First:	Middle Initial: Last:
This is a closed book exam. You must hours, so allocate your time accordingly. <i>Please</i>	t put your answers in the space provided. You have 3
Please read and affirm our honor code: "The core values of The University of Texas at leadership, individual opportunity, and response expected to uphold these values through integrit toward peers and community."	Austin are learning, discovery, freedom, ibility. Each member of the university is
Signed:	December 12, 2008
system range is -2 to +2 m. The frequency com	a 12-bit ADC to measure a distance. The measurement apponents of the distance signal can vary from DC (0 Hz) compare interrupt to sample the ADC. What rate (in Hz) to the distance of the distance of the distance of the distance.
ISR the four-bit motor output is set to 5, 6, 1 following four instructions occur during each IS movb #\$05,PTT movb #\$06,PTT movb #\$0A,PTT movb #\$09,PTT There are 200 steps per rotation of the motor. W	re interrupt is used to spin a stepper motor. During each 0, then 9. The stepper is interfaced to PT3-0, and the SR, without any delay between these instructions.
A) The motor will not spin at all B) The motor will spin at 20 rps = (4 step/ms)*(C) The motor will spin at 1000 rps = (1 rot/ms) D) The motor will spin at 4000 rps = (4 rot/ms)	(1000ms/s)*(1 rot/200steps) *(1000ms/s)
E) The motor will spin at 5 rps = $(1 \text{ step/ms})*(1 \text{ step/ms})$	`

(4) Question 3. Write a subroutine to sample ADC channel 4 of the 9S12DP512. Assume the ADC initialized for a 10-bit sample, sequence length is 1, and the ADC clock is 2 MHz. Implement right-justified conversions, and return the result in RegX.

(8) Question 4. Assume you have an 11-bit ADC with a range of 0 to +10 V (not the 9S12). Write a subroutine that converts the ADC sample into a fixed-point number with a resolution of 0.01 V. The input parameter is call by value in RegD containing the right-justified ADC sample (0 to 2047). Minimize errors due to dropout and overflow. Return by value the integer part of the fixed-point number in RegY. E.g., if the input voltage is 7.5 V then RegY is returned as 750.

(4) Question 5. Assume RegA = \$55, RegX=\$1234 and RegY = \$5678. What is the value in RegX after executing these instructions?

```
psha
stx 2,-sp
sty 2,sp-
leas 2,sp
pula
pulx
```

- (4) Question 6. These seven events all occur during each RDRF interrupt.
 - 1) There is data in the receive data register and the hardware sets the flag bit (e.g., RDRF=1)
 - 2) The SCI vector address is loaded into the PC
 - 3) The I bit in the CCR is set by hardware
 - 4) The software reads **SCI1DRL**
 - 5) The software reads **SCI1SR1**
 - 6) The CCR, A, B, X, Y, PC are pushed on the stack
 - 7) The software executes rti

Which of the following sequences could be possible? Pick one answer A-F (only one is correct)

```
A) 1,3,6,2,4,5,7
```

B) 1,6,3,2,5,4,7

C) 5,1,3,4,2,6,7

D) 1,2,5,3,4,6,7

E) 1,6,3,2,4,5,7

F) None of the above sequences are possible

(10) Question 7. Write software that increments a 16-bit global variable every 1 msec using output compare 2. Show the complete main program, the OC2 ISR, the interrupt vector, and the reset vector. After initialization the main program executes a do-nothing loop. Write code as friendly as possible. Assume the E clock is 8 MHz. To make it easier for me to grade, leave TSCR2 equal to 0.

org \$0800 Count rmb 2 ;incremented every 1 msec org \$4000

(5) Question 8. Consider a serial port operating with a baud rate of 1000 bits per second. Draw the waveform occurring at the PS1 output (voltage levels are +5 and 0) when the ASCII 'T' (\$54) is transmitted on SCI0. The protocol is 1 start, 8 data and 1 stop bit. The SCI0 is initially idle, and the software writes the \$54 to SCI0DRL at time=0. Show the PS1 line before and after the frame, assuming the channel is idle before and after the frame.

(5) Question 9. Consider a computer network where two 9S12s are connected via their SCI0 ports, using a 3-wire cable similar to Lab 7. The transmitter of computer 1 is connected to the receiver of computer 2, and the transmitter of computer 2 is connected to the receiver of computer 1. Initially, both SCI0 ports are idle. The baud rate on both computers is initialized to 1000 bits/sec, with 1 start, 8 data and 1 stop bit. Both computers have their RDRF flags armed and enabled. The transmitters are active, but not armed for interrupts. The I bit is clear in both computers. At time 0, computer 1 reads SCI0SR1 then writes to SCI0DRL. The RDRF ISR in computer 2 will read its SCI1DRL then write to its SCI1DRL (echo the data back). Approximately how long after computer 1 writes to SCI1DRL will an RDRF interrupt occur back in computer 1? Assume the software execution time is fast compared to the I/O transmission time.

