
EE319K Fall 2007 Final A Page 1

Jonathan W. Valvano December 17, 2007 2-5pm

First:________________ Middle Initial: _____ Last:____________________
 This is a closed book exam. You must put your answers in the space provided. You have
3 hours, so allocate your time accordingly. Please read the entire exam before starting.

(4) Question 1. An embedded system will use a 12-bit ADC to measure a parameter. The
measurement system range is 0 to 10 cm. What is the precision in decimal digits?

(4) Question 2. An 11-bit ADC (not the 9S12) has an input range of 0 to +10 volts and an
output range of 0 to 2047. What digital value will be returned when an input of +2.5 volts is
sampled?

(2) Question 3. Consider the result of executing the following two 9S12 assembly instructions.
 ldaa #160
 suba #150

What will be the value of the carry (C) bit?

(2) Question 4. Consider the result of executing the following two 9S12 assembly instructions.
 ldaa #-30
 adda #-90

What will be the value of the overflow (V) bit?

EE319K Fall 2007 Final A Page 2

Jonathan W. Valvano December 17, 2007 2-5pm

(4) Question 5. Assume all 8 bits of PTT are output. Write software to clear PT5 (make it 0).

(4) Question 6. What is the bug in the following initialized global variable on the 9S12?
 org $3900
Slope fdb 50

A) $3900 is not RAM
B) RAM is volatile
C) RAM is nonvolatile
D) 50 is an 8-bit number, and fdb defines a 16-bit number
E) Using global variables is poor style and should never be used.
F) No error, this definition is acceptable.

(4) Question 7. These seven events all occur during each output compare 7 interrupt.

1) The TCNT equals TC7 and the hardware sets the flag bit (e.g., C7F=1)
2) The output compare 7 vector address is loaded into the PC
3) The I bit in the CCR is set by hardware
4) The software executes movb #$80,TFLG1
5) The CCR, A, B, X, Y, PC are pushed on the stack
6) The software executes something like

ldd TC7
addd #1000
std TC7

7) The software executes rti
Which of the following sequences could be possible?. Pick one answer A-F (only one is correct)

A) 1,3,5,2,4,6,7
B) 4,1,3,5,2,6,7 __________
C) 1,2,5,3,4,6,7
D) 1,5,3,2,6,4,7
E) 5,3,2,1,4,6,7
F) None of the above sequences are possible

(4) Question 8. Assume the E clock is 4 MHz (250 ns) and TSCR2 = 1. At what interrupt period
will the output compare 7 interrupt described in Question 7 occur? GIVE UNITS

EE319K Fall 2007 Final A Page 3

Jonathan W. Valvano December 17, 2007 2-5pm

(4) Question 9. What is the machine code for the following instruction?
 sty 2,sp+

(4) Question 10. Is this a legal stack operation? Answer yes or no
 sty 2,sp+

(4) Question 11. Assume Height is the integer part of an 8-bit unsigned fixed-point variable
with a resolution of 0.1 cm. The goal is to add 0.5 cm to the value of the variable. Will the
following software always operate properly?
 ldaa Height
 sex A,D ;promote to 16 bits
 addd #5 ;perform the addition in 16-bit mode
 tfr D,A ;demote back to 8 bits
 staa Height

A) Yes, the program has no errors.
B) No, overflow can occur.
C) No, dropout can occur. __________
D) No, the carry bit could be set
E) No, one needs to divide by 10 to get the correct result.
F) No, the addd instruction should have been addd #0.5

(5) Question 12. Give the simplified memory cycles produced when the following one
instruction is executed. Assume the PC contains $4200, and the SP equals $3FF0. Just show
R/W=Read or Write, Address, and Data for each cycle. You may not need all 5 entries in the
solution box.
$4200 070E bsr $4210

R/W Addr Data

EE319K Fall 2007 Final A Page 4

Jonathan W. Valvano December 17, 2007 2-5pm

(5) Question 13. You are given an LED with a 3V 10mA operating point. Interface this LED to
the 9S12 using a 7406, such that the LED is on when PM1 is high (5V) and the LED is off when
PM1 is low (0V). Label all resistor values. No software is required.

7406

PM1

9S12

(5) Question 14. You are given a double-pole switch that has three pins. The figure shows the
switch in the position that occurs when the switch is pressed. If the switch is pressed, pins 1 and
2 are connected (0 resistance) and pins 2 and 3 are not connected (infinite resistance). If the
switch is not pressed, pins 2 and 3 are connected (0 resistance) and pins 1 and 2 are not
connected (infinite resistance). Pins 1 and 3 are never connected (it is a break-before-make
switch). Interface this switch to the 9S12, such that PM0 is high (5V) if the switch is pressed and
PM0 is low (0V) if the switch is not pressed. You do not need to debounce the switch. Label all
chip numbers and resistor values. No software is required.

