
EE319K Fall 2005 Final C Page 1 of 12

Jonathan W. Valvano December 19, 2005 9a-12n

First:________________ Last:____________________
 This is a closed book exam. You must put your answers in these boxes only. You have 3
hours, so allocate your time accordingly. Please read the entire exam before starting.
(3) Question 1.

(3) Question 2.

(3) Question 3.

(3) Question 4.

(3) Question 5.

(3) Question 6.

(3) Question 7.

(3) Question 8.

(3) Question 9.

(3) Question 10.

(3) Question 11.

(3) Question 12.

(3) Question 13.

(3) Question 14.

(3) Question 15.

(3) Question 16.

(3) Question 17.

(3) Question 18.

(3) Question 19.

(3) Question 20.

(3) Question 21.

(3) Question 22.

(3) Question 23.

(3) Question 24.

(3) Question 25.

(3) Question 26.

(3) Question 27.

(3) Question 28.

EE319K Fall 2005 Final C Page 2 of 12

Jonathan W. Valvano December 19, 2005 9a-12n

(8) Question 29. Show the assembly main program

(8) Question 30. Show the assembly main program

EE319K Fall 2005 Final C Page 3 of 12

Jonathan W. Valvano December 19, 2005 9a-12n

(3) Question 1. Consider a matrix with 4 rows and 6 columns, stored in column-major zero-
index format. Each element is 16 bits. Which equation correctly calculates the address of the
element at row I and column J?
 A) base+I+J
 B) base+4*I+J
 C) base+I+4*J
 D) base+6*I+J
 E) base+I+6*J

 F) base+2*I+2*J
 G) base+8*I+2*J
 H) base+2*I+8*J
 I) base+12*I+2*J
 J) base+2*I+12*J

(3) Question 2. Consider the following C program.
short function(const short in){
 return in+5;
}
Where is the parameter in allocated?
 A) global RAM
 B) local RAM
 C) global ROM.
 D) local ROM.
 E) None of these answers is correct.

(3) Question 3. What is drop out?
 A) Drop out is the error that occurs when the result of a calculation exceeds the range of
 the number system.
 B) Drop out is the error that occurs after a right shift or a divide, and the consequence is
 that an intermediate result looses its ability to represent all of the values.
 C) Drop out is when both the Carry and the Overflow bits are set.
 D) Drop out is data is lost when the software does not respond fast to an I/O event.
 E) None of these answers is correct.

(3) Question 4. Which direction does data flow on the data bus during a write cycle?
 A) From 6812 to memory, or from 6812 to output device
 B) From memory to 6812, or from input device to 6812
 C) From input device to memory
 D) From memory to output device
 E) None of these answers is correct

(3) Question 5. Which of the following statements best describes the action that will set the
RDRF bit in the SCISR1 register on the 6812?

A) The software writes a 1 to the RDRF bit in the SCISR1 register.
B) The software reads SCISR1 when RDRF is one, followed by reading SCIDRL.
C) The software wants new input data.
D) The software writes to the serial data register, SCIDRL.
E) The receive hardware is idle, ready to receive another input.
F) The receive shift register is busy, currently receiving a new input.
G) None of these choices is correct.

EE319K Fall 2005 Final C Page 4 of 12

Jonathan W. Valvano December 19, 2005 9a-12n

(3) Question 6. Which of the following statements best describes the action that will clear the
RDRF bit in the SCISR1 register on the 6812?

A) The software writes a 0 to the RDRF bit in the SCISR1 register.
B) The software reads SCISR1 when RDRF is one, followed by reading SCIDRL.
C) The software wants to transmit new output data.
D) The software reads from the serial data register, SCIDRL.
E) The receive hardware is idle, ready to receive another input.
F) The receive shift register is busy, currently receiving a new input.
G) None of these choices is correct.

(3) Question 7. What event triggers the start of an ADC conversion on the 6812?
A) The software writes to the ATDCTL3 register.
B) The software writes to the ATDCTL4 register.
C) The software writes to the ATDCTL5 register.
D) The ADC is automatically started by hardware.
E) Software sets the ADPU bit in the ATDCTL2 register.
F) Software read ATDSTAT0 with SCF set, followed by reading the result register.
G) None of these choices is correct.