(4) Question 10. Consider the following three-bit DAC connected to Port T. Fill in the expected response table assuming V_{OH} is 5 V and V_{OL} is 0 V.

PT2	PT1	PT0	Vout (V)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

(8) Question 11. Assume the PC equals \$4003, and the SP equals \$3FFE. Initially, memory contains data as shown in the figure. You will be executing one instruction and answering questions about executing that one instruction.

Part a) Given the initial conditions in this figure, what instruction will be executed next?

\$3B

\$4007

Part b) As you execute that one instruction, two bytes are stored into PC -> memory? Give the addresses and the 8-bit data values that are stored.

Data

Part c) What is the SP after the one instruction is executed?

Part d) What is the PC after the one instruction is executed?

(5) Question 12. You are given an LED with a (2 V, 10 mA) operating point. Interface this LED to the 9S12 using a 7406, such that the LED is on when PP0 is high and the LED is off when PP0 is low. The V_{OL} of the 7406 is 0.5 V. Label all resistor values. No software is required.

- (10) Question 13. A positive logic switch is connected to PPO and a positive logic LED is connected to PTO. Design a Moore finite state machine that counts the number of times the switch is pressed and released, so that the LED is turned on if the switch is pressed 3 or more times. The LED should come on after the switch is touched the third time. Switch bounce causes the input to toggle low/high/low/high every time the switch is touched, and to toggle high/low/high/low every time the switch is released. This bounce is typically less than 1 ms. You may assume the switch input is high for at least 100 ms when touched and low for at least 100 ms when released. In other words, the maximum rate at which the operator will push the switch is 5 times/sec. To eliminate switch bounce, you will read the input at a rate slower than every 10 ms, but faster than every 100 ms. The FSM controller will repeat this sequence in the foreground over and over
 - 1) Output to the LED, as defined by the state
 - 2) Wait a prescribed amount of time, as defined by the state
 - 3) Input from the switch
 - 4) Go to the next state, as defined by the state and by the input

Draw the FSM graph. Specify the initial state. NO SOFTWARE IS REQUIRED.

(10) Question 14. In this question, the subroutine implements a call by reference parameter passed on the stack. There are no return parameters. Call by reference means an address to the data is pushed on the stack. A typical calling sequence is

```
orq
         $4000
Data fcb
         100
                      ;8-bit information
Main lds #$4000
    movw #Data,2,-sp ;pointer to the Data is pushed
     jsr Subroutine
     leas 2,sp
                      ;discard parameter
The subroutine allocates one 8-bit local variable, L1, and uses RegY frame pointer addressing to
access the local variable and parameter. The binding for these three are
Pt set ??? ;16-bit pointer to 8-bit data
L1 set ??? ;8-bit local variable
Subroutine
    leas -1,sp ;allocate L1
   pshy
                ; save old stack frame pointer
        establish new stack frame pointer;
    tsy
;-----start of body-----
    ldaa ????? ;Reg A = value of the parameter
    staa L1,y ;save parameter into local L1
;----end of body-----
   puly
    leas 1,sp ;deallocate
    rts
```

Part a) Show the binding for the ??? parameters in the above program.

Pt	set	
L1	set	

Part b) Show the operand for the ????? in the above program. In particular, you must use Register Y stack frame addressing, Pt binding, and bring the value of the parameter into Register A. It can be done in one instruction, but for partial credit you can use two instructions.

(15) Question 15. This FIFO queue has 8 allocated locations and can hold up to eight 8-bit data values. The picture shows it currently holding three values (shaded). The FIFO and its three variables are defined in RAM. When the counter is zero the FIFO is empty.

org \$3900	Address Contents Index
Fifo rmb 8 ;allocates 8 bytes	\$3900 0
GetI rmb 1 ;index where to find oldest data	\$3901 1
PutI rmb 1 ;index where to put next data	\$39022
Cnt rmb 1 ;number of elements stored in fifo	\$39033
This function initializes the FIFO	\$3904 <u>\$56 ← 4 Oldest</u>
	\$3905 \$78 5
Fifo_Init clr Cnt ;no data in Fifo	\$3906 \$34 ← 6 Newest
<pre>clr GetI ;Get next from Fifo[GetI]</pre>	\$3907 7
<pre>clr PutI ;Put next into Fifo[PutI]</pre>	Cnt = 3
rts	GetI = 4
Write an assembly subroutine, Fifo_Put, that implements the put	PutI = 7