PM0

9S12

1 3

2

EE319K Fall 2007 Final A Page 5

Jonathan W. Valvano December 17, 2007 2-5pm

(10) Question 15. In this problem you will implement three unsigned 8-bit local variables on the
stack using Reg X stack frame addressing and symbolic binding. The variables are called front
center and back. The code in this question is part of a subroutine, which ends in rts.
Part a) Show the assembly code that (in this order) saves Register X, establishes the Register X
stack frame, and allocates the three 8-bit local variables.

Part b) Assume the stack pointer is equal to $3F0A just before jsr
instruction is executed that calls this subroutine. Draw a stack picture
showing the return address, the three variables, Register X, and the
stack pointer SP. Cross-out the SP arrow and move it to its new
location.

Part c) Show the symbolic binding for front center and back.

Part d) Show code that implements center=100; using Reg X stack frame addressing.

Part e) Show the assembly code that deallocates the local variables, and restores Reg X.

SP

$3F00
$3F01
$3F02
$3F03
$3F04
$3F05
$3F06
$3F07
$3F08
$3F09
$3F0A

8 bits

EE319K Fall 2007 Final A Page 6

Jonathan W. Valvano December 17, 2007 2-5pm

(10) Question 16. Write an assembly subroutine that starts the ADC to sample channel 2, waits
for ADC to finish, then reads one 10-bit conversion from the ADC. You may assume the ADC
interface is already initialized to sample one channel in 10-bit mode. Use busy-wait
synchronization and return the result by value in Register X. The result should vary from 0 to
1023.

(10) Question 17. Write an assembly subroutine that waits for new input, then reads one 8-bit
character from the SCI serial port. You may assume the serial port is already initialized to 1 start
bit, 8 data bits, and 1 stop bit, running at 9600 bits/sec. Use busy-wait synchronization and return
the result by value in Register B.

EE319K Fall 2007 Final A Page 7

Jonathan W. Valvano December 17, 2007 2-5pm

(15) Question 18. Write an assembly main program that implements this Mealy finite state
machine. The FSM data structure, shown below, is given and cannot be changed. The next state
links are defined as 16-bit pointers. Each state has 8 outputs and 8 next-state links. The input is
on Port T bits 2,1,0 and the output is on Port M bits 5,4,3,2,1,0. There are three states
(S0,S1,S2), and initial state is S0. Show all assembly software required to execute this machine
including the reset vector. You need not be friendly, but do initialize the direction registers. The
repeating execution sequence is input, output (depends on input and current state), next (depends
on input and current state).
 org $4000 ;EPROM
* Finite State Machine
S0 fcb 0,0,5,6,3,9,3,0 ; Outputs for inputs 0 to 7
 fdb S0,S0,S1,S1,S1,S2,S2,S2 ; Next states for inputs 0 to 7
S1 fcb 1,2,3,9,6,5,3,3 ; Outputs for inputs 0 to 7
 fdb S2,S0,S0,S0,S2,S2,S2,S1 ; Next states for inputs 0 to 7
S2 fcb 1,2,3,9,6,5,3,3 ; Outputs for inputs 0 to 7
 fdb S2,S2,S2,S2,S0,S0,S2,S1 ; Next states for inputs 0 to 7