(3) Question 8. What is the bug in the following initialized global variable on the 9S12C32?
 org $3A00
Count fdb 100

A) $3A00 is not RAM
B) RAM is volatile
C) RAM is nonvolatile
D) 100 is 8-bits, and fdb specifies 16-bits
E) Global variables are poor style and should never be used.
F) No error, this definition is acceptable.

(3) Question 9. The measurement system range is 0 to 399.9 and a resolution of 0.1. What is
the precision in decimal digits?

Consider the result of executing the following two 6812 assembly instructions.
 ldab #101
 subb #110
(3) Question 10. What will be the value of the carry (C) bit?
(3) Question 11. What will be the value of the overflow (V) bit?

(3) Question 12. What will be the value in Register D after executing the following 6812
assembly instructions?
 ldd #100
 ldy #670
 emul

EE319K Fall 2005 Final C Page 5 of 12

Jonathan W. Valvano December 19, 2005 9a-12n

(3) Question 13. You may assume all RAM locations are initially 0, and assume Reg Y equals
$1234, Reg D is $5678. What is in Reg Y after these instructions are executed?
 pshy
 pshb
 inc 1,s
 puly

(3) Question 14. An swi pushes the following registers on the stack in this order PC, Y, X, A,
B, CCR, with CCR on top. Initially, assume RegX=$4321, RegY=$ABCD, RegD=$8765. What
is the resulting hexadecimal value in RegX after these instructions execute?
 stx 5,s
 std 3,s
 rti

(3) Question 15. Show the machine code generated by the instruction
 orab -5,y

Questions 16 and 17 involve the following assembly code. The subroutine returns the result by
value on the stack.
main lds #$4000
 leas –2,s ; make space for out parameter on stack
 jsr GetT
 puly ; Fetch the return value from the stack
 stop
data set xxx ; binding of 16-bit local variable
out set yyy ; binding of 16-bit output parameter
GetT leas -2,s ; allocate 16-bit local variable called data
;****body of the subroutine
 ldd TCNT ; get time
 std data,s ; place time into local variable data
 ldd TCNT ; get time again
 subd data,s ; time difference in RegD
 std out,s ; return by value on the stack
;****end of body
 leas 2,s ; deallocate data
 rts ; return

(3) Question 16. What value should you use in the xxx position to implement the binding of the
local variable, data?

(3) Question 17. What value should you use in the yyy position to implement the binding of
the parameter, out?

(3) Question 18. A SCI is configured at a baud rate of 1200 bits/sec, with 9 bit data, two stop
bits, and no parity? What is the bandwidth in bits/sec?

EE319K Fall 2005 Final C Page 6 of 12

Jonathan W. Valvano December 19, 2005 9a-12n

(3) Question 19. Assume the 9S12C32 sequence length is configured to perform one ADC
sample (S8C S4C S2C S1C in ATDCTL3 is set to 0001). After the ADC is triggered to sample
channel 5, into which register is the digital conversion stored? In other words, out of which
register does the software read the ADC result?

(3) Question 20. A signed 8-bit binary fixed-point number has a resolution of 1/16 = 2-4. If the
integer value stored in memory is $F0, what value does it represent?

(3) Question 21. Which term best describes an interfacing method that the software checks the
status of an I/O device, and proceeds once the device is ready?

(3) Question 22. Which data structure has the following features? It can hold a variable number
of fixed-size elements. It has two main operations, one to store data into itself, and a second
operation to remove data. The data is removed in a “first come first served” order.