Write an assembly subroutine, **Fifo_Put**, that implements the put operation. The input parameter contains the data to put as call by value

in RegB, and a result code is returned in RegA. If RegA=1, then the input data was successfully stored. If RegA=0, the data could not be saved in the FIFO because it was previously full at the time of the call.

```
;input: RegB, Output: RegA=success
Fifo_Put
```

aba	8-bit add RegA=RegA+RegB	des	16-bit decrement RegSP
abx	unsigned add RegX=RegX+RegB	dex	16-bit decrement RegX
aby	unsigned add RegY=RegY+RegB	dey	16-bit decrement RegY
adca	8-bit add with carry to RegA	_	RegY=(Y:D)/RegX, unsigned divide
adcb	8-bit add with carry to RegB		RegY=(Y:D)/RegX, signed divide
adda	8-bit add to RegA		16 by 16 signed multiply, 32-bit add
addb	8-bit add to RegB		16-bit unsigned maximum in RegD
addd	16-bit add to RegD		16-bit unsigned maximum in memory
anda	8-bit logical and to RegA		16-bit unsigned minimum in RegD
andb	8-bit logical and to RegB	eminm	16-bit unsigned minimum in memory
andcc	8-bit logical and to RegCC	emul	RegY:D=RegY*RegD unsigned multiply
asl/l	s1 8-bit left shift Memory	emuls	RegY:D=RegY*RegD signed multiply
	lsla 8-bit left shift RegA		8-bit logical exclusive or to RegA
	lslb 8-bit arith left shift RegB		8-bit logical exclusive or to RegB
asld/	lsld 16-bit left shift RegD	etbl	16-bit look up and interpolation
asr	8-bit arith right shift Memory	exg	exchange register contents exg X, Y
asra	8-bit arith right shift to RegA	fdiv	unsigned fract div, X=(65536*D)/X
asrb	8-bit arith right shift to RegB	_	increment and branch if result=0 ibeq Y,loop
bcc	branch if carry clear	ibne	increment and branch if result ≠ 0 ibne A, loop
bclr	bit clear in memory bclr PTT, #\$01		16-bit unsigned div, X=D/X, D=remainder
bcs	branch if carry set		16-bit signed divide, X=D/X, D= remainder
beq	branch if result is zero (Z=1)	inc	8-bit increment memory
bge	branch if signed ≥ enter background debug mode	inca	8-bit increment RegA 8-bit increment RegB
bgnd bat	branch if signed >	incb ins	16-bit increment RegSP
bgt bhi	branch if unsigned >	inx	16-bit increment RegX
bhs	branch if unsigned ≥	iny	16-bit increment RegY
bita	8-bit and with RegA, sets CCR	jmp	jump always
bitb	8-bit and with RegB, sets CCR	jsr	jump to subroutine
ble	branch if signed ≤	lbcc	long branch if carry clear
blo	branch if unsigned <	lbcs	long branch if carry set
bls	branch if unsigned ≤	lbeq	long branch if result is zero
blt	branch if signed <	lbge	long branch if signed ≥
bmi	branch if result is negative (N=1)	lbgt	long branch if signed >
bne	branch if result is nonzero (Z=0)	lbhi	long branch if unsigned >
bpl	branch if result is positive (N=0)	lbhs	long branch if unsigned \geq
bra	branch always	lble	long branch if signed \leq
brclr	branch if bits are clear brclr PTT, #\$01, loop	lblo	long branch if unsigned <
brn	branch never	lbls	long branch if unsigned \leq
	branch if bits are set brset PTT, #\$01, loop	lblt	long branch if signed <
bset	bit set clear in memory bset PTT, #\$04	lbmi	long branch if result is negative
bsr	branch to subroutine	lbne	long branch if result is nonzero
bvc	branch if overflow clear	lbpl	long branch if result is positive
bvs	branch if overflow set	lbra	long branch always
call	subroutine in expanded memory 8-bit compare RegA with RegB	lbrn lbvc	long branch never long branch if overflow clear
cba clc	clear carry bit, C=0	lbvs	long branch if overflow set
cli	clear I=0, enable interrupts	ldaa	8-bit load memory into RegA
clr	8-bit memory clear	ldab	8-bit load memory into RegB
clra	RegA clear	ldd	16-bit load memory into RegD
clrb	RegB clear	lds	16-bit load memory into RegSP
clv	clear overflow bit, V=0	ldx	16-bit load memory into RegX
cmpa	8-bit compare RegA with memory	ldy	16-bit load memory into RegY
cmpb	8-bit compare RegB with memory	leas	16-bit load effective addr to SP leas 2, sp
com	8-bit logical complement to memory	leax	16-bit load effective addr to X leax 2,x
coma	8-bit logical complement to RegA	leay	16-bit load effective addr to Y leay 2, y
comb	8-bit logical complement to RegB	lsr	8-bit logical right shift memory
cpd	16-bit compare RegD with memory	lsra	8-bit logical right shift RegA
срх	16-bit compare RegX with memory	lsrb	8-bit logical right shift RegB
сру	16-bit compare RegY with memory	lsrd	16-bit logical right shift RegD
daa	8-bit decimal adjust accumulator	maxa	8-bit unsigned maximum in RegA
dbeq	decrement and branch if result=0 dbeq Y, loop	maxm	8-bit unsigned maximum in memory
dbne	decrement and branch if result ≠0 dbne A, loop	mem	determine the membership grade
dec	8-bit decrement memory	mina	8-bit unsigned minimum in RegA
deca	8-bit decrement RegA	minm	8-bit unsigned minimum in memory
decb	8-bit decrement RegB	movb	8-bit move memory to memory movb #100,PTT

