
EE319K Fall 2008 Final Exam Version B Page 1 of 12

Jonathan W. Valvano December 12, 2008

First:________________ Middle Initial: _____ Last:____________________
 This is a closed book exam. You must put your answers in the space provided. You have 3
hours, so allocate your time accordingly. Please read the entire exam before starting.

Please read and affirm our honor code:
 “The core values of The University of Texas at Austin are learning, discovery, freedom,
leadership, individual opportunity, and responsibility. Each member of the university is
expected to uphold these values through integrity, honesty, trust, fairness, and respect
toward peers and community.”

Signed: ____________________________________ December 12, 2008

(4) Question 1. An embedded system will use a 12-bit ADC to measure a distance. The measurement
system range is -2 to +2 m. The frequency components of the distance signal can vary from DC (0 Hz)
up to 400 Hz. You will use a periodic output compare interrupt to sample the ADC. What rate (in Hz)
should you activate an output compare interrupt? Give a brief explanation.

(4) Question 2. A 1-ms periodic output compare interrupt is used to spin a stepper motor. During each
ISR the four-bit motor output is set to 5, 6, 10, then 9. The stepper is interfaced to PT3-0, and the
following four instructions occur during each ISR, without any delay between these instructions.
 movb #$05,PTT
 movb #$06,PTT
 movb #$0A,PTT
 movb #$09,PTT
There are 200 steps per rotation of the motor. What will happen?
A) The motor will not spin at all
B) The motor will spin at 20 rps = (4 step/ms)*(1000ms/s)*(1 rot/200steps)
C) The motor will spin at 1000 rps = (1 rot/ms)*(1000ms/s)
D) The motor will spin at 4000 rps = (4 rot/ms)*(1000ms/s) __________
E) The motor will spin at 5 rps = (1 step/ms)*(1000ms/s)*(1 rot/200steps)

(4) Question 3. Write a subroutine to sample ADC channel 4 of the 9S12DP512. Assume the ADC
initialized for a 10-bit sample, sequence length is 1, and the ADC clock is 2 MHz. Implement right-
justified conversions, and return the result in RegX.

EE319K Fall 2008 Final Exam Version B Page 2 of 12

Jonathan W. Valvano December 12, 2008

(8) Question 4. Assume you have an 11-bit ADC with a range of 0 to +10 V (not the 9S12). Write a
subroutine that converts the ADC sample into a fixed-point number with a resolution of 0.01 V. The
input parameter is call by value in RegD containing the right-justified ADC sample (0 to 2047).
Minimize errors due to dropout and overflow. Return by value the integer part of the fixed-point
number in RegY. E.g., if the input voltage is 7.5 V then RegY is returned as 750.

(4) Question 5. Assume RegA = $55, RegX=$1234 and RegY = $5678. What is the value in RegX
after executing these instructions?
 psha
 stx 2,-sp
 sty 2,sp-
 leas 2,sp __________
 pula
 pulx

(4) Question 6. These seven events all occur during each RDRF interrupt.

1) There is data in the receive data register and the hardware sets the flag bit (e.g., RDRF=1)
2) The SCI vector address is loaded into the PC
3) The I bit in the CCR is set by hardware
4) The software reads SCI1DRL
5) The software reads SCI1SR1
6) The CCR, A, B, X, Y, PC are pushed on the stack
7) The software executes rti

Which of the following sequences could be possible? Pick one answer A-F (only one is correct)
A) 1,3,6,2,4,5,7
B) 1,6,3,2,5,4,7
C) 5,1,3,4,2,6,7 __________
D) 1,2,5,3,4,6,7
E) 1,6,3,2,4,5,7
F) None of the above sequences are possible

EE319K Fall 2008 Final Exam Version B Page 3 of 12

Jonathan W. Valvano December 12, 2008

(10) Question 7. Write software that increments a 16-bit global variable every 1 msec using output
compare 2. Show the complete main program, the OC2 ISR, the interrupt vector, and the reset vector.
After initialization the main program executes a do-nothing loop. Write code as friendly as possible.
Assume the E clock is 8 MHz. To make it easier for me to grade, leave TSCR2 equal to 0.
 org $0800
Count rmb 2 ;incremented every 1 msec
 org $4000

EE319K Fall 2008 Final Exam Version B Page 4 of 12

Jonathan W. Valvano December 12, 2008

(5) Question 8. Consider a serial port operating with a baud rate of 1000 bits per second. Draw the
waveform occurring at the PS1 output (voltage levels are +5 and 0) when the ASCII ‘T’ ($54) is
transmitted on SCI0. The protocol is 1 start, 8 data and 1 stop bit. The SCI0 is initially idle, and the
software writes the $54 to SCI0DRL at time=0. Show the PS1 line before and after the frame,
assuming the channel is idle before and after the frame.

