
EE319K Fall 2006 Final A Page 1

Jonathan W. Valvano December 14, 2006 9am-12n

First:________________ Middle Initial: _____ Last:____________________
 This is a closed book exam. You must put your answers in the space provided. You have
3 hours, so allocate your time accordingly. Please read the entire exam before starting.

(4) Question 1. An embedded system will use an ADC to measure a parameter. The
measurement system range is 0.0 to 199.9 and a resolution of 0.1. What is the smallest number
of ADC bits that can be used?

(4) Question 2. An 8-bit ADC (different from the 9S12C32) has an input range of 0 to +2.5
volts and an output range of 0 to 255. What digital value will be returned when an input of
+0.625 volts is sampled?

(2) Question 3. Consider the result of executing the following two 6812 assembly instructions.
 ldaa #160
 suba #140

What will be the value of the carry (C) bit?

(2) Question 4. Consider the result of executing the following two 6812 assembly instructions.
 ldaa #-90
 adda #-40

What will be the value of the overflow (V) bit?

(4) Question 5. A signed 16-bit binary fixed-point number system has a Δ resolution of 1/256.
What is the corresponding value of the number if the integer part stored in memory is 1152?
(hint: 1152=1024+128)

EE319K Fall 2006 Final A Page 2

Jonathan W. Valvano December 14, 2006 9am-12n

For questions 6,7
A) Software performs a read SCISR1 with bit set followed by read SCIDRL
B) Software performs a read SCISR1 with bit set followed by write SCIDRL
C) Hardware sets it when there is data in the receive shift register
D) Hardware sets it when there is data in the receive data register
E) Hardware sets it when there is no data in the receive shift register
F) Hardware sets it when there is no data in the receive data register
G) Hardware sets it when there is data in the transmit shift register
H) Hardware sets it when there is data in the transmit data register
I) Hardware sets it when there is no data in the transmit shift register
J) Hardware sets it when there is no data in the transmit data register

(4) Question 6. What sets the TDRE bit in the SCI? Choose a letter A-J __________

(4) Question 7. What sets the RDRF bit in the SCI? Choose a letter A-J __________

(4) Question 8. Assume the ADC sequence length is 3 (ATDCTL3 equals $18)
and $85 is written into ATDCTL5. What happens? __________

A) Channel 5 is sampled and the result is placed in ATDDR0
B) Channel 5 is sampled and the result is placed in ATDDR5
C) Channel 5 is sampled three times and the results are placed in ATDDR0-ATDDR2
D) Channel 5 is sampled three times and the results are placed in ATDDR5-ATDDR7
E) Channels 5,6,7 are sampled and the results are placed in ATDDR0-ATDDR2
F) Channels 5,6,7 are sampled and the results are placed in ATDDR5-ATDDR7

(4) Question 9. Which three events cause an interrupt to occur? ____________
Specify three letters in any order.

A) The software disarms the interrupt (e.g., RTIE=0)
B) The I bit in the CCR is set
C) The I bit in the CCR is clear
D) The software arms the interrupt (e.g., RTIE=1)
E) The software acknowledges the interrupt, clearing the flag (e.g., RTIF=0)
F) The software sets the flag bit (e.g., RTIF=1)
G) The hardware sets the flag bit (e.g., RTIF=1)
H) The hardware acknowledges the interrupt, clearing the flag (e.g., RTIF=0)

(4) Question 10. Assuming the variables are 16-bit integers, and all operations are __________
16-bit integer functions, what error might occur in the following operation? The goal is to
multiply N times 0.123 and store the result into M.

M = (123*N)/1000
A) dropout
B) floor
C) overflow
D) promotion
E) demotion
F) no error can occur because M will be less than N

(4) Question 11. What is the machine code for the following instruction? __________
 std 5,sp

EE319K Fall 2006 Final A Page 3

Jonathan W. Valvano December 14, 2006 9am-12n

(5) Question 12. Give the simplified memory cycles produced when the following one
instruction is executed. Assume the PC contains $4000, Register X contains $3900, Register A
contains $45 and Register B is $67. Just show R/W=Read or Write, Address, and Data for each
cycle. Memory locations $3900 through $390F contain $00 to $0F respectively.
$4000 6C31 std 2,x+

R/W Addr Data

(5) Question 13. You are given an LED with a 2V 20mA operating point. Interface this LED to
the 9S12C32, such that the LED is on when PM0 is high (5V) and the LED is off when PM0 is
low (0V). The output low voltage of the 7405 is 0.5V .Label all resistor values. No software is
required.