(3) Question 23. Assuming the variable, N, has an 8-bit signed value, does the following
operation potentially cause overflow? Answer Yes or No.
 ldab N
 sex b,x ;promote to 16-bits
 leax 10,x ;16-bit add RegX=RegX+10
 tfr x,b ;demote
 stab N

Consider the following assembly subroutine that creates two local variables, called p and q. The
variable p is 8-bits and initialized to 50. The variable q is 16-bits and initialized to 500. The
local variable binding is created using the set pseudo-ops.
p set xxx ; binding
q set yyy ; binding
sub1 pshy ; save register Y
 tsy ; stack frame
 movb #50,1,-sp ; allocate and initialize p
 movb #500,2,-sp ; allocate and initialize q
;... stuff
 ldaa p,y ; read from p
 ldx q,y ; read from q
;... more stuff
 leas 3,s ; deallocate p,q
 puly ; restore register Y
 rts ; return
(3) Question 24. What value should you use in the xxx position to implement the binding of p?

(3) Question 25. What value should you use in the yyy position to implement the binding of q?

EE319K Fall 2005 Final C Page 7 of 12

Jonathan W. Valvano December 19, 2005 9a-12n

(3) Question 26. Sketch the output waveform occurring on the PS1=TxD output as one character
(ASCII ‘C’ = $43) is transmitted. Assume 8 bit data, no parity and 1 stop bit.

(3) Question 27. In order to observe the where and when our software is executing, we can
connect unused output pins to an oscilloscope and set/clear these pins at various important
locations within our software. What is this debugging process is called? Choose from
stabilization, profiling, desk checking, or dump.

(3) Question 28. Assume PTT is an 8-bit input and PTM is an output. The goal of this code is to
clear PTM if PTT bit 0 is set. Which op code should be used in the ??? position?
 ldaa PTT
 anda #1
 ??? skip
 clr PTM
loop

(8) Question 29. Write an assembly main program that implements an interpreter using a Tree
data structure. You may assume the SCI device driver is available. In other words, you can call
SCI_Init to initialize the SCI and call SCI_InChar to receive a character (returned in Reg
A). There are five nodes in the binary tree as shown in the figure. The tree data structure, shown
below, is given and cannot be changed. For example, if the operator types V, your interpreter
will call the function Verify. Ignore letters which do not match any of the nodes.

 M
MAKE

 H
HIGH

 A
ACCEPT

 V
VERIFY

 Z
ZAP

Root

Null

Null

Null

Null
Null
Null

Root fdb CMDM
CMDM fcc 'M' Command letter
 fdb MAKE Ptr to subroutine
 fdb CMDH Ptr to left entry
 fdb CMDV Ptr to right entry
CMDH fcc 'H' Command letter
 fdb HIGH Ptr to subroutine

EE319K Fall 2005 Final C Page 8 of 12

Jonathan W. Valvano December 19, 2005 9a-12n

 fdb CMDA Ptr to left entry
 fdb null None to the right
CMDA fcc 'A' Command letter
 fdb ACCEPT Ptr to subroutine
 fdb null None to the left
 fdb null None to the right
CMDV fcc 'V' Command letter
 fdb VERIFY Ptr to subroutine
 fdb null None to the left
 fdb CMDZ Ptr to right entry
CMDZ fcc 'Z' Command letter
 fdb ZAP Ptr to subroutine
 fdb null None to the left
 fdb null None to the right

MAKE ldx #MAKEString
 jsr SCI_OutString
 rts
MAKEString fcb CR,"MAKE command",EOT

HIGH ldx #HIGHString
 jsr SCI_OutString
 rts
HIGHString fcb CR,"HIGH command",EOT

ACCEPT ldx #ACCEPTString
 jsr SCI_OutString
 rts
ACCEPTString fcb CR,"ACCEPT command",EOT

VERIFY ldx #VERIFYString
 jsr SCI_OutString
 rts
VERIFYString fcb CR,"VERIFY command",EOT