PS1

time -1 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 us

(5) Question 9. Consider a computer network where two 9S12s are connected via their SCI0 ports,
using a 3-wire cable similar to Lab 7. The transmitter of computer 1 is connected to the receiver of
computer 2, and the transmitter of computer 2 is connected to the receiver of computer 1. Initially,
both SCI0 ports are idle. The baud rate on both computers is initialized to 1000 bits/sec, with 1 start, 8
data and 1 stop bit. Both computers have their RDRF flags armed and enabled. The transmitters are
active, but not armed for interrupts. The I bit is clear in both computers. At time 0, computer 1 reads
SCI0SR1 then writes to SCI0DRL. The RDRF ISR in computer 2 will read its SCI1DRL then write to
its SCI1DRL (echo the data back). Approximately how long after computer 1 writes to SCI1DRL will
an RDRF interrupt occur back in computer 1? Assume the software execution time is fast compared to
the I/O transmission time.

(4) Question 10. Consider the following three-bit DAC connected to Port T. Fill in the expected
response table assuming VOH is 5 V and VOL is 0 V.

PT2 PT1 PT0 Vout (V)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

PT2

PT1

PT0

10k

20k

40k 40k

Vout

EE319K Fall 2008 Final Exam Version B Page 5 of 12

Jonathan W. Valvano December 12, 2008

(8) Question 11. Assume the PC equals $4003, and the SP equals
$3FFE. Initially, memory contains data as shown in the figure. You
will be executing one instruction and answering questions about
executing that one instruction.
Part a) Given the initial conditions in this figure, what instruction will
be executed next?

Part b) As you execute that one instruction, two bytes are stored into
memory? Give the addresses and the 8-bit data values that are stored.
Address Data

Part c) What is the SP after the one instruction is executed?

Part d) What is the PC after the one instruction is executed?

(5) Question 12. You are given an LED with a (2 V, 10 mA) operating point. Interface this LED to the
9S12 using a 7406, such that the LED is on when PP0 is high and the LED is off when PP0 is low. The
VOL of the 7406 is 0.5 V. Label all resistor values. No software is required.

7406

PP0

9S12

PC

$3FFC
$3FFD
$3FFE
$3FFF
$4000
$4001
$4002
$4003
$4004
$4005
$4006

8 bits

SP

$01
$02
$3D
$04
$CF
$3F
$FE
$07
$02
$20
$FC

$4007$3B

EE319K Fall 2008 Final Exam Version B Page 6 of 12

Jonathan W. Valvano December 12, 2008

(10) Question 13. A positive logic switch is connected to PP0 and a positive logic LED is connected
to PT0. Design a Moore finite state machine that counts the number of times the switch is pressed and
released, so that the LED is turned on if the switch is pressed 3 or more times. The LED should come
on after the switch is touched the third time. Switch bounce causes the input to toggle
low/high/low/high every time the switch is touched, and to toggle high/low/high/low every time the
switch is released. This bounce is typically less than 1 ms. You may assume the switch input is high
for at least 100 ms when touched and low for at least 100 ms when released. In other words, the
maximum rate at which the operator will push the switch is 5 times/sec. To eliminate switch bounce,
you will read the input at a rate slower than every 10 ms, but faster than every 100 ms. The FSM
controller will repeat this sequence in the foreground over and over
 1) Output to the LED, as defined by the state
 2) Wait a prescribed amount of time, as defined by the state
 3) Input from the switch
 4) Go to the next state, as defined by the state and by the input
Draw the FSM graph. Specify the initial state. NO SOFTWARE IS REQUIRED.