movw	16-bit move memory to memory movw #13, SCIBD	wai wait for in	•		
mul	RegD=RegA*RegB		Fuzzy logic average		
neg	8-bit 2's complement negate memory	xgdx exchange RegD with RegX			
nega	8-bit 2's complement negate RegA	xgdy exchange RegD with RegY			
negb	8-bit 2's complement negate RegB				
oraa	8-bit logical or to RegA	Example	Mode	Effective Address	
orab	8-bit logical or to RegB 8-bit logical or to RegCC	ldaa #u	immediate	No EA	
orcc psha	push 8-bit RegA onto stack	ldaa u	direct	EA is 8-bit address	
psha	push 8-bit RegB onto stack	ldaa U	extended	EA is a 16-bit address	
pshc	push 8-bit RegCC onto stack				
pshd	push 16-bit RegD onto stack	ldaa m,r	5-bit index	EA=r+m (-16 to 15)	
pshx	push 16-bit RegX onto stack	ldaa v,+r	pre-incr	r=r+v, EA=r (1 to 8)	
pshy	push 16-bit RegY onto stack	ldaa v,-r	pre-dec	r=r-v, EA=r (1 to 8)	
pula	pop 8 bits off stack into RegA	ldaa v,r+	post-inc	EA=r, r=r+v (1 to 8)	
pulb	pop 8 bits off stack into RegB	ldaa v,r-	post-dec	EA=r, r=r-v (1 to 8)	
pulc	pop 8 bits off stack into RegCC	ldaa A,r	Reg A offset	EA=r+A, zero padded	
puld	pop 16 bits off stack into RegD	ldaa B,r	Reg B offset	EA=r+B, zero padded	
pulx puly	pop 16 bits off stack into RegX pop 16 bits off stack into RegY			· · ·	
rev	Fuzzy logic rule evaluation	ldaa D,r	Reg D offset	EA=r+D	
revw	weighted Fuzzy rule evaluation	ldaa q,r	9-bit index	EA=r+q	
rol	8-bit roll shift left Memory	ldaa W,r	16-bit index	EA=r+W	
rola	8-bit roll shift left RegA	ldaa [D,r]	D indirect	$EA=\{r+D\}$	
rolb	8-bit roll shift left RegB	ldaa [W,r]	indirect	$EA = \{r + W\}$	
ror	8-bit roll shift right Memory				
rora	8-bit roll shift right RegA	r reescale 0012	aaaressing mod	les r is X, Y, SP, or PC	
rorb	8-bit roll shift right RegB				
rtc	return sub in expanded memory	Pseudo op	Mea	ning	
rti	return from interrupt	org	Whe	re to put subsequent code	
rts	return from subroutine	= equ set	Defin	ne a constant symbol	
sba	8-bit subtract RegA-RegB	_		cate byte(s) with values	
sbca sbcb	8-bit sub with carry from RegA 8-bit sub with carry from RegB				
sec	set carry bit, C=1	fcc		te an ASCII string	
sei	set I=1, disable interrupts			cate word(s) with values	
sev	set overflow bit, V=1	dc.l dl .l	ong Allo	cate 32-bit with values	
sex	sign extend 8-bit to 16-bit reg sex B, D	ds ds.b rm	b .blkb Allo	cate bytes without init	
staa	8-bit store memory from RegA	ds.w .blkw		cate word(s) without init	
stab	8-bit store memory from RegB	CD.W .DIRW	7 1110	eate word(s) without fift	
std	16-bit store memory from RegD				
sts					
stx	16-bit store memory from SP		errupt Source	Arm	
	16-bit store memory from RegX	\$FFFE Re	eset	None	
sty	16-bit store memory from RegX 16-bit store memory from RegY	\$FFFE Re	-		
sty suba	16-bit store memory from RegX 16-bit store memory from RegY 8-bit sub from RegA	\$FFFE Re	eset ap	None	
sty suba subb	16-bit store memory from RegX 16-bit store memory from RegY 8-bit sub from RegA 8-bit sub from RegB	\$FFFE Re \$FFF8 Tr \$FFF6 SV	eset ap VI	None None None	
sty suba subb subd	16-bit store memory from RegX 16-bit store memory from RegY 8-bit sub from RegA 8-bit sub from RegB 16-bit sub from RegD	\$FFFE Re \$FFF8 Tr \$FFF6 SV \$FFF0 Re	set ap VI val time interruj	None None None CRGINT.RTIE	
sty suba subb subd swi	16-bit store memory from RegX 16-bit store memory from RegY 8-bit sub from RegA 8-bit sub from RegB 16-bit sub from RegD software interrupt, trap	\$FFFE Re \$FFF8 Tr \$FFF6 SV \$FFF0 Re \$FFEE Ti	eset ap VI cal time interrup mer channel 0	None None None CRGINT.RTIE TIE.C0I	
sty suba subb subd swi tab	16-bit store memory from RegX 16-bit store memory from RegY 8-bit sub from RegA 8-bit sub from RegB 16-bit sub from RegD software interrupt, trap transfer A to B	\$FFFE Re \$FFF8 Tr \$FFF6 SV \$FFF0 Re \$FFEE Ti \$FFEC Ti	eset ap VI eal time interrup mer channel 0 mer channel 1	None None None CRGINT.RTIE TIE.C0I TIE.C1I	
sty suba subb subd swi	16-bit store memory from RegX 16-bit store memory from RegY 8-bit sub from RegA 8-bit sub from RegB 16-bit sub from RegD software interrupt, trap	\$FFFE Re \$FFF8 Tr \$FFF6 SV \$FFF0 Re \$FFEE Ti \$FFEC Ti \$FFEC Ti	eset vap vI eal time interrup mer channel 0 mer channel 1 mer channel 2	None None None CRGINT.RTIE TIE.C0I TIE.C1I TIE.C2I	