7405

PM0

9S12C32

(5) Question 14. Interface this switch to the 9S12C32, such that PM1 is high (5V) if the switch
is not pressed and PM1 is low (0V) if the switch is pressed. You do not need to debounce the
switch. Label all chip numbers and resistor values. No software is required.

PM1

9S12C32

EE319K Fall 2006 Final A Page 4

Jonathan W. Valvano December 14, 2006 9am-12n

(15) Question 15. In this problem you will implement two unsigned 16-bit local variables on the
stack using register Y stack frame addressing and symbolic binding. Call one variable front
and the other back. The code in this question is part of a subroutine, which ends in rts.
Part a) Show the assembly code that saves RegY, setups up RegY to point into the stack, and
allocates the two 16-bit local variables.

Part b) Assume the stack pointer is equal to $3F00, and then this subroutine is called. Draw a
stack picture showing the return address, the two variables, RegY and the SP. ($3800 is towards
the top, and $3FFF is towards the bottom of the picture). Shade elements that are on the stack.

Part c) Show the symbolic binding for front and back.

Part d) Show code that explicitly implements back=2000;

Part e) Show code that explicitly implements front = 2*back;

Part f) Show the assembly code that deallocates the two 16-bit local variables, and restores Y.

EE319K Fall 2006 Final A Page 5

Jonathan W. Valvano December 14, 2006 9am-12n

 (15) Question 16. Implement the following one-input
four-output Mealy finite state machine. The input is on
Port T bit 0 and the output is on Port M bits 3,2,1,0. The
initial state is happy. You do not need to show the stack
initialization or the reset vector.
Part a) Show the ROM-based FSM data structure

Part b) Show the initialization and controller software. Initialize the direction registers, making
all code friendly. You may add variables in any appropriate manner (registers, stack, or global
RAM). The repeating execution sequence is …input, output (depends on the input and state),
next (depends on the input and state)… . Please make your code that accesses Port M friendly.

happy hungry

sleepy

0/3

1/2

0/7

1/30/4

1/8

EE319K Fall 2006 Final A Page 6

Jonathan W. Valvano December 14, 2006 9am-12n

(15) Question 17. Design a software system that uses the RTI periodic interrupt to create the
following repeating waveform on PT7 output.

PT7 10.24ms5.12ms 10.24ms5.12ms

The RTI vector is located at $FFF0. The reset vector is located at $FFFE. For example, a value
of $40 written to RTICTL will specify a 1.024ms interrupt period. Show all the software for this
system: direction registers, global variables, stack initialization, RTI initialization, main
program, RTI ISR, RTI vector and reset vector. The main program initializes the system, then
executes a do-nothing loop. The RTI ISR performs output to Port T. Please make your code that
accesses Port T friendly. Variables you need should be allocated in the appropriate places.

