subroutine that inputs one ASCII
character from the serial port. Your subroutine should wait for new input using gadfly
synchronization. The subroutine uses return by value parameter passing with RegB. You don’t
need to write the initialization ritual. COMMENTS WILL BE GRADED.
SCISR1 equ $00CC ; SCI Status Register 1
SCIDRL equ $00CF ; SCI Data Register Low

Jonathan W. Valvano December 9, 2004 2-5pm

EE319K Fall 2004 Final A Page 8 of 12

(20) Question 13. The objective of this problem is to implement the following two-input two-
output Mealy finite state machine. The state graph and ROM-based data structure are given.
Your job is to write the entire main program, including reset vector, to run this machine. The
FSM repeats over and over the following sequence

1) Input from PTT;

2) Output to PTM (depends on input and state);

3) Change states (depends on input and state).
The initial state is Stop.

You will use the following linked data structure (without copying it to the answer sheet)
org $4000 Put in ROM
Stop fcb 0,0,0,1 Outputs
fdb Stop,Stop,Wait,Error Next states
Wait fcb 0,1,0,2
fdb Stop,Error,Wait, Go
Go fcb 1,0,0,0
fdb Error,Stop,Wait, Go
Error fcb 0,0,0,0
fdb Error,Error,Error,Error

The inputs are connected to PTT bits 1,0 and the outputs are connected to PTM bits 1,0.

PT1 [<— inputs
PTO [

PM1 [outputs
PMO ’

You may use the following I/O port definitions (without copying them to the answer sheet)
DDRM equ $0252 ; Port M Direction

DDRT equ $0242 ; Port T Direction

PTM equ $0250 ; Port M I/O Register

PTT equ $0240 ; Port T I/O Register

Jonathan W. Valvano December 9, 2004 2-5pm

EE319K Fall 2004 Final A Page 9 of 12
postbyte,xb syntax mode explanations rr register
rr000000 , T IDX 5-bit constant, n=0 00 X
rr00nnnn n,r IDX 5-bit constant, n=0 to +15 01 Y
rrO0lnnnn -n,r IDX 5-bit constant, n=-16 to -1 10 SP
rr100nnn n,+r IDX pre-increment, n=1 to 8 11 PC
rr10lnnn n,-r IDX pre-decrement, n=1 to 8

rr110nnn n,r+ IDX post-increment, n=1 to 8

rrllinnn n,r- IDX post-decrement, n=1 to 8

111rrl100 A, r IDX Reg A accumulator offset

111rrl0l B, r IDX Reg B accumulator offset

111rrll0 D,r IDX Reg D accumulator offset

111rr000 ff n,r IDX1 9-bit cons, n 16 to 255

111rr001 ff -n,r IDX1 9-bit const, n -256 to -16

111rr010 eeff n,r IDX2 16-bit const, any 16-bit n

111rrlll [D,] [D, IDX] Reg D offset, indirect

111rr011 eeff [n,r] [IDX2] 16-bit constant, indirect

BRA

Operation: (PC) + $0002 + Rel = PC
Unconditional branch to an address calculated as shown in the
expression. Relis arelative offsat stored as a two's complement number
in the second byte of the branch instruction.

Source Form Address Object Code
Maoda
BRA reif REL 20 rr

LDAA

Oparation: (M) = A
Loads the content of memory location M into accumulator A, The
condition codes are set according to the data.

Source Form Address Ohbject Code
Mada

L D&A Soprbi InN BES 11
LO&A opria OIR e Xl
LOD&AA oprifa EXT ES hh 11
LO&A opl_xysp IO A& ¥b
LOAS op el xysp 101 AS Xb £L
LO&A oprx ! Gxysp 10x%2 A5 ¥b B8 If
LO&AA [D.xyep] D, 10 AS XD
L D&A [oprx 16, xys0] DX A5 ¥b B8 If

Jonathan W. Valvano

LDX

Oparation: (M M+1) = X

Loads the most significant byte of index register X with the content of
memory |ocation M, and loads the least significant byte of X with the
content of the next byte of memory at M+1.