ZAP ldx #ZAPString
 jsr SCI_OutString
 rts
ZAPString fcb CR,"ZAP command",EOT

(8) Question 30. Write an assembly main program that implements this Mealy finite state
machine. The FSM data structure, shown below, is given and cannot be changed. The next state
links are defined as 8-bit indices (e.g., 1 means S1) rather than 16-bit pointers. Each state has 16
outputs and 16 next-state links. The input is on Port T bits 3,2,1,0 and the output is on Port M
bits 3,2,1,0. There are three states (S0,S1,S2), and initial state is S0. Show all assembly software
required to execute this machine. You need not be friendly, but do initialize the direction
registers. The repeating execution sequence is input, output, next.
 org $4000 Put in EEPROM so it can be changed
* Finite State Machine
S0 fcb 0,0,5,6,3,9,3,0,1,2,3,4,5,6,7,8 Outputs for inputs 0 to 15
 fcb 0,0,0,1,1,1,2,2,2,0,0,0,1,2,0,1 Next states for inputs 0 to 15
S1 fcb 1,2,3,9,6,5,3,3,3,3,4,5,9,1,0,0 Outputs for inputs 0 to 15
 fcb 2,2,2,0,0,0,2,2,2,1,1,1,2,1,1,0 Next states for inputs 0 to 15
S2 fcb 1,2,3,9,6,5,3,3,3,3,4,5,9,1,0,0 Outputs for inputs 0 to 15

EE319K Fall 2005 Final C Page 9 of 12

Jonathan W. Valvano December 19, 2005 9a-12n

 fcb 0,0,0,0,0,0,2,2,2,2,2,2,0,0,2,1 Next states for inputs 0 to 15

Address Bit 7 6 5 4 3 2 1 Bit 0 Name
$0082 ADPU AFFC AWAI ETRIGLE ETRIGP ETRIG ASCIE ASCIF ATDCTL2
$0083 0 S8C S4C S2C S1C FIFO FRZ1 FRZ0 ATDCTL3
$0084 SRES8 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0 ATDCTL4
$0085 DJM DSGN SCAN MULT 0 CC CB CA ATDCTL5
$0086 SCF 0 ETORF FIFOR 0 CC2 CC1 CC0 ATDSTAT0
$008B CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0 ATDSTAT1
$008D Bit 7 6 5 4 3 2 1 Bit 0 ATDDIEN
$0270 PTAD7 PTAD6 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTAD0 PTAD
$0272 DDRAD7 DDRAD6 DDRAD5 DDRAD4 DDRAD3 DDRAD2 DDRAD1 DDRAD0 DDRAD
address msb lsb Name
$0090 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR0
$0092 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR1
$0094 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR2
$0096 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR3
$0098 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR4
$009A 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR5
$009C 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR6
$009E 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR7

Addr Bit 7 6 5 4 3 2 1 Bit 0 Name
$00C8 BTST BSPL BRLD SBR12 SBR11 SBR10 SBR9 SBR8 SCIBD
$00C9 SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0
$00CB TIE TCIE RIE ILIE TE RE RWU SBK SCICR2