sty suba subb subd swi tab tap	16-bit store memory from RegX 16-bit store memory from RegY 8-bit sub from RegA 8-bit sub from RegB 16-bit sub from RegD software interrupt, trap transfer A to B transfer A to CC	\$FFFE Re \$FFF8 Tr \$FFF6 SV \$FFF0 Re \$FFEE Ti \$FFEC Ti \$FFEA Ti \$FFEA Ti	eset ap VI eal time interrup mer channel 0 mer channel 1 mer channel 2 mer channel 3	None None None CRGINT.RTIE TIE.C0I TIE.C1I TIE.C2I TIE.C3I	
sty suba subb subd swi tab tap tba	16-bit store memory from RegX 16-bit store memory from RegY 8-bit sub from RegA 8-bit sub from RegB 16-bit sub from RegD software interrupt, trap transfer A to B transfer A to CC transfer B to A	\$FFFE Re \$FFFF Tr \$FFFE Ti \$FFEA Ti \$FFE8 Ti \$FFE6 Ti	eset ap VI eal time interrup mer channel 0 mer channel 1 mer channel 2 mer channel 3 mer channel 4	None None None CRGINT.RTIE TIE.C0I TIE.C1I TIE.C2I TIE.C3I TIE.C4I	
sty suba subb subd swi tab tap tba tbeq	16-bit store memory from RegX 16-bit store memory from RegY 8-bit sub from RegA 8-bit sub from RegB 16-bit sub from RegD software interrupt, trap transfer A to B transfer A to CC transfer B to A test and branch if result=0 tbeq Y,loop	\$FFFE Re \$FFFF Tr \$FFFE Ti \$FFEA Ti \$FFE8 Ti \$FFE6 Ti	eset ap VI eal time interrup mer channel 0 mer channel 1 mer channel 2 mer channel 3	None None None CRGINT.RTIE TIE.C0I TIE.C1I TIE.C2I TIE.C3I	
sty suba subb subd swi tab tap tba tbeq tbl	16-bit store memory from RegX 16-bit store memory from RegY 8-bit sub from RegA 8-bit sub from RegB 16-bit sub from RegD software interrupt, trap transfer A to B transfer A to CC transfer B to A test and branch if result=0 tbeq Y,loop 8-bit look up and interpolation test and branch if result≠0 tbne A,loop transfer register to register tfr X,Y	\$FFFE Re \$FFFF SV \$FFFF Ti \$FFE Ti \$FF	eset ap VI eal time interrup mer channel 0 mer channel 1 mer channel 2 mer channel 3 mer channel 4	None None None CRGINT.RTIE TIE.C0I TIE.C1I TIE.C2I TIE.C3I TIE.C4I	
sty suba subb subd swi tab tap tba tbeq tbl tbne tfr	16-bit store memory from RegX 16-bit store memory from RegY 8-bit sub from RegA 8-bit sub from RegB 16-bit sub from RegD software interrupt, trap transfer A to B transfer A to CC transfer B to A test and branch if result=0 tbeq Y,loop 8-bit look up and interpolation test and branch if result≠0 tbne A,loop transfer register to register tfr X,Y	\$FFFE Re \$FFFF Tr \$FFFE Tr \$FFEA Tr \$FF	eset ap VI cal time interrup mer channel 0 mer channel 2 mer channel 3 mer channel 4 mer channel 5 mer channel 6	None None None CRGINT.RTIE TIE.C0I TIE.C1I TIE.C2I TIE.C3I TIE.C4I TIE.C5I TIE.C5I TIE.C6I	
sty suba subb subd swi tab tap tba tbeq tbl tbne tfr tpa trap	16-bit store memory from RegX 16-bit store memory from RegY 8-bit sub from RegA 8-bit sub from RegB 16-bit sub from RegD software interrupt, trap transfer A to B transfer A to CC transfer B to A test and branch if result=0 8-bit look up and interpolation test and branch if result≠0 transfer register to register transfer CC to A illegal instruction interrupt	\$FFFE Re \$FFF8 Tr \$FFFF0 Re \$FFFEC Tr \$FFEA Tr \$FFE8 Tr \$FFE6 Tr \$FFE4 Tr \$FFE4 Tr \$FFE4 Tr \$FFE4 Tr \$FFE2 Tr \$FFE0 Tr \$	eset ap VI cal time interrup mer channel 0 mer channel 1 mer channel 3 mer channel 4 mer channel 5 mer channel 6 mer channel 7	None None None CRGINT.RTIE TIE.C0I TIE.C1I TIE.C2I TIE.C3I TIE.C4I TIE.C5I TIE.C5I TIE.C5I	
sty suba subb subd swi tab tap tba tbeq tbl tbne tfr tpa trap	16-bit store memory from RegX 16-bit store memory from RegY 8-bit sub from RegA 8-bit sub from RegB 16-bit sub from RegD software interrupt, trap transfer A to B transfer A to CC transfer B to A test and branch if result=0 8-bit look up and interpolation test and branch if result≠0 transfer register to register transfer CC to A illegal instruction interrupt illegal op code, or software trap	\$FFFE Re \$FFF8 Tr \$FFFF SV \$FFFE Tr \$FFEC Tr \$FFEA Tr \$FF	eset rap VI ral time interrup mer channel 0 mer channel 1 mer channel 2 mer channel 3 mer channel 4 mer channel 5 mer channel 6 mer channel 7 mer overflow	None None None ORGINT.RTIE TIE.C0I TIE.C1I TIE.C2I TIE.C3I TIE.C4I TIE.C5I TIE.C6I TIE.C6I TIE.C7I TSCR2.TOI	