Source Form Address Ohject Code
Mada

L DX #opridi Ik CE 91 kk
LOX opr8a OIR OE X1
LOX opri6a EXT FE hh 11
LOX oprxl_xysp IO EE xb
LOX oprxfd, xy=p 101 EE xb £f
LOX oprx15 xysp 10x2 EE ¥b es If
LOX [D,xy=p] D, IC0) EE xb
LOX [oprx 75, xvs0] DX EE ¥b es If

STAA

Oparation: (A= M
Stores the content of accumulator A in memory location M. The content
of A is unchanged.

Source Form Address Object Code
Maoda

STAA oprba OIR EA o
STAA opriGa EXT JA hh 11
STAA opral_xysp DX R XD
STAA oprxf xyeD 101 EA ¥b If
STAA oprx! Gxysp 102 ER D ee IL
STAA [Dxysp] D, 10 ER XD
STAA [oprx 16, xysp] 10x2] ER D ee IL

December 9, 2004 2-5pm

EE319K Fall 2004 Final A

aba 8-bit add RegA=RegA+RegB

abx unsigned add RegX=RegX+RegB
aby unsigned add RegY=RegY+RegB
adca 8-bit add with carry to RegA
adcb 8-bit add with carry to RegB
adda 8-bit add to RegA

addb 8-bit add to RegB

addd 16-bit add to RegD

anda 8-bit logical and to RegA
andb 8-bit logical and to RegB
andcc 8-bit logical and to RegCC
asl/1lsl 8-bit left shift Memory

asla/lsla 8-bit left shift RegA
aslb/1lslb 8-bit arith left shift RegB
asld/1lsld 16-bit left shift RegD

asr
asra
asrb
bcc
bclr
bcs
beq
bge
bgnd
bgt
bhi
bhs
bita
bitb
ble
blo
bls
blt
bmi
bne
bpl
bra
brclr
brn
brset
bset
bsr
bvc
bvs
call
cba
clc
cli
clr
clra
clrb
clv
cmpa
cmpb
com
coma
comb
cpd
cpx
cpy
daa
dbeg
dbne
dec
deca
decb
des
dex
dey
ediv
edivs
emacs
emaxd
emaxm
emind

8-bit arith right shift Memory
8-bit arith right shift

8-bit arith right shift to RegB
branch if carry clear
clear bits in memory
branch if carry set
branch if result is zero
branch if signed 2

enter background debug mode
branch if signed >
branch if unsigned >
branch if unsigned 2
8-bit and with RegA,
8-bit and with RegB,
branch if signed <
branch if unsigned <
branch if unsigned <

(z2=1)

sets CCR
sets CCR

branch if signed <

branch if result is negative (N=1)
branch if result is nonzero (Z=0)
branch if result is positive (N=0)
branch always

branch if bits are clear,

branch never

branch if bits are set

set bits in memory

branch to subroutine

branch if overflow clear

branch if overflow set
subroutine in expanded memory
8-bit compare RegA with RegB
clear carry bit, C=0

clear I=0, enable interrupts
8-bit Memory clear

RegA clear

RegB clear

clear overflow bit, V=0

8-bit compare RegA with memory
8-bit compare RegB with memory
8-bit logical complement to Memory
8-bit logical complement to RegA
8-bit logical complement to RegB
16-bit compare RegD with memory
16-bit compare RegX with memory
16-bit compare RegY¥ with memory
8-bit decimal adjust accumulator
decrement and branch if result=0
decrement and branch if result#0
8-bit decrement memory

8-bit decrement RegA

8-bit decrement RegB

16-bit decrement RegSP

16-bit decrement RegX

16-bit decrement Reg¥Y

RegY=(Y:D) /RegX, unsigned divide
RegY=(Y:D) /RegX, signed divide
16 by 16 signed mult, 32-bit add
16-bit unsigned maximum in RegD
16-bit unsigned maximum in memory
16-bit unsigned minimum in RegD

