EE319K Fall 2007 Final A Page 1

First: Middle Initial: Last:
Thisis aclosed book exam. Y ou must put your answers in the space provided. Y ou have
3 hours, so allocate your time accordingly. Please read the entire exam before starting.

(4) Question 1. An embedded system will use a 12-bit ADC to measure a parameter. The
measurement system range is 0 to 10 cm. What is the precision in decimal digits?

(4) Question 2. An 11-bit ADC (not the 9S12) has an input range of 0 to +10 volts and an
output range of 0 to 2047. What digital value will be returned when an input of +2.5 volts is
sampled?

(2) Question 3. Consider the result of executing the following two 9S12 assembly instructions.
ldaa #160
suba #150

What will be the value of the carry (C) bit?

(2) Question 4. Consider the result of executing the following two 9S12 assembly instructions.
lIdaa #-30
adda #-90

What will be the value of the overflow (V) bit?

Jonathan W. Valvano December 17, 2007 2-5pm

EE319K Fall 2007 Final A Page 2

(4) Question 5. Assume al 8 bitsof PTT are output. Write software to clear PT5 (make it 0).

(4) Question 6. What isthe bug in the following initialized global variable on the 95127
org $3900
Slope fdb 50
A) $3900 isnot RAM
B) RAM isvolatile
C) RAM isnonvolatile
D) 50 isan 8-bit number, and Fdb defines a 16-bit number
E) Using global variablesis poor style and should never be used.
F) No error, this definition is acceptable.

(4) Question 7. These seven events all occur during each output compare 7 interrupt.
1) The TCNT equals TC7 and the hardware sets the flag bit (e.g., C7F=1)
2) The output compare 7 vector address is loaded into the PC
3) Thel hitinthe CCR is set by hardware
4) The software executesmovb #$80, TFLG1
5) The CCR, A, B, X, Y, PC are pushed on the stack
6) The software executes something like
Idd TC7
addd #1000
std TC7
7) The software executes rti
Which of the following sequences could be possible?. Pick one answer A-F (only oneis correct)
A) 1,35,2,4,6,7
B) 4,1,3,5,2,6,7
C) 1,2,5,34,6,7
D) 1,5,3,2,6,4,7
E) 5,3,2,1,4,6,7
F) None of the above sequences are possible

(4) Question 8. Assumethe E clock is4 MHz (250 ns) and TSCR2 = 1. At what interrupt period
will the output compare 7 interrupt described in Question 7 occur? GIVE UNITS

Jonathan W. Valvano December 17, 2007 2-5pm

EE319K Fall 2007 Final A Page 3

(4) Question 9. What is the machine code for the following instruction?
sty 2,sp+

(4) Question 10. Isthisalegal stack operation? Answer yesor no
sty 2,sp+

(4) Question 11. Assume Height is the integer part of an 8-bit unsigned fixed-point variable
with a resolution of 0.1 cm. The goa is to add 0.5 cm to the value of the variable. Will the
following software always operate properly?
ldaa Height
sex A,D ;promote to 16 bits
addd #5 ;perform the addition In 16-bit mode
tfr D,A ;demote back to 8 bits
staa Height
A) Yes, the program has no errors.
B) No, overflow can occur.
C) No, dropout can occur.
D) No, the carry bit could be set
E) No, one needs to divide by 10 to get the correct result.
F) No, the addd instruction should have been addd #0.5

(5) Question 12. Give the simplified memory cycles produced when the following one
instruction is executed. Assume the PC contains $4200, and the SP equals $3FF0. Just show
R/W=Read or Write, Address, and Data for each cycle. You may not need all 5 entries in the

solution box.
$4200 0O70E bsr $4210

R/W Addr Data

Jonathan W. Valvano December 17, 2007 2-5pm

EE319K Fall 2007 Final A Page 4

(5) Question 13. You are given an LED with a3V 10mA operating point. Interface this LED to
the 9S12 using a 7406, such that the LED is on when PM1 is high (5V) and the LED is off when
PM1islow (OV). Label al resistor values. No software is required.