sty suba subb subd swi tab tap tba tbeq tbl tbne tfr tpa trap trap	16-bit store memory from RegX 16-bit store memory from RegY 8-bit sub from RegA 8-bit sub from RegB 16-bit sub from RegD software interrupt, trap transfer A to B transfer A to CC transfer B to A test and branch if result=0 test and branch if result≠0 test and branch if result≠0 test and branch if result≠0 tbne A,loop transfer register to register transfer CC to A illegal instruction interrupt illegal op code, or software trap 8-bit compare memory with zero	\$FFFE Re \$FFF8 Tr \$FFFF Re \$FFFF Re \$FFFF Re \$FFFF Re \$FFFF Re \$FFFFF Re \$FFFFFF Re \$FFFFFFFF Re \$FFFFFFFFF Re \$FFFFFFFFFF	eset cap VI cal time interrup mer channel 0 mer channel 1 mer channel 3 mer channel 4 mer channel 5 mer channel 6 mer channel 7 mer overflow CIO TDRE, RDI	None None None CRGINT.RTIE TIE.C0I TIE.C1I TIE.C2I TIE.C3I TIE.C4I TIE.C5I TIE.C5I TIE.C6I TIE.C7I TSCR2.TOI RF SCI0CR2.TIE,RIE	
sty suba subb subd swi tab tba tbeq tbl tbne tfr tpa trap trap trap tst	16-bit store memory from RegX 16-bit store memory from RegY 8-bit sub from RegA 8-bit sub from RegB 16-bit sub from RegD software interrupt, trap transfer A to B transfer A to CC transfer B to A test and branch if result=0 tbeq Y,loop 8-bit look up and interpolation test and branch if result≠0 tbne A,loop transfer register to register transfer CC to A illegal instruction interrupt illegal op code, or software trap 8-bit compare memory with zero 8-bit compare RegA with zero	\$FFFE Re \$FFF8 Tr \$FFFF Re \$FFFE Tr \$FFE Tr \$FFD \$FFD Tr \$FFD \$FFD \$FFD \$FFD \$FFD \$FFD \$FFD \$FF	eset rap VI ral time interrup mer channel 0 mer channel 1 mer channel 2 mer channel 3 mer channel 4 mer channel 5 mer channel 6 mer channel 7 mer overflow CIO TDRE, RDI	None None None CRGINT.RTIE TIE.C0I TIE.C1I TIE.C2I TIE.C3I TIE.C4I TIE.C5I TIE.C6I TIE.C7I TSCR2.TOI RF SCI0CR2.TIE,RIE RF SCI1CR2.TIE,RIE	
sty suba subb subd swi tab tap tba tbeq tbl tbne tfr tpa trap trap tst tsta tstb	16-bit store memory from RegX 16-bit store memory from RegY 8-bit sub from RegA 8-bit sub from RegB 16-bit sub from RegD software interrupt, trap transfer A to B transfer A to CC transfer B to A test and branch if result=0 tbeq Y,loop 8-bit look up and interpolation test and branch if result≠0 tbne A,loop transfer register to register transfer CC to A illegal instruction interrupt illegal op code, or software trap 8-bit compare memory with zero 8-bit compare RegA with zero 8-bit compare RegB with zero	\$FFFE Re \$FFF6 \$V \$FFFF Ti \$FFEA TI \$FF	eset ap VI cal time interrup mer channel 0 mer channel 2 mer channel 3 mer channel 4 mer channel 5 mer channel 6 mer channel 7 mer overflow CIO TDRE, RDI CY Wakeup J	None None None Off CRGINT.RTIE TIE.C0I TIE.C1I TIE.C2I TIE.C3I TIE.C4I TIE.C5I TIE.C6I TIE.C7I TSCR2.T0I RF SCI0CR2.TIE,RIE PIEJ.[7,6,1,0]	
sty suba subb subd swi tab tap tba tbeq tbl tbne tfr tpa trap trap trst tsta tstb	16-bit store memory from RegX 16-bit store memory from RegY 8-bit sub from RegA 8-bit sub from RegB 16-bit sub from RegB 16-bit sub from RegD software interrupt, trap transfer A to B transfer A to CC transfer B to A test and branch if result=0 tbeq Y,loop 8-bit look up and interpolation test and branch if result≠0 tbne A,loop transfer register to register tfr X,Y transfer CC to A illegal instruction interrupt illegal op code, or software trap 8-bit compare memory with zero 8-bit compare RegA with zero 8-bit compare RegB with zero transfer S to X	\$FFFE Re \$FFF6 \$V \$FFFF Ti \$FFE Ti \$FF	eset ap VI cal time interrup mer channel 0 mer channel 2 mer channel 3 mer channel 4 mer channel 5 mer channel 6 mer channel 7 mer overflow CIO TDRE, RDI cy Wakeup J cy Wakeup H	None None None Ot CRGINT.RTIE TIE.C0I TIE.C1I TIE.C2I TIE.C3I TIE.C4I TIE.C5I TIE.C6I TIE.C7I TSCR2.T0I RF SCI0CR2.TIE,RIE PIEJ.[7,6,1,0] PIEH.[7:0]	