Jonathan W. Valvano

Page 10 of 12

eminm 16-bit unsigned minimum in memory

emul
emuls
eora
eorb
etbl
exg
fdiv
ibeq
ibne
idiv
idivs
inc
inca
incb
ins
inx
iny
jmp
jsr
lbcc
lbcs
lbeq
1lbge
lbgt
1bhi
1bhs
1lble
1blo
1bls
1blt
lbmi
lbne
lbpl
lbra
lbrn
lbvc
lbvs
ldaa
ldab
1dd
1ds
1ldx
ldy
leas
leax
leay
lsr
lsra
lsrb
1srd
maxa
maxm
mem
mina
minm
movb
movw
mul
neg
nega
negb
oraa
orab
orcc
psha
pshb
pshc
pshd
pshx
pshy
pula
pulb
pulc
puld

December 9, 2004

RegY:D=RegY*RegD unsigned mult
RegY:D=RegY*RegD signed mult

8-bit logical exclusive or to RegA
8-bit logical exclusive or to RegB
16-bit look up and interpolation
exchange register contents

16-bit unsigned fractional divide
increment and branch if result=0
increment and branch if result#0
16-bit unsigned divide, X=D/X
16-bit signed divide, X=D/X

8-bit increment memory

8-bit increment RegA

8-bit increment RegB

16-bit increment RegSP

16-bit increment RegX

16-bit increment Reg¥Y

Jjump always

jump to subroutine

long branch if carry clear

long branch if carry set

long branch if result is =zero

long branch if signed 2
long branch if signed >
long branch if unsigned
long branch if unsigned
long branch if signed <
long branch if unsigned
long branch if unsigned
long branch if signed <
long branch if result is negative
long branch if result is nonzero
long branch if result is positive
long branch always

long branch never

long branch if overflow clear

long branch if overflow set

8-bit load memory into RegA

8-bit load memory into RegB

16-bit load memory into RegD
16-bit load memory into RegSP
16-bit load memory into RegX
16-bit load memory into RegY¥Y
16-bit load effective addr to SP
16-bit load effective addr to X
16-bit load effective addr to Y
8-bit logical right shift memory
8-bit logical right shift RegA
8-bit logical right shift RegB
16-bit logical right shift RegD
8-bit unsigned maximum in RegA
8-bit unsigned maximum in memory
determine the membership grade
8-bit unsigned minimum in RegA
8-bit unsigned minimum in memory
8-bit move memory to memory

16-bit move memory to memory
RegD=RegA*RegB

8-bit 2's complement negate memory
8-bit 2's complement negate RegA
8-bit 2's complement negate RegB
8-bit logical or to RegA