PP0 (input)

PT0 (output)

EE319K Fall 2008 Final Exam Version B Page 7 of 12

Jonathan W. Valvano December 12, 2008

(10) Question 14. In this question, the subroutine implements a call by reference parameter passed on
the stack. There are no return parameters. Call by reference means an address to the data is pushed on
the stack. A typical calling sequence is
 org $4000
Data fcb 100 ;8-bit information
Main lds #$4000
 movw #Data,2,-sp ;pointer to the Data is pushed
 jsr Subroutine
 leas 2,sp ;discard parameter
The subroutine allocates one 8-bit local variable, L1, and uses RegY frame pointer addressing to
access the local variable and parameter. The binding for these three are
Pt set ??? ;16-bit pointer to 8-bit data
L1 set ??? ;8-bit local variable
Subroutine
 leas –1,sp ;allocate L1
 pshy ;save old stack frame pointer
 tsy ;establish new stack frame pointer
;---------start of body-------------------
 ldaa ????? ;Reg A = value of the parameter
 staa L1,y ;save parameter into local L1
;---------end of body---------------------
 puly
 leas 1,sp ;deallocate
 rts

Part a) Show the binding for the ??? parameters in the above program.

Pt set _____

L1 set _____

Part b) Show the operand for the ????? in the above program. In particular, you must use Register Y
stack frame addressing, Pt binding, and bring the value of the parameter into Register A. It can be
done in one instruction, but for partial credit you can use two instructions.

EE319K Fall 2008 Final Exam Version B Page 8 of 12

Jonathan W. Valvano December 12, 2008

(15) Question 15. This FIFO queue has 8 allocated locations and can hold up to eight 8-bit data
values. The picture shows it currently holding three values (shaded). The FIFO and its three variables
are defined in RAM. When the counter is zero the FIFO is empty.
 org $3900
Fifo rmb 8 ;allocates 8 bytes
GetI rmb 1 ;index where to find oldest data
PutI rmb 1 ;index where to put next data
Cnt rmb 1 ;number of elements stored in fifo
This function initializes the FIFO
Fifo_Init clr Cnt ;no data in Fifo
 clr GetI ;Get next from Fifo[GetI]
 clr PutI ;Put next into Fifo[PutI]
 rts
Write an assembly subroutine, Fifo_Put, that implements the put
operation. The input parameter contains the data to put as call by value
in RegB, and a result code is returned in RegA. If RegA=1, then the input data was successfully stored.
If RegA=0, the data could not be saved in the FIFO because it was previously full at the time of the
call.
;input: RegB, Output: RegA=success
Fifo_Put