9S12
7406

PM1 +— | >O :Z

(5) Question 14. You are given a double-pole switch that has three pins. The figure shows the
switch in the position that occurs when the switch is pressed. If the switch is pressed, pins 1 and
2 are connected (0 resistance) and pins 2 and 3 are not connected (infinite resistance). If the
switch is not pressed, pins 2 and 3 are connected (O resistance) and pins 1 and 2 are not
connected (infinite resistance). Pins 1 and 3 are never connected (it is a break-before-make
switch). Interface this switch to the 9S12, such that PMO is high (5V) if the switch is pressed and
PMO islow (OV) if the switch is not pressed. Y ou do not need to debounce the switch. Label al
chip numbers and resistor values. No software is required.

9S12
1| | 3

PMO
1,

Jonathan W. Valvano December 17, 2007 2-5pm

EE319K Fall 2007 Final A Page 5

(10) Question 15. In this problem you will implement three unsigned 8-hit local variables on the
stack using Reg X stack frame addressing and symbolic binding. The variables are called front
center and back. The codein this question is part of a subroutine, which endsin rts.

Part a) Show the assembly code that (in this order) saves Register X, establishes the Register X
stack frame, and allocates the three 8-bit local variables.

Part b) Assume the stack pointer is equal to $3FOA just before jsr <— 8 bits—>
instruction is executed that calls this subroutine. Draw a stack picture
showing the return address, the three variables, Register X, and the
stack pointer SP. Cross-out the SP arrow and move it to its new
location.

Part c) Show the symbolic binding for front center and back.

Part d) Show code that implements center=100; using Reg X stack frame addressing.

Part €) Show the assembly code that deallocates the local variables, and restores Reg X.

Jonathan W. Valvano December 17, 2007 2-5pm

$3F00
$3F01
$3F02
$3F03
$3F04
$3F05
$3F06
$3F07
$3F08
$3F09
$3F0A

EE319K Fall 2007 Final A Page 6

(10) Question 16. Write an assembly subroutine that starts the ADC to sample channel 2, waits
for ADC to finish, then reads one 10-bit conversion from the ADC. Y ou may assume the ADC
interface is aready initiadized to sample one channel in 10-bit mode. Use busy-wait
synchronization and return the result by value in Register X. The result should vary from O to
1023.

(10) Question 17. Write an assembly subroutine that waits for new input, then reads one 8-bit
character from the SCI serial port. You may assume the serial port is already initialized to 1 start
bit, 8 data bits, and 1 stop bit, running at 9600 bits/sec. Use busy-wait synchronization and return
the result by value in Register B.

Jonathan W. Valvano December 17, 2007 2-5pm

EE319K Fall 2007 Final A Page 7

(15) Question 18. Write an assembly main program that implements this Mealy finite state
machine. The FSM data structure, shown below, is given and cannot be changed. The next state
links are defined as 16-bit pointers. Each state has 8 outputs and 8 next-state links. The input is
on Port T bits 2,1,0 and the output is on Port M bits 54,3,2,1,0. There are three states
(S0,51,S2), and initial state is SO. Show all assembly software required to execute this machine
including the reset vector. Y ou need not be friendly, but do initialize the direction registers. The
repeating execution sequence is input, output (depends on input and current state), next (depends

on input and current state).
org $4000 ;EPROM
* Finite State Machine

so fcb 0,0,5,6,3,9,3,0 ; Outputs for inputs 0 to 7

fdb S0,s0,S1,S1,S1,S2,S2,S2 ; Next states for inputs O to 7
s1 fcb 1,2,3,9,6,5,3,3 ; Outputs for inputs 0 to 7

fdb Ss2,s0,s0,S0,S2,S2,S2,S1 ; Next states for inputs O to 7
s2 fcb 1,2,3,9,6,5,3,3 ; Outputs for inputs 0 to 7

fdb Ss2,s2,s2,S2,50,S0,S2,S1 ; Next states for inputs O to 7

Jonathan W. Valvano December 17, 2007 2-5pm

EE319K Fall 2007 Final A

aba 8-bit add RegA=RegA+RegB
abx unsigned add RegX=RegX+RegB
aby unsigned add RegY=RegY+RegB
adca 8-bit add with carry to RegA
adcb 8-bit add with carry to RegB
adda 8-bit add to RegA
addb 8-bit add to RegB
addd 16-bit add to RegD
anda 8-bit logical and to RegA
andb 8-bit logical and to RegB
andcc 8-bit logical and to RegCC
asl/1lsl 8-bit left shift Memory
asla/lsla 8-bit left shift RegA
aslb/1lslb 8-bit arith left shift RegB
asld/1lsld 16-bit left shift RegD
asr 8-bit arith right shift Memory
asra 8-bit arith right shift to RegA
asrb 8-bit arith right shift to RegB
bcc branch if carry clear
bclr bit clear in memory