EE319K Fall 2005 Final C Page 10 of 12

Jonathan W. Valvano December 19, 2005 9a-12n

$00CC TDRE TC RDRF IDLE OR NF FE PF SCISR1
$00CF R7T7 R6T6 R5T5 R4T4 R3T3 R2T2 R1T1 R0T0 SCIDRL

EE319K Fall 2005 Final C Page 11 of 12

Jonathan W. Valvano December 19, 2005 9a-12n

aba 8-bit add RegA=RegA+RegB
abx unsigned add RegX=RegX+RegB
aby unsigned add RegY=RegY+RegB
adca 8-bit add with carry to RegA
adcb 8-bit add with carry to RegB
adda 8-bit add to RegA
addb 8-bit add to RegB
addd 16-bit add to RegD
anda 8-bit logical and to RegA
andb 8-bit logical and to RegB
andcc 8-bit logical and to RegCC
asl/lsl 8-bit left shift Memory
asla/lsla 8-bit left shift RegA
aslb/lslb 8-bit arith left shift RegB
asld/lsld 16-bit left shift RegD
asr 8-bit arith right shift Memory
asra 8-bit arith right shift
asrb 8-bit arith right shift to RegB
bcc branch if carry clear
bclr clear bits in memory
bcs branch if carry set
beq branch if result is zero (Z=1)
bge branch if signed =
bgnd enter background debug mode
bgt branch if signed >
bhi branch if unsigned >
bhs branch if unsigned =
bita 8-bit and with RegA, sets CCR
bitb 8-bit and with RegB, sets CCR
ble branch if signed =
blo branch if unsigned <
bls branch if unsigned =
blt branch if signed <
bmi branch if result is negative (N=1)
bne branch if result is nonzero (Z=0)
bpl branch if result is positive (N=0)
bra branch always
brclr branch if bits are clear,
brn branch never
brset branch if bits are set
bset set bits in memory
bsr branch to subroutine
bvc branch if overflow clear
bvs branch if overflow set
call subroutine in expanded memory
cba 8-bit compare RegA with RegB
clc clear carry bit, C=0
cli clear I=0, enable interrupts
clr 8-bit Memory clear
clra RegA clear
clrb RegB clear
clv clear overflow bit, V=0
cmpa 8-bit compare RegA with memory
cmpb 8-bit compare RegB with memory
com 8-bit logical complement to Memory
coma 8-bit logical complement to RegA
comb 8-bit logical complement to RegB
cpd 16-bit compare RegD with memory
cpx 16-bit compare RegX with memory
cpy 16-bit compare RegY with memory
daa 8-bit decimal adjust accumulator
dbeq decrement and branch if result=0
dbne decrement and branch if result?0
dec 8-bit decrement memory
deca 8-bit decrement RegA
decb 8-bit decrement RegB
des 16-bit decrement RegSP
dex 16-bit decrement RegX
dey 16-bit decrement RegY
ediv RegY=(Y:D)/RegX, unsigned divide
edivs RegY=(Y:D)/RegX, signed divide
emacs 16 by 16 signed mult, 32-bit add
emaxd 16-bit unsigned maximum in RegD
emaxm 16-bit unsigned maximum in memory
emind 16-bit unsigned minimum in RegD

eminm 16-bit unsigned minimum in memory
emul RegY:D=RegY*RegD unsigned mult
emuls RegY:D=RegY*RegD signed mult
eora 8-bit logical exclusive or to RegA
eorb 8-bit logical exclusive or to RegB
etbl 16-bit look up and interpolation
exg exchange register contents
fdiv 16-bit unsigned fractional divide
ibeq increment and branch if result=0
ibne increment and branch if result?0
idiv 16-bit unsigned divide, X=D/X
idivs 16-bit signed divide, X=D/X
inc 8-bit increment memory
inca 8-bit increment RegA
incb 8-bit increment RegB
ins 16-bit increment RegSP
inx 16-bit increment RegX
iny 16-bit increment RegY
jmp jump always
jsr jump to subroutine
lbcc long branch if carry clear
lbcs long branch if carry set
lbeq long branch if result is zero
lbge long branch if signed =
lbgt long branch if signed >
lbhi long branch if unsigned >
lbhs long branch if unsigned =
lble long branch if signed =
lblo long branch if unsigned <
lbls long branch if unsigned =
lblt long branch if signed <
lbmi long branch if result is negative
lbne long branch if result is nonzero
lbpl long branch if result is positive
lbra long branch always
lbrn long branch never
lbvc long branch if overflow clear
lbvs long branch if overflow set
ldaa 8-bit load memory into RegA
ldab 8-bit load memory into RegB
ldd 16-bit load memory into RegD
lds 16-bit load memory into RegSP
ldx 16-bit load memory into RegX
ldy 16-bit load memory into RegY
leas 16-bit load effective addr to SP
leax 16-bit load effective addr to X
leay 16-bit load effective addr to Y
lsr 8-bit logical right shift memory
lsra 8-bit logical right shift RegA
lsrb 8-bit logical right shift RegB
lsrd 16-bit logical right shift RegD
maxa 8-bit unsigned maximum in RegA
maxm 8-bit unsigned maximum in memory
mem determine the membership grade
mina 8-bit unsigned minimum in RegA
minm 8-bit unsigned minimum in memory
movb 8-bit move memory to memory
movw 16-bit move memory to memory
mul RegD=RegA*RegB
neg 8-bit 2's complement negate memory
nega 8-bit 2's complement negate RegA
negb 8-bit 2's complement negate RegB
oraa 8-bit logical or to RegA
orab 8-bit logical or to RegB
orcc 8-bit logical or to RegCC
psha push 8-bit RegA onto stack
pshb push 8-bit RegB onto stack
pshc push 8-bit RegCC onto stack
pshd push 16-bit RegD onto stack
pshx push 16-bit RegX onto stack
pshy push 16-bit RegY onto stack
pula pop 8 bits off stack into RegA
pulb pop 8 bits off stack into RegB
pulc pop 8 bits off stack into RegCC
puld pop 16 bits off stack into RegD