0
1
2
3
4
5
6
7

$3900
$3901
$3902
$3903
$3904
$3905
$3906
$3907

Address Contents Index

$56
$78
$34

Cnt = 3
GetI = 4
PutI = 7

Oldest

Newest

EE319K Fall 2008 Final Exam Version B Page 9 of 12

Jonathan W. Valvano December 12, 2008

aba 8-bit add RegA=RegA+RegB
abx unsigned add RegX=RegX+RegB
aby unsigned add RegY=RegY+RegB
adca 8-bit add with carry to RegA
adcb 8-bit add with carry to RegB
adda 8-bit add to RegA
addb 8-bit add to RegB
addd 16-bit add to RegD
anda 8-bit logical and to RegA
andb 8-bit logical and to RegB
andcc 8-bit logical and to RegCC
asl/lsl 8-bit left shift Memory
asla/lsla 8-bit left shift RegA
aslb/lslb 8-bit arith left shift RegB
asld/lsld 16-bit left shift RegD
asr 8-bit arith right shift Memory
asra 8-bit arith right shift to RegA
asrb 8-bit arith right shift to RegB
bcc branch if carry clear
bclr bit clear in memory bclr PTT,#$01
bcs branch if carry set
beq branch if result is zero (Z=1)
bge branch if signed ≥
bgnd enter background debug mode
bgt branch if signed >
bhi branch if unsigned >
bhs branch if unsigned ≥
bita 8-bit and with RegA, sets CCR
bitb 8-bit and with RegB, sets CCR
ble branch if signed ≤
blo branch if unsigned <
bls branch if unsigned ≤
blt branch if signed <
bmi branch if result is negative (N=1)
bne branch if result is nonzero (Z=0)
bpl branch if result is positive (N=0)
bra branch always
brclr branch if bits are clear brclr PTT,#$01,loop
brn branch never
brset branch if bits are set brset PTT,#$01,loop
bset bit set clear in memory bset PTT,#$04
bsr branch to subroutine
bvc branch if overflow clear
bvs branch if overflow set
call subroutine in expanded memory
cba 8-bit compare RegA with RegB
clc clear carry bit, C=0
cli clear I=0, enable interrupts
clr 8-bit memory clear
clra RegA clear
clrb RegB clear
clv clear overflow bit, V=0
cmpa 8-bit compare RegA with memory
cmpb 8-bit compare RegB with memory
com 8-bit logical complement to memory
coma 8-bit logical complement to RegA
comb 8-bit logical complement to RegB
cpd 16-bit compare RegD with memory
cpx 16-bit compare RegX with memory
cpy 16-bit compare RegY with memory
daa 8-bit decimal adjust accumulator
dbeq decrement and branch if result=0 dbeq Y,loop
dbne decrement and branch if result≠0 dbne A,loop
dec 8-bit decrement memory
deca 8-bit decrement RegA
decb 8-bit decrement RegB

des 16-bit decrement RegSP
dex 16-bit decrement RegX
dey 16-bit decrement RegY
ediv RegY=(Y:D)/RegX, unsigned divide
edivs RegY=(Y:D)/RegX, signed divide
emacs 16 by 16 signed multiply, 32-bit add
emaxd 16-bit unsigned maximum in RegD
emaxm 16-bit unsigned maximum in memory
emind 16-bit unsigned minimum in RegD
eminm 16-bit unsigned minimum in memory
emul RegY:D=RegY*RegD unsigned multiply
emuls RegY:D=RegY*RegD signed multiply
eora 8-bit logical exclusive or to RegA
eorb 8-bit logical exclusive or to RegB
etbl 16-bit look up and interpolation
exg exchange register contents exg X,Y
fdiv unsigned fract div, X=(65536*D)/X
ibeq increment and branch if result=0 ibeq Y,loop
ibne increment and branch if result≠0 ibne A,loop
idiv 16-bit unsigned div, X=D/X, D=remainder
idivs 16-bit signed divide, X=D/X, D= remainder
inc 8-bit increment memory
inca 8-bit increment RegA
incb 8-bit increment RegB
ins 16-bit increment RegSP
inx 16-bit increment RegX
iny 16-bit increment RegY
jmp jump always
jsr jump to subroutine
lbcc long branch if carry clear
lbcs long branch if carry set
lbeq long branch if result is zero
lbge long branch if signed ≥
lbgt long branch if signed >
lbhi long branch if unsigned >
lbhs long branch if unsigned ≥
lble long branch if signed ≤
lblo long branch if unsigned <
lbls long branch if unsigned ≤
lblt long branch if signed <
lbmi long branch if result is negative
lbne long branch if result is nonzero
lbpl long branch if result is positive
lbra long branch always
lbrn long branch never
lbvc long branch if overflow clear
lbvs long branch if overflow set
ldaa 8-bit load memory into RegA
ldab 8-bit load memory into RegB
ldd 16-bit load memory into RegD
lds 16-bit load memory into RegSP
ldx 16-bit load memory into RegX
ldy 16-bit load memory into RegY
leas 16-bit load effective addr to SP leas 2,sp
leax 16-bit load effective addr to X leax 2,x
leay 16-bit load effective addr to Y leay 2,y
lsr 8-bit logical right shift memory
lsra 8-bit logical right shift RegA
lsrb 8-bit logical right shift RegB
lsrd 16-bit logical right shift RegD
maxa 8-bit unsigned maximum in RegA
maxm 8-bit unsigned maximum in memory
mem determine the membership grade
mina 8-bit unsigned minimum in RegA
minm 8-bit unsigned minimum in memory
movb 8-bit move memory to memory movb #100,PTT