bclr PTT, #$01

bcs branch if carry set
beg branch if result is zero (Z=1)
bge branch if signed 2

bgnd enter background debug mode
bgt branch if signed >

bhi branch if unsigned >

bhs branch if unsigned 2

bita 8-bit and with RegA, sets CCR
bitb 8-bit and with RegB, sets CCR

ble branch if signed <

blo branch if unsigned <

bls branch if unsigned <

blt branch if signed <

bmi branch if result is negative (N=1)
bne branch if result is nonzero (Z=0)
bpl branch if result is positive (N=0)
bra branch always

brclr branch if bits are clear
brclr PTT, #$01, loop

brn branch never

brset branch if bits are set
brset PTT,#$01, loop

bset bit set clear in memory
bset PTT, #$04

bsr branch to subroutine
bvc branch if overflow clear
bvs branch if overflow set

call subroutine in expanded memory
cba 8-bit compare RegA with RegB

clc clear carry bit, C=0
cli clear I=0, enable interrupts
clr 8-bit memory clear

clra RegA clear

clrb RegB clear

clv clear overflow bit, V=0

cmpa 8-bit compare RegA with memory
cmpb 8-bit compare RegB with memory

com 8-bit logical complement to memory
coma 8-bit logical complement to RegA
comb 8-bit logical complement to RegB
cpd 16-bit compare RegD with memory

cpx 16-bit compare RegX with memory
cpy 16-bit compare RegY with memory
daa 8-bit decimal adjust accumulator

dbeg decrement and branch if result=0
dbeqg Y, loop

dbne decrement and branch if result#0
dbne A, loop

dec 8-bit decrement memory

deca 8-bit decrement RegA

decb 8-bit decrement RegB

des 16-bit decrement RegSP

dex 16-bit decrement RegX

dey 16-bit decrement RegY

Jonathan W. Valvano

ediv
edivs
emacs
emaxd
emaxm
emind
eminm
emul
emuls
eora
eorb
etbl
exqg

fdiv
ibeq

ibne

idiv
idivs
inc
inca
incb
ins
inx
iny
jmp
jsr
lbcc
lbcs
lbeqg
lbge
lbgt
1bhi
1bhs
1ble
1blo
1bls
1blt
lbmi
lbne
lbpl
lbra
lbrn
lbvc
1lbvs
ldaa
ldab
1ldd
1lds
ldx
1dy
leas
leax
leay
1lsr
lsra
1lsrb
1lsrd
maxa
maxm
mem
mina
minm
movb

movw

mul
neg
nega
negb
oraa
orab

Page 8

RegY=(Y:D) /RegX, unsigned divide
RegY=(Y:D) /RegX, signed divide
16 by 16 signed mult, 32-bit add
16-bit unsigned maximum in RegD
16-bit unsigned maximum in memory
16-bit unsigned minimum in RegD
16-bit unsigned minimum in memory
RegY:D=RegY¥*RegD unsigned mult
RegY:D=RegY¥*RegD signed mult
8-bit logical exclusive or to RegA
8-bit logical exclusive or to RegB
16-bit look up and interpolation
exchange register contents
exg X,Y
unsigned fract div, X=(65536*D) /X
increment and branch if result=0
ibeq Y, loop
increment and branch if result#0
ibne A, loop
16-bit unsigned div, X=D/X, D=rem
16-bit signed divide, X=D/X, D=rem
8-bit increment memory
8-bit increment RegA
8-bit increment RegB
16-bit increment RegSP
16-bit increment RegX
16-bit increment RegY
Jjump always
jump to subroutine
long branch if carry clear
long branch if carry set
long branch if result is zero
long branch if signed 2
long branch if signed >
long branch if unsigned >
long branch if unsigned 2
long branch if signed <
long branch if unsigned <
long branch if unsigned <
long branch if signed <
long branch if result is negative
long branch if result is nonzero
long branch if result is positive
long branch always
long branch never
long branch if overflow clear
long branch if overflow set
8-bit load memory into RegA
8-bit load memory into RegB
16-bit load memory into RegD
16-bit load memory into RegSP
16-bit load memory into RegX
16-bit load memory into Reg¥
16-bit load effective addr to SP
16-bit load effective addr to X
16-bit load effective addr to Y
8-bit logical right shift memory
8-bit logical right shift RegA
8-bit logical right shift RegB
16-bit logical right shift RegD
8-bit unsigned maximum in RegA
8-bit unsigned maximum in memory
determine the membership grade
8-bit unsigned minimum in RegA
8-bit unsigned minimum in memory
8-bit move memory to memory
movb #100,PTT
16-bit move memory to memory
movw #13,SCIBD
RegD=RegA*RegB
8-bit 2's complement negate memory
8-bit 2's complement negate RegA
8-bit 2's complement negate RegB
8-bit logical or to RegA
8-bit logical or to RegB