EE319K Fall 2006 Final A Page 7

Jonathan W. Valvano December 14, 2006 9am-12n

aba 8-bit add RegA=RegA+RegB
abx unsigned add RegX=RegX+RegB
aby unsigned add RegY=RegY+RegB
adca 8-bit add with carry to RegA
adcb 8-bit add with carry to RegB
adda 8-bit add to RegA
addb 8-bit add to RegB
addd 16-bit add to RegD
anda 8-bit logical and to RegA
andb 8-bit logical and to RegB
andcc 8-bit logical and to RegCC
asl/lsl 8-bit left shift Memory
asla/lsla 8-bit left shift RegA
aslb/lslb 8-bit arith left shift RegB
asld/lsld 16-bit left shift RegD
asr 8-bit arith right shift Memory
asra 8-bit arith right shift to RegA
asrb 8-bit arith right shift to RegB
bcc branch if carry clear
bclr bit clear in memory
 bclr PTT,#$01
bcs branch if carry set
beq branch if result is zero (Z=1)
bge branch if signed ≥
bgnd enter background debug mode
bgt branch if signed >
bhi branch if unsigned >
bhs branch if unsigned ≥
bita 8-bit and with RegA, sets CCR
bitb 8-bit and with RegB, sets CCR
ble branch if signed ≤
blo branch if unsigned <
bls branch if unsigned ≤
blt branch if signed <
bmi branch if result is negative (N=1)
bne branch if result is nonzero (Z=0)
bpl branch if result is positive (N=0)
bra branch always
brclr branch if bits are clear
 brclr PTT,#$01,loop
brn branch never
brset branch if bits are set
 brset PTT,#$01,loop
bset bit set clear in memory
 bset PTT,#$04
bsr branch to subroutine
bvc branch if overflow clear
bvs branch if overflow set
call subroutine in expanded memory
cba 8-bit compare RegA with RegB
clc clear carry bit, C=0
cli clear I=0, enable interrupts
clr 8-bit memory clear
clra RegA clear
clrb RegB clear
clv clear overflow bit, V=0
cmpa 8-bit compare RegA with memory
cmpb 8-bit compare RegB with memory
com 8-bit logical complement to memory
coma 8-bit logical complement to RegA
comb 8-bit logical complement to RegB
cpd 16-bit compare RegD with memory
cpx 16-bit compare RegX with memory
cpy 16-bit compare RegY with memory
daa 8-bit decimal adjust accumulator
dbeq decrement and branch if result=0
 dbeq Y,loop
dbne decrement and branch if result≠0
 dbne A,loop
dec 8-bit decrement memory
deca 8-bit decrement RegA
decb 8-bit decrement RegB
des 16-bit decrement RegSP
dex 16-bit decrement RegX
dey 16-bit decrement RegY

ediv RegY=(Y:D)/RegX, unsigned divide
edivs RegY=(Y:D)/RegX, signed divide
emacs 16 by 16 signed mult, 32-bit add
emaxd 16-bit unsigned maximum in RegD
emaxm 16-bit unsigned maximum in memory
emind 16-bit unsigned minimum in RegD
eminm 16-bit unsigned minimum in memory
emul RegY:D=RegY*RegD unsigned mult
emuls RegY:D=RegY*RegD signed mult
eora 8-bit logical exclusive or to RegA
eorb 8-bit logical exclusive or to RegB
etbl 16-bit look up and interpolation
exg exchange register contents
 exg X,Y
fdiv unsigned fract div, X=(65536*D)/X
ibeq increment and branch if result=0
 ibeq Y,loop
ibne increment and branch if result≠0
 ibne A,loop
idiv 16-bit unsigned div, X=D/X, D=rem
idivs 16-bit signed divide, X=D/X, D=rem
inc 8-bit increment memory
inca 8-bit increment RegA
incb 8-bit increment RegB
ins 16-bit increment RegSP
inx 16-bit increment RegX
iny 16-bit increment RegY
jmp jump always
jsr jump to subroutine
lbcc long branch if carry clear
lbcs long branch if carry set
lbeq long branch if result is zero
lbge long branch if signed ≥
lbgt long branch if signed >
lbhi long branch if unsigned >
lbhs long branch if unsigned ≥
lble long branch if signed ≤
lblo long branch if unsigned <
lbls long branch if unsigned ≤
lblt long branch if signed <
lbmi long branch if result is negative
lbne long branch if result is nonzero
lbpl long branch if result is positive
lbra long branch always
lbrn long branch never
lbvc long branch if overflow clear
lbvs long branch if overflow set
ldaa 8-bit load memory into RegA
ldab 8-bit load memory into RegB
ldd 16-bit load memory into RegD
lds 16-bit load memory into RegSP
ldx 16-bit load memory into RegX
ldy 16-bit load memory into RegY
leas 16-bit load effective addr to SP
leax 16-bit load effective addr to X
leay 16-bit load effective addr to Y
lsr 8-bit logical right shift memory
lsra 8-bit logical right shift RegA
lsrb 8-bit logical right shift RegB
lsrd 16-bit logical right shift RegD
maxa 8-bit unsigned maximum in RegA
maxm 8-bit unsigned maximum in memory
mem determine the membership grade
mina 8-bit unsigned minimum in RegA
minm 8-bit unsigned minimum in memory
movb 8-bit move memory to memory
 movb #100,PTT
movw 16-bit move memory to memory
 movw #13,SCIBD
mul RegD=RegA*RegB
neg 8-bit 2's complement negate memory
nega 8-bit 2's complement negate RegA
negb 8-bit 2's complement negate RegB
oraa 8-bit logical or to RegA
orab 8-bit logical or to RegB