EE319K Fall 2008 Final Exam Version B Page 10 of 12

Jonathan W. Valvano December 12, 2008

movw 16-bit move memory to memory movw #13,SCIBD
mul RegD=RegA*RegB
neg 8-bit 2's complement negate memory
nega 8-bit 2's complement negate RegA
negb 8-bit 2's complement negate RegB
oraa 8-bit logical or to RegA
orab 8-bit logical or to RegB
orcc 8-bit logical or to RegCC
psha push 8-bit RegA onto stack
pshb push 8-bit RegB onto stack
pshc push 8-bit RegCC onto stack
pshd push 16-bit RegD onto stack
pshx push 16-bit RegX onto stack
pshy push 16-bit RegY onto stack
pula pop 8 bits off stack into RegA
pulb pop 8 bits off stack into RegB
pulc pop 8 bits off stack into RegCC
puld pop 16 bits off stack into RegD
pulx pop 16 bits off stack into RegX
puly pop 16 bits off stack into RegY
rev Fuzzy logic rule evaluation
revw weighted Fuzzy rule evaluation
rol 8-bit roll shift left Memory
rola 8-bit roll shift left RegA
rolb 8-bit roll shift left RegB
ror 8-bit roll shift right Memory
rora 8-bit roll shift right RegA
rorb 8-bit roll shift right RegB
rtc return sub in expanded memory
rti return from interrupt
rts return from subroutine
sba 8-bit subtract RegA-RegB
sbca 8-bit sub with carry from RegA
sbcb 8-bit sub with carry from RegB
sec set carry bit, C=1
sei set I=1, disable interrupts
sev set overflow bit, V=1
sex sign extend 8-bit to 16-bit reg sex B,D
staa 8-bit store memory from RegA
stab 8-bit store memory from RegB
std 16-bit store memory from RegD
sts 16-bit store memory from SP
stx 16-bit store memory from RegX
sty 16-bit store memory from RegY
suba 8-bit sub from RegA
subb 8-bit sub from RegB
subd 16-bit sub from RegD
swi software interrupt, trap
tab transfer A to B
tap transfer A to CC
tba transfer B to A
tbeq test and branch if result=0 tbeq Y,loop
tbl 8-bit look up and interpolation
tbne test and branch if result≠0 tbne A,loop
tfr transfer register to register tfr X,Y
tpa transfer CC to A
trap illegal instruction interrupt
trap illegal op code, or software trap
tst 8-bit compare memory with zero
tsta 8-bit compare RegA with zero
tstb 8-bit compare RegB with zero
tsx transfer S to X
tsy transfer S to Y
txs transfer X to S
tys transfer Y to S

wai wait for interrupt
wav weighted Fuzzy logic average
xgdx exchange RegD with RegX
xgdy exchange RegD with RegY

Example Mode Effective Address
ldaa #u immediate No EA
ldaa u direct EA is 8-bit address
ldaa U extended EA is a 16-bit address
ldaa m,r 5-bit index EA=r+m (-16 to 15)
ldaa v,+r pre-incr r=r+v, EA=r (1 to 8)
ldaa v,-r pre-dec r=r-v, EA=r (1 to 8)
ldaa v,r+ post-inc EA=r, r=r+v (1 to 8)
ldaa v,r- post-dec EA=r, r=r-v (1 to 8)
ldaa A,r Reg A offset EA=r+A, zero padded
ldaa B,r Reg B offset EA=r+B, zero padded
ldaa D,r Reg D offset EA=r+D
ldaa q,r 9-bit index EA=r+q
ldaa W,r 16-bit index EA=r+W
ldaa [D,r] D indirect EA={r+D}
ldaa [W,r] indirect EA={r+W}
Freescale 6812 addressing modes r is X, Y, SP, or PC

Pseudo op Meaning
org Where to put subsequent code
= equ set Define a constant symbol
dc.b db fcb .byte Allocate byte(s) with values
fcc Create an ASCII string
dc.w dw fdb .word Allocate word(s) with values
dc.l dl .long Allocate 32-bit with values
ds ds.b rmb .blkb Allocate bytes without init
ds.w .blkw Allocate word(s) without init