December 17,2007 2-5pm

EE319K Fall 2007 Final A Page 9
orcc 8-bit logical or to RegCC stab 8-bit store memory from RegB
psha push 8-bit RegA onto stack std 16-bit store memory from RegD
pshb push 8-bit RegB onto stack sts 16-bit store memory from SP
pshc push 8-bit RegCC onto stack stx 16-bit store memory from RegX
pshd push 16-bit RegD onto stack sty l16-bit store memory from Reg¥
pshx push 16-bit RegX onto stack suba 8-bit sub from RegA
pshy push 16-bit RegY onto stack subb 8-bit sub from RegB
pula pop 8 bits off stack into RegA subd 16-bit sub from RegD
pulb pop 8 bits off stack into RegB swi software interrupt, trap
pulc pop 8 bits off stack into RegCC tab transfer A to B
puld pop 16 bits off stack into RegD tap transfer A to CC
pulx pop 16 bits off stack into RegX tba transfer B to A
puly pop 16 bits off stack into RegY tbeg test and branch if result=0
rev Fuzzy logic rule evaluation tbeqg Y, loop
revw weighted Fuzzy rule evaluation tbl 8-bit look up and interpolation
rol 8-bit roll shift left Memory tbne test and branch if result#0
rola 8-bit roll shift left RegA tbne A, loop
rolb 8-bit roll shift left RegB tfr transfer register to register
ror 8-bit roll shift right Memory tfr X,Y
rora 8-bit roll shift right RegA tpa transfer CC to A
rorb 8-bit roll shift right RegB trap illegal instruction interrupt
rtc return sub in expanded memory trap illegal op code, or software trap
rti return from interrupt tst 8-bit compare memory with zero
rts return from subroutine tsta 8-bit compare RegA with zero
sba 8-bit subtract RegA-RegB tstb 8-bit compare RegB with zero
sbca 8-bit sub with carry from RegA tsx transfer S to X
sbcb 8-bit sub with carry from RegB tsy transfer S to Y
sec set carry bit, C=1 txs transfer X to S
sei set I=1, disable interrupts tys transfer Y to S
sev set overflow bit, V=1 wai wait for interrupt
sex sign extend 8-bit to 16-bit reg wav weighted Fuzzy logic average
sex B,D xgdx exchange RegD with RegX

staa 8-bit store memory from RegA xgdy exchange RegD with RegY

example addressing mode Effective Address

ldaa #u immediate none

ldaa u direct EA is 8-bit address (0 to 255)

ldaa U extended EA is a 16-bit address

ldaa m, r 5-bit index EA=r+m (-16 to 15)

ldaa v, +r pre-increment r=r+v, EA=r (1 to 8)

ldaa v, -r pre-decrement r=r-v, EA=r (1 to 8)

ldaa v, r+ post-increment EA=r, r=r+v (1 to 8)

ldaa v, r- post-decrement EA=r, r=r-v (1 to 8)

ldaa A, r Reg A offset EA=r+A, zero padded

ldaa B, r Reg B offset EA=r+B, zero padded

ldaa D, r Reg D offset EA=r+D

ldaa q,r 9-bit index EA=r+qg (-256 to 255)

ldaa W,r | 16-bit index EA=r+W (-32768 to 65535)

ldaa [D,r] | D indirect EA={r+D}

ldaa [W,r] | indirect EA={r+W} (-32768 to 65535)

Freescale 6812 addressing modes

Specific absolute address to put subsequent object code

Allocate byte(s) of storage with initialized values

Create an ASCI|I string (no termination character)