EE319K Fall 2006 Final A Page 8

Jonathan W. Valvano December 14, 2006 9am-12n

orcc 8-bit logical or to RegCC
psha push 8-bit RegA onto stack
pshb push 8-bit RegB onto stack
pshc push 8-bit RegCC onto stack
pshd push 16-bit RegD onto stack
pshx push 16-bit RegX onto stack
pshy push 16-bit RegY onto stack
pula pop 8 bits off stack into RegA
pulb pop 8 bits off stack into RegB
pulc pop 8 bits off stack into RegCC
puld pop 16 bits off stack into RegD
pulx pop 16 bits off stack into RegX
puly pop 16 bits off stack into RegY
rev Fuzzy logic rule evaluation
revw weighted Fuzzy rule evaluation
rol 8-bit roll shift left Memory
rola 8-bit roll shift left RegA
rolb 8-bit roll shift left RegB
ror 8-bit roll shift right Memory
rora 8-bit roll shift right RegA
rorb 8-bit roll shift right RegB
rtc return sub in expanded memory
rti return from interrupt
rts return from subroutine
sba 8-bit subtract RegA-RegB
sbca 8-bit sub with carry from RegA
sbcb 8-bit sub with carry from RegB
sec set carry bit, C=1
sei set I=1, disable interrupts
sev set overflow bit, V=1
sex sign extend 8-bit to 16-bit reg
 sex B,D
staa 8-bit store memory from RegA
stab 8-bit store memory from RegB

std 16-bit store memory from RegD
sts 16-bit store memory from SP
stx 16-bit store memory from RegX
sty 16-bit store memory from RegY
suba 8-bit sub from RegA
subb 8-bit sub from RegB
subd 16-bit sub from RegD
swi software interrupt, trap
tab transfer A to B
tap transfer A to CC
tba transfer B to A
tbeq test and branch if result=0
 tbeq Y,loop
tbl 8-bit look up and interpolation
tbne test and branch if result≠0
 tbne A,loop
tfr transfer register to register
 tfr X,Y
tpa transfer CC to A
trap illegal instruction interrupt
trap illegal op code, or software trap
tst 8-bit compare memory with zero
tsta 8-bit compare RegA with zero
tstb 8-bit compare RegB with zero
tsx transfer S to X
tsy transfer S to Y
txs transfer X to S
tys transfer Y to S
wai wait for interrupt
wav weighted Fuzzy logic average
xgdx exchange RegD with RegX
xgdy exchange RegD with RegY

example addressing mode Effective Address
ldaa #u immediate none
ldaa u direct EA is 8-bit address (0 to 255)
ldaa U extended EA is a 16-bit address
ldaa m,r 5-bit index EA=r+m (-16 to 15)
ldaa v,+r pre-increment r=r+v, EA=r (1 to 8)
ldaa v,-r pre-decrement r=r-v, EA=r (1 to 8)
ldaa v,r+ post-increment EA=r, r=r+v (1 to 8)
ldaa v,r- post-decrement EA=r, r=r-v (1 to 8)
ldaa A,r Reg A offset EA=r+A, zero padded
ldaa B,r Reg B offset EA=r+B, zero padded
ldaa D,r Reg D offset EA=r+D
ldaa q,r 9-bit index EA=r+q (-256 to 255)
ldaa W,r 16-bit index EA=r+W (-32768 to 65535)
ldaa [D,r] D indirect EA={r+D}
ldaa [W,r] indirect EA={r+W} (-32768 to 65535)