sty suba subb subd swi tab tap tba tbeq tbl tbne tfr tpa trap trat tsta tstb tsx tsy	16-bit store memory from RegX 16-bit store memory from RegY 8-bit sub from RegA 8-bit sub from RegB 16-bit sub from RegD software interrupt, trap transfer A to B transfer A to CC transfer B to A test and branch if result=0 tbeq Y,loop 8-bit look up and interpolation test and branch if result≠0 tbne A,loop transfer register to register tfr X,Y transfer CC to A illegal instruction interrupt illegal op code, or software trap 8-bit compare memory with zero 8-bit compare RegA with zero 8-bit compare RegB with zero transfer S to X transfer S to Y	\$FFFE Re \$FFF6 \$V \$FFFF Ti \$FFE Ti \$FF	eset ap VI cal time interrup mer channel 0 mer channel 2 mer channel 3 mer channel 4 mer channel 5 mer channel 6 mer channel 7 mer overflow CIO TDRE, RDI CY Wakeup J	None None None Off CRGINT.RTIE TIE.C0I TIE.C1I TIE.C2I TIE.C3I TIE.C4I TIE.C5I TIE.C6I TIE.C7I TSCR2.T0I RF SCI0CR2.TIE,RIE PIEJ.[7,6,1,0]	
sty suba subb subd swi tab tap tba tbeq tbl tbne tfr tpa trap trap trst tsta tstb tsx tsy txs	16-bit store memory from RegX 16-bit store memory from RegY 8-bit sub from RegA 8-bit sub from RegB 16-bit sub from RegB 16-bit sub from RegD software interrupt, trap transfer A to B transfer A to CC transfer B to A test and branch if result=0 tbeq Y,loop 8-bit look up and interpolation test and branch if result≠0 tbne A,loop transfer register to register tfr X,Y transfer CC to A illegal instruction interrupt illegal op code, or software trap 8-bit compare memory with zero 8-bit compare RegA with zero 8-bit compare RegB with zero transfer S to X	\$FFFE Re \$FFF6 \$V \$FFFE Ti \$FFEC Ti \$FFEA TI \$FF	eset ap VI cal time interrup mer channel 0 mer channel 2 mer channel 3 mer channel 4 mer channel 5 mer channel 6 mer channel 7 mer overflow CIO TDRE, RDI CII TDRE, RDI CY Wakeup J cy Wakeup H cy Wakeup P	None None None Ot CRGINT.RTIE TIE.C0I TIE.C1I TIE.C2I TIE.C3I TIE.C4I TIE.C5I TIE.C6I TIE.C7I TSCR2.T0I RF SCI0CR2.TIE,RIE PIEJ.[7,6,1,0] PIEH.[7:0]	
sty suba subb subd swi tab tap tba tbeq tbl tbne tfr tpa trap trat tsta tstb tsx tsy	16-bit store memory from RegX 16-bit store memory from RegY 8-bit sub from RegA 8-bit sub from RegB 16-bit sub from RegD software interrupt, trap transfer A to B transfer A to CC transfer B to A test and branch if result=0 tbeq Y,loop 8-bit look up and interpolation test and branch if result≠0 tbne A,loop transfer register to register tfr X,Y transfer CC to A illegal instruction interrupt illegal op code, or software trap 8-bit compare memory with zero 8-bit compare RegA with zero 8-bit compare RegB with zero transfer S to X transfer S to Y transfer X to S transfer Y to S s Bit 7 6 5 4	\$FFFE Re \$FFF6 \$V \$FFFF Ti \$FFE Ti \$FF	eset ap VI cal time interrup mer channel 0 mer channel 2 mer channel 3 mer channel 4 mer channel 5 mer channel 6 mer channel 7 mer overflow CIO TDRE, RDI CII TDRE, RDI CY Wakeup J cy Wakeup H cy Wakeup P	None None None Ot CRGINT.RTIE TIE.C0I TIE.C1I TIE.C2I TIE.C3I TIE.C4I TIE.C5I TIE.C6I TIE.C7I TSCR2.T0I RF SCI0CR2.TIE,RIE PIEJ.[7,6,1,0] PIEH.[7:0]	
sty suba subb subd swi tab tap tba tbeq tbl tbne tfr tpa trap trap trst tsta tstb tsx tsy txs tys	16-bit store memory from RegX 16-bit store memory from RegY 8-bit sub from RegA 8-bit sub from RegB 16-bit sub from RegD software interrupt, trap transfer A to B transfer A to CC transfer B to A test and branch if result=0 tbeq Y,loop 8-bit look up and interpolation test and branch if result≠0 tbne A,loop transfer register to register tfr X,Y transfer CC to A illegal instruction interrupt illegal op code, or software trap 8-bit compare memory with zero 8-bit compare RegA with zero 8-bit compare RegB with zero transfer S to X transfer S to Y transfer X to S transfer Y to S s Bit 7 6 5 5 4	\$FFFE Reserved States of the s	eset ap VI cal time interrup mer channel 0 mer channel 1 mer channel 3 mer channel 4 mer channel 5 mer channel 6 mer channel 7 mer overflow CIO TDRE, RDI CII TDRE, RDI CY Wakeup J EY Wakeup H EY Wakeup P ey Wakeup P	None None None Ot CRGINT.RTIE TIE.C0I TIE.C1I TIE.C2I TIE.C3I TIE.C4I TIE.C5I TIE.C6I TIE.C6I TIE.C7I TSCR2.TOI RF SCI0CR2.TIE,RIE PIEJ.[7,6,1,0] PIEH.[7:0] PIEP.[7:0]	