EE319K Fall 2007 Final A Page 8

Jonathan W. Valvano December 17, 2007 2-5pm

aba 8-bit add RegA=RegA+RegB
abx unsigned add RegX=RegX+RegB
aby unsigned add RegY=RegY+RegB
adca 8-bit add with carry to RegA
adcb 8-bit add with carry to RegB
adda 8-bit add to RegA
addb 8-bit add to RegB
addd 16-bit add to RegD
anda 8-bit logical and to RegA
andb 8-bit logical and to RegB
andcc 8-bit logical and to RegCC
asl/lsl 8-bit left shift Memory
asla/lsla 8-bit left shift RegA
aslb/lslb 8-bit arith left shift RegB
asld/lsld 16-bit left shift RegD
asr 8-bit arith right shift Memory
asra 8-bit arith right shift to RegA
asrb 8-bit arith right shift to RegB
bcc branch if carry clear
bclr bit clear in memory
 bclr PTT,#$01
bcs branch if carry set
beq branch if result is zero (Z=1)
bge branch if signed ≥
bgnd enter background debug mode
bgt branch if signed >
bhi branch if unsigned >
bhs branch if unsigned ≥
bita 8-bit and with RegA, sets CCR
bitb 8-bit and with RegB, sets CCR
ble branch if signed ≤
blo branch if unsigned <
bls branch if unsigned ≤
blt branch if signed <
bmi branch if result is negative (N=1)
bne branch if result is nonzero (Z=0)
bpl branch if result is positive (N=0)
bra branch always
brclr branch if bits are clear
 brclr PTT,#$01,loop
brn branch never
brset branch if bits are set
 brset PTT,#$01,loop
bset bit set clear in memory
 bset PTT,#$04
bsr branch to subroutine
bvc branch if overflow clear
bvs branch if overflow set
call subroutine in expanded memory
cba 8-bit compare RegA with RegB
clc clear carry bit, C=0
cli clear I=0, enable interrupts
clr 8-bit memory clear
clra RegA clear
clrb RegB clear
clv clear overflow bit, V=0
cmpa 8-bit compare RegA with memory
cmpb 8-bit compare RegB with memory
com 8-bit logical complement to memory
coma 8-bit logical complement to RegA
comb 8-bit logical complement to RegB
cpd 16-bit compare RegD with memory
cpx 16-bit compare RegX with memory
cpy 16-bit compare RegY with memory
daa 8-bit decimal adjust accumulator
dbeq decrement and branch if result=0
 dbeq Y,loop
dbne decrement and branch if result≠0
 dbne A,loop
dec 8-bit decrement memory
deca 8-bit decrement RegA
decb 8-bit decrement RegB
des 16-bit decrement RegSP
dex 16-bit decrement RegX
dey 16-bit decrement RegY

ediv RegY=(Y:D)/RegX, unsigned divide
edivs RegY=(Y:D)/RegX, signed divide
emacs 16 by 16 signed mult, 32-bit add
emaxd 16-bit unsigned maximum in RegD
emaxm 16-bit unsigned maximum in memory
emind 16-bit unsigned minimum in RegD
eminm 16-bit unsigned minimum in memory
emul RegY:D=RegY*RegD unsigned mult
emuls RegY:D=RegY*RegD signed mult
eora 8-bit logical exclusive or to RegA
eorb 8-bit logical exclusive or to RegB
etbl 16-bit look up and interpolation
exg exchange register contents
 exg X,Y
fdiv unsigned fract div, X=(65536*D)/X
ibeq increment and branch if result=0
 ibeq Y,loop
ibne increment and branch if result≠0
 ibne A,loop
idiv 16-bit unsigned div, X=D/X, D=rem
idivs 16-bit signed divide, X=D/X, D=rem
inc 8-bit increment memory
inca 8-bit increment RegA
incb 8-bit increment RegB
ins 16-bit increment RegSP
inx 16-bit increment RegX
iny 16-bit increment RegY
jmp jump always
jsr jump to subroutine
lbcc long branch if carry clear
lbcs long branch if carry set
lbeq long branch if result is zero
lbge long branch if signed ≥
lbgt long branch if signed >
lbhi long branch if unsigned >
lbhs long branch if unsigned ≥
lble long branch if signed ≤
lblo long branch if unsigned <
lbls long branch if unsigned ≤
lblt long branch if signed <
lbmi long branch if result is negative
lbne long branch if result is nonzero
lbpl long branch if result is positive
lbra long branch always
lbrn long branch never
lbvc long branch if overflow clear
lbvs long branch if overflow set
ldaa 8-bit load memory into RegA
ldab 8-bit load memory into RegB
ldd 16-bit load memory into RegD
lds 16-bit load memory into RegSP
ldx 16-bit load memory into RegX
ldy 16-bit load memory into RegY
leas 16-bit load effective addr to SP
leax 16-bit load effective addr to X
leay 16-bit load effective addr to Y
lsr 8-bit logical right shift memory
lsra 8-bit logical right shift RegA
lsrb 8-bit logical right shift RegB
lsrd 16-bit logical right shift RegD
maxa 8-bit unsigned maximum in RegA
maxm 8-bit unsigned maximum in memory
mem determine the membership grade
mina 8-bit unsigned minimum in RegA
minm 8-bit unsigned minimum in memory
movb 8-bit move memory to memory
 movb #100,PTT
movw 16-bit move memory to memory
 movw #13,SCIBD
mul RegD=RegA*RegB
neg 8-bit 2's complement negate memory
nega 8-bit 2's complement negate RegA
negb 8-bit 2's complement negate RegB
oraa 8-bit logical or to RegA
orab 8-bit logical or to RegB