8-bit logical or to RegB

8-bit logical or to RegCC

push 8-bit RegA onto stack

push 8-bit RegB onto stack

push 8-bit RegCC onto stack

push 16-bit RegD onto stack

push 16-bit RegX onto stack

push 16-bit RegY onto stack

pop 8 bits off stack into RegA
pop 8 bits off stack into RegB

pop 8 bits off stack into RegCC
pop 16 bits off stack into RegD

vV Vv

IN A

2-5pm

EE319K Fall 2004 Final A Page 11 of 12

pulx pop 16 bits off stack into RegX sty l16-bit store memory from Reg¥
puly pop 16 bits off stack into RegY suba 8-bit sub from RegA
rev Fuzzy logic rule evaluation subb 8-bit sub from RegB
revw weighted Fuzzy rule evaluation subd 16-bit sub from RegD
rol 8-bit roll shift left Memory swi software interrupt, trap
rola 8-bit roll shift left RegA tab transfer A to B
rolb 8-bit roll shift left RegB tap transfer A to CC
ror 8-bit roll shift right Memory tba transfer B to A
rora 8-bit roll shift right RegA tbeg test and branch if result=0
rorb 8-bit roll shift right RegB tbl 8-bit look up and interpolation
rtc return sub in expanded memory tbne test and branch if result#0
rti return from interrupt tfr transfer register to register
rts return from subroutine tpa transfer CC to A
sba 8-bit subtract RegA=RegA-RegB trap illegal op code, or software trap
sbca 8-bit sub with carry from RegA tst 8-bit compare memory with zero
sbcb 8-bit sub with carry from RegB tsta 8-bit compare RegA with zero
sec set carry bit, C=1 tstb 8-bit compare RegB with zero
sei set I=1, disable interrupts tsx transfer S+1 to X
sev set overflow bit, V=1 tsy transfer S+1 to Y
sex sign extend 8-bit to 16-bit reg txs transfer X-1 to S
staa 8-bit store memory from RegA tys transfer Y-1 to S
stab 8-bit store memory from RegB wai wait for interrupt
std 16-bit store memory from RegD wav weighted Fuzzy logic average
sts 16-bit store memory from SP xgdx exchange RegD with RegX
stx 16-bit store memory from RegX xgdy exchange RegD with RegY
example addressing mode Effective Address
ldaa #u immediate none
ldaa u direct EA is 8-bit address (0 to 255)
ldaa U extended EA is a l6-bit address
ldaa m, r 5-bit index EA=r+m (-16 to 15)
ldaa v, +r pre-increment r=r+v, EA=r (1 to 8)
ldaa v, -r pre—-decrement r=r-v, EA=r (1 to 8)
ldaa v, r+ post-increment EA=r, r=r+v (1 to 8)
ldaa v,r- | post-decrement EA=r, r=r-v_ (1 to 8)
ldaa A, r Reg A offset EA=r+A, zero padded
ldaa B, r Reg B offset EA=r+B, zero padded
ldaa D, r Reg D offset EA=r+D
ldaa g, r 9-bit index EA=r+gq (-256 to 255)
ldaa W, r 16-bit index EA=r+W (-32768 to 65535)
ldaa [D,r] | D indirect EA={r+D}
ldaa [W,r] | indirect EA={r+W} (-32768 to 65535)

Motorola 6812 addressing modes

Pseudo op meaning
org org Specific absolute address to put subsequent object code
= equ Define a constant symbol
set Define or redefine a constant symbol
dc.b db fcb byte Allocate byte(s) of storage with initialized values
fcec Create an ASCII string (no termination character)
dc.w dw fdb .word Allocate word(s) of storage with initialized values
dc.1 dl1 .long Allocate 32-bit long word(s) of storage with initialized values
ds ds.b rmb .blkb Allocate bytes of storage without initialization
ds.w .blkw Allocate bytes of storage without initialization
ds.1 .blkl Allocate 32-bit words of storage without initialization

Jonathan W. Valvano December 9, 2004 2-5pm

Page 12

psapw g sapw g U0 G5 sapssd] Ewonag| swoas]| ssp-Eod sapsed| IBwoD ag nep-1E0d D UG Q5
[zl [aal odL- 451 45 4551 AL AL Al -5l ¥l byl

EE] 43 43 EL EL 38 4E il 4% LS 4z 40

BEgD g BEed VR O Dap-aed =Tkl o] IBU00 95 gep-pEnd Dp-aad VRGO ep-1end DBl S O
240 AT odT- 45-F 45T d45Fl -A'E AT AT -X'Z Xz Xl

EE! 33 30 el L] el 34 8 E) 3t 3z 30

BED 8 1BEE0 8 1RO GG oap-sud JREDD oG U0 a5 2Ep-1=n Dap-aen =Bk 2ap-1eod Bp-aa w0 a9
24’8 A8 D' 45 d5'E- d45'E1 —A'E ATE A'E- 'E wE WEL

a4 a3 00 T [ag:] 08 [aF [0.:] a5 JE (74]