Vector Interrupt Source Arm
$FFFE Reset None
$FFF8 Trap None
$FFF6 SWI None
$FFF0 Real time interrupt CRGINT.RTIE
$FFEE Timer channel 0 TIE.C0I
$FFEC Timer channel 1 TIE.C1I
$FFEA Timer channel 2 TIE.C2I
$FFE8 Timer channel 3 TIE.C3I
$FFE6 Timer channel 4 TIE.C4I
$FFE4 Timer channel 5 TIE.C5I
$FFE2 Timer channel 6 TIE.C6I
$FFE0 Timer channel 7 TIE.C7I
$FFDE Timer overflow TSCR2.TOI
$FFD6 SCI0 TDRE, RDRF SCI0CR2.TIE,RIE
$FFD4 SCI1 TDRE, RDRF SCI1CR2.TIE,RIE
$FFCE Key Wakeup J PIEJ.[7,6,1,0]
$FFCC Key Wakeup H PIEH.[7:0]
$FF8E Key Wakeup P PIEP.[7:0]
Interrupt Vectors.

Address Bit 7 6 5 4 3 2 1 Bit 0 Name
$0040 IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0 TIOS

EE319K Fall 2008 Final Exam Page 11 of 12

Jonathan W. Valvano December 12, 2008

$0044-5 Bit 15 14 13 12 11 10 Bit 0 TCNT
$0046 TEN TSWAI TSFRZ TFFCA 0 0 0 0 TSCR1
$004C C7I C6I C5I C4I C3I C2I C1I C0I TIE
$004D TOI 0 PUPT RDPT TCRE PR2 PR1 PR0 TSCR2
$004E C7F C6F C5F C4F C3F C2F C1F C0F TFLG1
$004F TOF 0 0 0 0 0 0 0 TFLG2
$0050-1 Bit 15 14 13 12 11 10 Bit 0 TC0
$0052-3 Bit 15 14 13 12 11 10 Bit 0 TC1
$0054-5 Bit 15 14 13 12 11 10 Bit 0 TC2
$0056-7 Bit 15 14 13 12 11 10 Bit 0 TC3
$0058-9 Bit 15 14 13 12 11 10 Bit 0 TC4
$005A-B Bit 15 14 13 12 11 10 Bit 0 TC5
$005C-D Bit 15 14 13 12 11 10 Bit 0 TC6
$005E-F Bit 15 14 13 12 11 10 Bit 0 TC7
$0082 ADPU AFFC ASWAI ETRIGLE ETRIGP ETRIG ASCIE ASCIF ATD0CTL2
$0083 0 S8C S4C S2C S1C FIFO FRZ1 FRZ0 ATD0CTL3
$0084 SRES8 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0 ATD0CTL4
$0085 DJM DSGN SCAN MULT 0 CC CB CA ATD0CTL5
$0086 SCF 0 ETORF FIFOR 0 CC2 CC1 CC0 ATD0STAT0
$008B CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0 ATD0STAT1
$008D Bit 7 6 5 4 3 2 1 Bit 0 ATD0DIEN
$008F PAD07 PAD06 PAD05 PAD04 PAD03 PAD02 PAD01 PAD00 PORTAD0
$0090-1 Bit 15 14 13 12 11 10 Bit 0 ATD0DR0
$0092-3 Bit 15 14 13 12 11 10 Bit 0 ATD0DR1
$0094-5 Bit 15 14 13 12 11 10 Bit 0 ATD0DR2
$0096-7 Bit 15 14 13 12 11 10 Bit 0 ATD0DR3
$0098-9 Bit 15 14 13 12 11 10 Bit 0 ATD0DR4
$009A-B Bit 15 14 13 12 11 10 Bit 0 ATD0DR5
$009C-D Bit 15 14 13 12 11 10 Bit 0 ATD0DR6
$009E-F Bit 15 14 13 12 11 10 Bit 0 ATD0DR7
$00C9 0 0 0 SBR12 SBR11 SBR10 SBR0 SCI0BD
$00CA LOOPS SCISWAI RSRC M WAKE ILT PE PT SCI0CR1
$00CB TIE TCIE RIE ILIE TE RE RWU SBK SCI0CR2
$00CC TDRE TC RDRF IDLE OR NF FE PF SCI0SR1
$00CD 0 0 0 0 0 BRK13 TXDIR RAF SCI0SR2
$00CF R7/T7 R6/T6 R5/T5 R4/T4 R3/T3 R2/T2 R1/T1 R0/T0 SCI0DRL