EE319K Fall 2005 Final C Page 12 of 12

Jonathan W. Valvano December 19, 2005 9a-12n

pulx pop 16 bits off stack into RegX
puly pop 16 bits off stack into RegY
rev Fuzzy logic rule evaluation
revw weighted Fuzzy rule evaluation
rol 8-bit roll shift left Memory
rola 8-bit roll shift left RegA
rolb 8-bit roll shift left RegB
ror 8-bit roll shift right Memory
rora 8-bit roll shift right RegA
rorb 8-bit roll shift right RegB
rtc return sub in expanded memory
rti return from interrupt
rts return from subroutine
sba 8-bit subtract RegA=RegA-RegB
sbca 8-bit sub with carry from RegA
sbcb 8-bit sub with carry from RegB
sec set carry bit, C=1
sei set I=1, disable interrupts
sev set overflow bit, V=1
sex sign extend 8-bit to 16-bit reg
staa 8-bit store memory from RegA
stab 8-bit store memory from RegB
std 16-bit store memory from RegD
sts 16-bit store memory from SP
stx 16-bit store memory from RegX

sty 16-bit store memory from RegY
suba 8-bit sub from RegA
subb 8-bit sub from RegB
subd 16-bit sub from RegD
swi software interrupt, trap
tab transfer A to B
tap transfer A to CC
tba transfer B to A
tbeq test and branch if result=0
tbl 8-bit look up and interpolation
tbne test and branch if result?0
tfr transfer register to register
tpa transfer CC to A
trap illegal op code, or software trap
tst 8-bit compare memory with zero
tsta 8-bit compare RegA with zero
tstb 8-bit compare RegB with zero
tsx transfer S to X
tsy transfer S to Y
txs transfer X to S
tys transfer Y to S
wai wait for interrupt
wav weighted Fuzzy logic average
xgdx exchange RegD with RegX
xgdy exchange RegD with RegY

example addressing mode Effective Address
ldaa #u immediate none
ldaa u direct EA is 8-bit address (0 to 255)
ldaa U extended EA is a 16-bit address
ldaa m,r 5-bit index EA=r+m (-16 to 15)
ldaa v,+r pre-increment r=r+v, EA=r (1 to 8)
ldaa v,-r pre-decrement r=r-v, EA=r (1 to 8)
ldaa v,r+ post-increment EA=r, r=r+v (1 to 8)
ldaa v,r- post-decrement EA=r, r=r-v (1 to 8)
ldaa A,r Reg A offset EA=r+A, zero padded
ldaa B,r Reg B offset EA=r+B, zero padded
ldaa D,r Reg D offset EA=r+D
ldaa q,r 9-bit index EA=r+q (-256 to 255)
ldaa W,r 16-bit index EA=r+W (-32768 to 65535)
ldaa [D,r] D indirect EA={r+D}
ldaa [W,r] indirect EA={r+W} (-32768 to 65535)

Motorola 6812 addressing modes

Pseudo op meaning
 org org Specific absolute address to put subsequent object code
 = equ Define a constant symbol
 set Define or redefine a constant symbol
 dc.b db fcb byte Allocate byte(s) of storage with initialized values
 fcc Create an ASCII string (no termination character)
 dc.w dw fdb .word Allocate word(s) of storage with initialized values
 dc.l dl .long Allocate 32-bit long word(s) of storage with initialized values
 ds ds.b rmb .blkb Allocate bytes of storage without initialization
 ds.w .blkw Allocate bytes of storage without initialization
 ds.l .blkl Allocate 32-bit words of storage without initialization

EE319K Fall 2004 Final A Page 13

Jonathan W. Valvano December 19, 2005 9a-12noon