EE319K Fall 2007 Final A Page 9

Jonathan W. Valvano December 17, 2007 2-5pm

orcc 8-bit logical or to RegCC
psha push 8-bit RegA onto stack
pshb push 8-bit RegB onto stack
pshc push 8-bit RegCC onto stack
pshd push 16-bit RegD onto stack
pshx push 16-bit RegX onto stack
pshy push 16-bit RegY onto stack
pula pop 8 bits off stack into RegA
pulb pop 8 bits off stack into RegB
pulc pop 8 bits off stack into RegCC
puld pop 16 bits off stack into RegD
pulx pop 16 bits off stack into RegX
puly pop 16 bits off stack into RegY
rev Fuzzy logic rule evaluation
revw weighted Fuzzy rule evaluation
rol 8-bit roll shift left Memory
rola 8-bit roll shift left RegA
rolb 8-bit roll shift left RegB
ror 8-bit roll shift right Memory
rora 8-bit roll shift right RegA
rorb 8-bit roll shift right RegB
rtc return sub in expanded memory
rti return from interrupt
rts return from subroutine
sba 8-bit subtract RegA-RegB
sbca 8-bit sub with carry from RegA
sbcb 8-bit sub with carry from RegB
sec set carry bit, C=1
sei set I=1, disable interrupts
sev set overflow bit, V=1
sex sign extend 8-bit to 16-bit reg
 sex B,D
staa 8-bit store memory from RegA

stab 8-bit store memory from RegB
std 16-bit store memory from RegD
sts 16-bit store memory from SP
stx 16-bit store memory from RegX
sty 16-bit store memory from RegY
suba 8-bit sub from RegA
subb 8-bit sub from RegB
subd 16-bit sub from RegD
swi software interrupt, trap
tab transfer A to B
tap transfer A to CC
tba transfer B to A
tbeq test and branch if result=0
 tbeq Y,loop
tbl 8-bit look up and interpolation
tbne test and branch if result≠0
 tbne A,loop
tfr transfer register to register
 tfr X,Y
tpa transfer CC to A
trap illegal instruction interrupt
trap illegal op code, or software trap
tst 8-bit compare memory with zero
tsta 8-bit compare RegA with zero
tstb 8-bit compare RegB with zero
tsx transfer S to X
tsy transfer S to Y
txs transfer X to S
tys transfer Y to S
wai wait for interrupt
wav weighted Fuzzy logic average
xgdx exchange RegD with RegX
xgdy exchange RegD with RegY

example addressing mode Effective Address
ldaa #u immediate none
ldaa u direct EA is 8-bit address (0 to 255)
ldaa U extended EA is a 16-bit address
ldaa m,r 5-bit index EA=r+m (-16 to 15)
ldaa v,+r pre-increment r=r+v, EA=r (1 to 8)
ldaa v,-r pre-decrement r=r-v, EA=r (1 to 8)
ldaa v,r+ post-increment EA=r, r=r+v (1 to 8)
ldaa v,r- post-decrement EA=r, r=r-v (1 to 8)
ldaa A,r Reg A offset EA=r+A, zero padded
ldaa B,r Reg B offset EA=r+B, zero padded
ldaa D,r Reg D offset EA=r+D
ldaa q,r 9-bit index EA=r+q (-256 to 255)
ldaa W,r 16-bit index EA=r+W (-32768 to 65535)
ldaa [D,r] D indirect EA={r+D}
ldaa [W,r] indirect EA={r+W} (-32768 to 65535)

Freescale 6812 addressing modes

Pseudo op meaning
 org Specific absolute address to put subsequent object code
 = equ Define a constant symbol
 set Define or redefine a constant symbol
 dc.b db fcb .byte Allocate byte(s) of storage with initialized values
 fcc Create an ASCII string (no termination character)
 dc.w dw fdb .word Allocate word(s) of storage with initialized values
 dc.l dl .long Allocate 32-bit long word(s) of storage with initialized values
 ds ds.b rmb .blkb Allocate bytes of storage without initialization
 ds.w .blkw Allocate bytes of storage without initialization
 ds.l .blkl Allocate 32-bit words of storage without initialization