$00D0-1 0 0 0 SBR12 SBR11 SBR10 SBR0 SCI1BD
$00D2 LOOPS SCISWAI RSRC M WAKE ILT PE PT SCI1CR1
$00D3 TIE TCIE RIE ILIE TE RE RWU SBK SCI1CR2
$00D4 TDRE TC RDRF IDLE OR NF FE PF SCI1SR1
$00D5 0 0 0 0 0 BRK13 TXDIR RAF SCI1SR2
$00D7 R7/T7 R6/T6 R5/T5 R4/T4 R3/T3 R2/T2 R1/T1 R0/T0 SCI1DRL
$0240 PT7 PT6 PT5 PT4 PT3 PT2 PT1 PT0 PTT
$0242 DDRT7 DDRT6 DDRT5 DDRT4 DDRT3 DDRT2 DDRT1 DDRT0 DDRT
$0248 PS7 PS6 PS5 PS4 PS3 PS2 PS1 PS0 PTS
$024A DDRS7 DDRS6 DDRS5 DDRS4 DDRS3 DDRS2 DDRS1 DDRS0 DDRS
$0250 PM7 PM6 PM5 PM4 PM3 PM2 PM1 PM0 PTM
$0252 DDRM7 DDRM6 DDRM5 DDRM4 DDRM3 DDRM2 DDRM1 DDRM0 DDRM
$0258 PP7 PP6 PP5 PP4 PP3 PP2 PP1 PP0 PTP
$025A DDRP7 DDRP6 DDRP5 DDRP4 DDRP3 DDRP2 DDRP1 DDRP0 DDRP
$0260 PH7 PH6 PH5 PH4 PH3 PH2 PH1 PH0 PTH
$0262 DDRH7 DDRH6 DDRH5 DDRH4 DDRH3 DDRH2 DDRH1 DDRH0 DDRH
$0268 PJ7 PJ6 0 0 0 0 PJ1 PJ0 PTJ
$026A DDRJ7 DDRJ6 0 0 0 0 DDRJ1 DDRJ0 DDRJ
TSCR1 is the first 8-bit timer control register
 bit 7 TEN, 1 allows the timer to function normally, 0 means disable timer including TCNT
TSCR2 is the second 8-bit timer control register
 bits 2,1,0 are PR2, PR1, PR0, which select the rate, let n be the 3-bit number formed by PR2, PR1, PR0
 without PLL TCNT is 8MHz/2n, with PLL TCNT is 24MHz/2n, n ranges from 0 to 7
TIOS is the 8-bit output compare select register, one bit for each channel (1 = output compare, 0 = input capture)
TIE is the 8-bit output compare arm register, one bit for each channel (1 = armed, 0 = disarmed)
SCIxBD is 16-bit SCI baud rate register, let n be the 16-bit number Baud rate is 250 kHz/n

EE319K Fall 2008 Final Exam Page 12 of 12

Jonathan W. Valvano December 12, 2008

SCIxCR2 is 8-bit SCI control register
 bit 7 TIE, Transmit Interrupt Enable, 0 = TDRE interrupts disabled, 1 = interrupt whenever TDRE set
 bit 5 RIE, Receiver Interrupt Enable, 0 = RDRF interrupts disabled, 1 = interrupt whenever RDRF set
 bit 3 TE, Transmitter Enable, 0 = Transmitter disabled, 1 = SCI transmit logic is enabled
 bit 2 RE, Receiver Enable, 0 = Receiver disabled, 1 = Enables the SCI receive circuitry.
SCIxSR1 is 8-bit SCI status register
 bit 7 TDRE, Transmit Data Register Empty Flag
 Set if transmit data can be written to SCDR
 Cleared by SCIxSR1 read with TDRE set followed by SCIxDRL write.
 bit 5 RDRF, Receive Data Register Full
 set if a received character is ready to be read from SCIxDRL
 Clear the RDRF flag by reading SCIxSR1 with RDRF set and then reading SCIxDRL .