Pseudo op meaning
org
= equ Define a constant symbol
set Define or redefine a constant symbol
dc.b db fcb _.byte
fcc
dc.w dw ¥fdb .word
de.1 dl -long
ds ds.b rmb .blkb
ds.w -blkw
ds.|1 -blIkl

Jonathan W. Valvano

December 17, 2007

Allocate word(s) of storage with initialized values

Allocate 32-bit long word(s) of storage with initialized values
Allocate bytes of storage without initialization
Allocate bytes of storage without initialization
Allocate 32-bit words of storage without initialization

2-5pm

Address

$0082
$0083
$0084
$0085
$0086
$008B
$008D
$0270
$0272
address
$0090
$0092
$0094
$0096
$0098
$009A
$009C
$009E

address
$0044
$0050
$0052
$0054
$0056
$0058
$005A
$005C
$005E

Address
$0046
$004D
$0040
$004C
$004E

EE319K Fall 2007 Final A Page 10
Bit 7 6 5 4 3 2 1 Bit 0 Name
ADPU AFFC AWAI ETRIGLE ETRIGP ETRIG ASCIE ASCIF ATDCTL2
0 S8C SAC S2C SiC FIFO FRZ1 FRZ0 ATDCTL3
SRES8 SMP1 SMPO PR4 PRS3 PRS2 PRS1 PRS0 ATDCTL4
DIM DSGN SCAN MULT 0 CcC CB CA ATDCTL5
SCF 0 ETORF FIFOR 0 cc2 Ccc1 CCOo ATDSTATO
CCF7 CCF6 CCF5 CCF4 CCF3 CCRF2 CCF1 CCFO0 ATDSTAT1
Bit 7 6 5 4 3 2 1 Bit 0 ATDDIEN
PTAD7 PTAD6 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTADO PTAD
DDRAD7 | DDRAD6 | DDRAD5 | DDRAD4 | DDRAD3 | DDRAD2 | DDRAD1 | DDRADO | DDRAD
msb Isb Name
15 14 13 12 11 10 | 9| 8 7 6 5 4 3 2 1 0 ATDDRO
15 14 13 12 11 10 | 9| 8 7 6 5 4 3 2 1 0 ATDDR1
15 14 13 12 11 10 | 9| 8 7 6 5 4 3 2 1 0 ATDDR2
15 14 13 12 11 10 | 9| 8 7 6 5 4 3 2 1 0 ATDDR3
15 14 13 12 11 10 | 9| 8 7 6 5 4 3 2 1 0 ATDDR4
15 14 13 12 11 10 | 9| 8 7 6 5 4 3 2 1 0 ATDDR5
15 14 13 12 11 10 | 9| 8 7 6 5 4 3 2 1 0 ATDDR6
15 14 13 12 11 10 | 9| 8 7 6 5 4 3 2 1 0 ATDDR7
msb Isb Name
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TCNT
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TCO
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC3
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC4
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC5
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC6
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC7
Bit 7 6 5 4 3 2 1 Bit O Name
TEN TSWAI TSBCK TFFCA 0 0 0 0 TSCR1
TOI 0 0 0 TCRE PR2 PR1 PRO TSCR2
10S7 10S6 10S5 104 10S3 10S2 10S1 10S0 TIOS
C7l cel C5l C4l C3l C2 Cil COl TIE
C7F C6F C5F CAF C3F C2F Ci1F COF TFLG1
TOF 0 0 0 0 0 0 0 TFLG2

$004F

TSCR1 isthefirst 8-hit timer control register

bit 7 TEN, 1 allows the timer to function normally, 0 means disable timer including TCNT
TSCR2 isthe second 8-bit timer control register
bits 2,1,0 are PR2, PR1, PRO, which select therate, et n be the 3-bit number formed by PR2, PR1, PRO

without PLL TCNT is4MHz/2", with PLL TCNT is 24MHz/2", n rangesfromOto 7

TI0S isthe 8-bit output compare select register, one bit for each channel (1 = output compare, O = input capture)

TIE isthe 8-bit output compare arm register, one hit for each channel (1 = armed, 0 = disarmed)