Freescale 6812 addressing modes
Pseudo op meaning

 org Specific absolute address to put subsequent object code
 = equ Define a constant symbol
 set Define or redefine a constant symbol
 dc.b db fcb .byte Allocate byte(s) of storage with initialized values
 fcc Create an ASCII string (no termination character)
 dc.w dw fdb .word Allocate word(s) of storage with initialized values
 dc.l dl .long Allocate 32-bit long word(s) of storage with initialized values
 ds ds.b rmb .blkb Allocate bytes of storage without initialization
 ds.w .blkw Allocate bytes of storage without initialization
 ds.l .blkl Allocate 32-bit words of storage without initialization

EE319K Fall 2006 Final Page 9

Jonathan W. Valvano December 14, 2006 9am-12n

EE319K Fall 2006 Final Page 10

Jonathan W. Valvano December 14, 2006 9am-12n

Address Bit 7 6 5 4 3 2 1 Bit 0 Name
$0240 PT7 PT6 PT5 PT4 PT3 PT2 PT1 PT0 PTT
$0242 DDRT7 DDRT6 DDRT5 DDRT4 DDRT3 DDRT2 DDRT1 DDRT0 DDRT
$0250 PM7 PM6 PM5 PM4 PM3 PM2 PM1 PM0 PTM
$0252 DDRM7 DDRM6 DDRM5 DDRM4 DDRM3 DDRM2 DDRM1 DDRM0 DDRM
$0082 ADPU AFFC AWAI ETRIGLE ETRIGP ETRIG ASCIE ASCIF ATDCTL2
$0083 0 S8C S4C S2C S1C FIFO FRZ1 FRZ0 ATDCTL3
$0084 SRES8 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0 ATDCTL4
$0085 DJM DSGN SCAN MULT 0 CC CB CA ATDCTL5
$0086 SCF 0 ETORF FIFOR 0 CC2 CC1 CC0 ATDSTAT0
$008B CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0 ATDSTAT1
$008D Bit 7 6 5 4 3 2 1 Bit 0 ATDDIEN
$0270 PAD7 PAD6 PAD5 PAD4 PAD3 PAD2 PAD1 PAD0 PTAD
$0272 DDRAD7 DDRAD6 DDRAD5 DDRAD4 DDRAD3 DDRAD2 DDRAD1 DDRAD0 DDRAD
address msb lsb Name
$0090 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR0
$0092 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR1
$0094 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR2
$0096 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR3
$0098 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR4
$009A 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR5
$009C 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR6
$009E 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR7

Addr Bit 7 6 5 4 3 2 1 Bit 0 Name
$00C8 BTST BSPL BRLD SBR12 SBR11 SBR10 SBR9 SBR8 SCIBD
$00C9 SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0
$00CB TIE TCIE RIE ILIE TE RE RWU SBK SCICR2
$00CC TDRE TC RDRF IDLE OR NF FE PF SCISR1
$00CF R7T7 R6T6 R5T5 R4T4 R3T3 R2T2 R1T1 R0T0 SCIDRL

Address Bit 7 6 5 4 3 2 1 Bit 0 Name
$0037 RTIF PROF 0 LOCKIF LOCK TRACK SCMIF SCM CRGFLG
$0038 RTIE 0 0 LOCKIE 0 0 SCMIE 0 CRGINT
$003B 0 RTR6 RTR5 RTR4 RTR3 RTR2 RTR1 RTR0 RTICTL
 let RTR6, RTR5, RTR4 be n, which is a 3-bit number ranging from 0 to 7

let RTR3, RTR2, RTR1, RTR0 be m, which is a 4-bit number ranging from 0 to 15
RTI interrupt frequency (Hz) = 15625*2-n/(m+1)
RTI interrupt period (ms) = 0.064*(m+1)*2n