EE319K Fall 2007 Final A Page 10

Jonathan W. Valvano December 17, 2007 2-5pm

Address Bit 7 6 5 4 3 2 1 Bit 0 Name
$0082 ADPU AFFC AWAI ETRIGLE ETRIGP ETRIG ASCIE ASCIF ATDCTL2
$0083 0 S8C S4C S2C S1C FIFO FRZ1 FRZ0 ATDCTL3
$0084 SRES8 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0 ATDCTL4
$0085 DJM DSGN SCAN MULT 0 CC CB CA ATDCTL5
$0086 SCF 0 ETORF FIFOR 0 CC2 CC1 CC0 ATDSTAT0
$008B CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0 ATDSTAT1
$008D Bit 7 6 5 4 3 2 1 Bit 0 ATDDIEN
$0270 PTAD7 PTAD6 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTAD0 PTAD
$0272 DDRAD7 DDRAD6 DDRAD5 DDRAD4 DDRAD3 DDRAD2 DDRAD1 DDRAD0 DDRAD
address msb lsb Name
$0090 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR0
$0092 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR1
$0094 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR2
$0096 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR3
$0098 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR4
$009A 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR5
$009C 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR6
$009E 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR7

address msb lsb Name
$0044 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TCNT
$0050 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC0
$0052 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC1
$0054 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC2
$0056 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC3
$0058 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC4
$005A 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC5
$005C 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC6
$005E 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC7

Address Bit 7 6 5 4 3 2 1 Bit 0 Name
$0046 TEN TSWAI TSBCK TFFCA 0 0 0 0 TSCR1
$004D TOI 0 0 0 TCRE PR2 PR1 PR0 TSCR2
$0040 IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0 TIOS
$004C C7I C6I C5I C4I C3I C2I C1I C0I TIE
$004E C7F C6F C5F C4F C3F C2F C1F C0F TFLG1
$004F TOF 0 0 0 0 0 0 0 TFLG2
TSCR1 is the first 8-bit timer control register
 bit 7 TEN, 1 allows the timer to function normally, 0 means disable timer including TCNT
TSCR2 is the second 8-bit timer control register
 bits 2,1,0 are PR2, PR1, PR0, which select the rate, let n be the 3-bit number formed by PR2, PR1, PR0
 without PLL TCNT is 4MHz/2n, with PLL TCNT is 24MHz/2n, n ranges from 0 to 7
TIOS is the 8-bit output compare select register, one bit for each channel (1 = output compare, 0 = input capture)
TIE is the 8-bit output compare arm register, one bit for each channel (1 = armed, 0 = disarmed)

Vector
Address

Interrupt Source or
Trigger flag

Enable

Local
Arm

$FFFE Reset none none
$FFEE Timer Channel 0, C0F I bit TIE.C0I
$FFEC Timer Channel 1, C1F I bit TIE.C1I
$FFEA Timer Channel 2, C2F I bit TIE.C2I
$FFE8 Timer Channel 3, C3F I bit TIE.C3I
$FFE6 Timer Channel 4, C4F I bit TIE.C4I
$FFE4 Timer Channel 5, C5F I bit TIE.C5I
$FFE2 Timer Channel 6, C6F I bit TIE.C6I
$FFE0 Timer Channel 7, C7F I bit TIE.C7I

EE319K Fall 2007 Final A Page 11

Jonathan W. Valvano December 17, 2007 2-5pm

EE319K Fall 2007 Final A Page 12

Jonathan W. Valvano December 17, 2007 2-5pm

Addr Bit 7 6 5 4 3 2 1 Bit 0 Name
$00C8 BTST BSPL BRLD SBR12 SBR11 SBR10 SBR9 SBR8 SCIBD
$00C9 SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0
$00CB TIE TCIE RIE ILIE TE RE RWU SBK SCICR2
$00CC TDRE TC RDRF IDLE OR NF FE PF SCISR1
$00CF R7T7 R6T6 R5T5 R4T4 R3T3 R2T2 R1T1 R0T0 SCIDRL
SCIBD is 16-bit SCI baud rate register, let n be the 16-bit number Baud rate is 250 kHz/n
SCICR2 is 8-bit SCI control register
 bit 7 TIE, Transmit Interrupt Enable, 0 = TDRE interrupts disabled, 1 = interrupt whenever TDRE set
 bit 5 RIE, Receiver Interrupt Enable, 0 = RDRF interrupts disabled, 1 = interrupt whenever RDRF set
 bit 3 TE, Transmitter Enable, 0 = Transmitter disabled, 1 = SCI transmit logic is enabled
 bit 2 RE, Receiver Enable, 0 = Receiver disabled, 1 = Enables the SCI receive circuitry.
SCISR1 is 8-bit SCI status register
 bit 7 TDRE, Transmit Data Register Empty Flag
 Set if transmit data can be written to SCDR
 Cleared by SCISR1 read with TDRE set followed by SCIDRL write.
 bit 5 RDRF, Receive Data Register Full
 set if a received character is ready to be read from SCIDRL
 Clear the RDRF flag by reading SCISR1 with RDRF set and then reading SCIDRL .