Vector Interrupt Source or Local

Address | Trigger flag Enable | Arm

$FFFE | Reset none none

$FFEE | Timer Channel 0, COF | bit TIE.COI
$FFEC | Timer Channel 1, C1F | bit TIE.C1I
$FFEA | Timer Channel 2, C2F | bit TIE.C2I
$FFE8 | Timer Channel 3, C3F | bit TIE.C3l
$FFE6 | Timer Channel 4, C4F | bit TIE.C4l
$FFE4 | Timer Channel 5, C5F | bit TIE.C5I
$FFE2 | Timer Channel 6, C6F | bit TIE.C6l
$FFEO | Timer Channel 7, C7F | bit TIE.C7I

Jonathan W. Valvano

December 17, 2007

2-5pm

Page 11

ysempw g| pespu g U0 g5 ep-1end -l EU0D 0% IS0 Q% e-jend o LD 05 oep-1=0 Dap-aad B0 On
[2aal [aal od - —d&'l 451 45" 4551 -4 A Al B ¥l w5l

44 43 40 48 EL EL 58 Fl il Ei Eqs Er S0

BERD 0 BEOg PR G - ap-aed VRO O PR O - - VB 0T poegiate] Dap-d L0 O
24’0 AQ 2 - 45T 45T 457 d5' 7l -A'T AR AT “%'T *—E e dt

EF! 33 30 38 ELd 36 EL 3 e 35 It 3z 30

BEO B =4 JRDD OG ap-jeod map-sad 1R O EUo 95 e e tte] B Bk here] 2Ep-1e DEp-aa IBLoD On
4B A'B D' —-d45E d45-F d5'E— 45EL —A'E ATE AR X'E W WEL

4 a3 [l a8 (o) [a0:] 08 al [w:] as JE o7 a0

lssln [Lelirh ST O oap-eed map-al 1D a5 FD 95 Dap-pEed D p-aal VD a5 ap-jEed Dep-aal U0 O
2y AW D' —d5F d5—F 45 4571 AR AR At ' i AT

2 =] i B o 26 o a7 8 5 O oy 20

g Qo) Apnanl] Ewoan D= End map-sud] Eeooag el i) sape-ged] Eeoo O Daprl B -l EaEraliis
[a'ul [2d'5— —d5'5 455 455 4511 -4 A-G Alg— ¥ W5 ¥l

B B3 B8O B8 BY BE B8 B B4 BS BE BE B0

uco qop | 1Bweogal| sucoqs oap-sod sap-aad| 1sucoag| swoo ag| oepqsod sap-pad] 15U00 Q% EpHEDd Dap-aal LD Og
O2d'u A el G —d5'8 458 458 4500 —A'D At A %8 - xoL

e LE] W wE ol W6 Ve Wi L il Wi Y it

U0 G BUDD 06 SO O sep-eed a-mal BUTD G5 suorags] sepqsod -l el ap-End Dap-aal BT aE
D' Al et —d5d d5—4 a8 456 -AL AR A Wi w-d wE

(5] &3 [0 68 By [[&l L) L] BE BE L]

pucoas| swosas| Ewoas mapsod sepeeed| Euooag] Ewosag] oepasod sap-sud| jsucogg D s oap-aad U a5
DU A e -d5'8 45—8 458 458 -AB A'E AR —x'E b K

B #3 i =B kil B i Bl 2R BE BE BT /0

panpn | poanp g SN0 Q% s ou-ead U0 Q% JREDD Q5 s Tu-aud IEUCO 0% ouH sl u-aad [} Eebhe)
[45'al fe'al Od'E— +d5H A5HE A5 451 AR Av'g AE— e MR ¥

i £3 finl LB i .] 8 & L9 i) i iT Filul

1eso 1880 O U 05 - s w-ead| Buoo gg| Re0Dag - sod mesd| 1EUOD 05 JuH s s 1RO a%
4510 i ad'oL- +d5E A5+ 50— 455 AL AN Al 3L ML Wa

94 23 =] =8 o 296 g B 99 25 BE oz 20

1840 8 eS8 JFUCD 05 - eod w-sad| Buoo gg| 1swoag - sod e jEuoD 05 JuH sl s 1= ag
458 WE 2 b +d5'F d5+% A5 - d5'F +A'S A¥G Al] b X