RS Y 1BERT Y 15D G5 heh DD 0% L0 05 sap-jend el DD a5 Dap-jsnd map-au L0 O
Dy AW D' 45— 45— 4571 —A'F A A “u'w - wEL

T 23 20 B 26 o8 pa T s 5 OE o= 20

Apun gal apn QoL suoo Qo Jap-al] pEU0oaL i Be il I eb bt] DEp-aMl] EU00 0L T S0 ap-aud U 5|
el [ad] DG 455 455 4511 —-A'5 AG Alg— -G ¥-5 WL

Bd 83 B0 By BE BE =i 28 B85 BE BE 80

Fucoqa) | BucoqoL] 1swco O sap-ssd] psuooag | swoo gz sspasod sap-aad] 1EL00O% oapEnd -l I O
g Al DB 458 H458— 4501 —-AG A-'n A] foa ¥'oL

LE LE wa Ll wE bkt s e 5 Wi ¥ Wi

SO0 G IS0 D GE D G5 -l IS0 O Euongs| sepqsed Dap-aad el Dap-end -l ki
D Al Ddi- 454 454 d5E —AE A Ai- ¥ Wi e

B4 63 60 By 56 | 6 Lir:] &5 BE [(1)

Ewoas| wuwogs| Eucoas sap-sad] pucogg| suosag| oepqsod pap-aad] pEwoo ag - s aap-aad ISU0T 05
D'y Al DB 458 458 458 ! AR AR W8 B iE

B g3 B L 86 B B e L BE BT bii]

panpw g | yoampw o FUCD O% el BUCO Q5 VR O - s el BUCO G5 uHsed u-gad VRROD OG
[d5'al fe'al od's- d5+8 456 45 AR Av'E AG—] We'R ¥

£4 £3 £ £ i] I8 i &9 i) I Fird &0

BEID g I=s=l0 g Uy On u-aad 100D O VR O - eod gl =0oD an D s U V=0T %
450 xa 21— a5+ 4501 458 AL AN ADL— ¥ Wl b

94 93 2J oy 96 o8 B o9 25 BE og 20

1o g LTl =] I R ossed | pEuoo op] 1m0 ag uH sl u-eMl| (B0 05 K sod ou-aad IsLmD aG
458 WE 2dh- 548 dE - 4585 A3 AvE Akl +x'9 X+a WE

EE! 53 S50 EL G| T8 G 59 55 GE ST S0

PEERD Y e Y BT Q5 TR IBUCD Q5 RN O% UM S0 bl] P 35 U S0 - 15000 a5
45 iy AT d54'5 45 E— d5°F +A'G AV'E AT NG G ke

Fd 3 il e L] e rd v i i FE (4]

A Ga) Apa qa| il el FU0D g P00 ag s b] el pu-pEnd TR 1500 O
45l [3u] ad'el— d54F 45EL— 45'E AR AP AEL- e WHE iE

£d £3 0 £y BE £E £l £ £5 £E EE £

12u0o qol | 1sUoo qol jeleh i oupssd | Euooag| sweooag g oupssl] EUDD GG - s PR
450 Al Dd'Fl— H54°E 45 Fl— 487 +A'E AVE Arl— +WE WHE L

Z4d 3 z0d oY i i T8 Zd] ft] ik Fr i

oo ag] swoag] 1meonag supasd | pmeooag]| e ag u-Eed Ul Re0D oG u-E0d ouraad bl
45 U ad'5l— H54T d5°51— 45°1 +A'E AVE Agl- Lb AT Eat

L4 13 1adJ LY LG LB L b2 5 LE Ve 1]

IEADD O IS0 O JEUDD Q5 oo 1EL0D OF b lr i o oua-aed VDD GG s bl =L O
d5U T DBl d45+1 4591 450 AL AL Agl— ¥ WL k)

0d [1=] 00 W L] 8 0L s 5 e [m

EE319K Fall 2004 Final A

2-5pm

December 9, 2004

Jonathan W. Valvano