EE! 43 G0 58 L S TE 5L 59 55 G SE o0

EERD Y 1ESID Y JFU0D Q5 D s -S S0 a5 IS0D OG A S - S0 ag st s IEL0D O
45 Y 2T +d5G a5 45T 45 +A'G A¥E AT NG WG xr

LE 3 rid s e G| i i L v e FE 4t

Ap G A) B a5 s patie- Fdl Euoo gg] 1swooag su-jecd Juraxd el = T J5U0D O
[yl [3'u] ad'El— +d5'Y A5+ d5El- 45'E +A'F A AEL- ¥ W *E

£d £3 £ £B £ B £ Ed £ £5 £E EE fxil

1o qor| Eucoqol D Q5 - sukssd] Buosagg] swooag -0 supesd| (EUDD a5 Ul ey -l EU0D O
A5 W 2d'Fl— +45E 45HE A5l 45T +A'E ANE ATl +XE WHE WE

Z4d £3 z0 78 o 6| o8 2l e] 5| cE Fr]

TR O U0 O VR O -1 o H=h T IS0 O e s 1D O -l s =00 a5
A5 W D5l 15T dSHT A5G- 451 T AVE AGl- W'T WHE bt

L4 13 1d 1B W LG LB ke 12 V5 LE e 1]

120D O ISU0D O 1EDD GG mn-peed o-ard 1=kl o] 1S00 O u-jecd Ju-ad 120D g5 ou-peod T IFU00 a5
d5u xu Od'9L- 451 45+ 4581 450 AL AL Anl- ol el X0

0d [1=] 0 08 o [L L1V 08 L OE [0

EE319K Fall 2007 Final A

2-5pm

December 17, 2007

Jonathan W. Valvano

EE319K Fall 2007 Final A Page 12

Addr Bit 7 6 5 4 3 2 1 Bit 0 Name
$00C8 BTST BSPL BRLD SBR12 | SBR11 SBR10 SBR9 SBR8 | SCIBD
$00C9 SBRY SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBRO
$00CB TIE TCIE RIE ILIE TE RE RWU SBK SCICR2
$00CC TDRE TC RDRF IDLE OR NF FE PF SCISR1
$OOCF R7T7 R6T6 R5T5 RAT4 R3T3 R2T2 R1T1 ROTO | SCIDRL
SCIBD is 16-bit SCI baud rate register, let n be the 16-bit number Baud rate is 250 kHz/n
SCICR2 is 8-bit SCI control register
bit 7 TIE, Transmit Interrupt Enable, 0 = TDRE interrupts disabled, 1 = interrupt whenever TDRE set
bit 5 RIE, Receiver Interrupt Enable, 0 = RDRF interrupts disabled, 1 = interrupt whenever RDRF set
bit 3 TE, Transmitter Enable, O = Transmitter disabled, 1 = SCI transmit logic is enabled
bit 2 RE, Receiver Enable, 0 = Receiver disabled, 1 = Enables the SCI receive circuitry.
SCISR1 is 8-hit SCI status register
bit 7 TDRE, Transmit Data Register Empty Flag
Set if transmit data can be written to SCDR
Cleared by SCISR1 read with TDRE set followed by SCIDRL write.
bit 5 RDRF, Receive Data Register Full
set if areceived character isready to be read from SCIDRL
Clear the RDRF flag by reading SCISR1 with RDRF set and then reading SCIDRL .

STY

Operation: (Y- Y)= M:M=+1

Description: Stores the content of index register ' in memory. The most significant
byte of Y is stored at the specified address, and the least significant byte
of ¥ is stored at the next higher byte address (the specified address plus
one).

Source Form Address Object Code
Mode

5TY opria DIR 5D dd
S5TY oprifa EXT 70 hh 11
STY oprxl_xysp 1D 60 xb
STY oprx8,.xysp D1 60 xb £f
STY oprxT8.xysp D2 60 xb == ff
STY [D,xysp] [D,1D%] 60 xb
STY [opre 18, xysp] | 60 »b == £E

BSR

Operation: (SP)—- 50002 = 5P
RTN_|: RTNL = Ml:SFI: . I"-.-1,:3:~+-]
{(FC)+ Rel= PC
Description: Sets up conditions to return to normal program flow, then ransfers

control to a subroutine. Uses the address of the instruction after the BSR
as a return address.

Source Form Address Object Code
Mode
BSR rels REL 07 rT

Jonathan W. Valvano December 17, 2007 2-5pm