\$0044-5	Bit 15	14	13	12	11	10		Bit 0	TCNT
\$0046	TEN	TSWAI	TSFRZ	TFFCA	0	0	0	0	TSCR1
\$004C	C7I	C6I	C5I	C4I	C3I	C2I	C1I	COI	TIE
\$004D	TOI	0	PUPT	RDPT	TCRE	PR2	PR1	PR0	TSCR2
\$004E	C7F	C6F	C5F	C4F	C3F	C2F	C1F	C0F	TFLG1
\$004F	TOF	0	0	0	0	0	0	0	TFLG2
\$0050-1	Bit 15	14	13	12	11	10		Bit 0	TC0
\$0052-3	Bit 15	14	13	12	11	10		Bit 0	TC1
\$0054-5	Bit 15	14	13	12	11	10		Bit 0	TC2
\$0056-7	Bit 15	14	13	12	11	10		Bit 0	TC3
\$0058-9	Bit 15	14	13	12	11	10		Bit 0	TC4
\$005A-B	Bit 15	14	13	12	11	10		Bit 0	TC5
\$005C-D	Bit 15	14	13	12	11	10		Bit 0	TC6
\$005E-F	Bit 15	14	13	12	11	10		Bit 0	TC7
\$0082	ADPU	AFFC	ASWAI	ETRIGLE	ETRIGP	ETRIG	ASCIE	ASCIF	ATD0CTL2
\$0083	0	S8C	S4C	S2C	S1C	FIFO	FRZ1	FRZ0	ATD0CTL3
\$0084	SRES8	SMP1	SMP0	PRS4	PRS3	PRS2	PRS1	PRS0	ATD0CTL4
\$0085	DJM	DSGN	SCAN	MULT	0	CC	СВ	CA	ATD0CTL5
\$0086	SCF	0	ETORF	FIFOR	0	CC2	CC1	CC0	ATD0STAT0
\$008B	CCF7	CCF6	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0	ATD0STAT1
\$008D	Bit 7	6	5	4	3	2	1	Bit 0	ATD0DIEN
\$008F	PAD07	PAD06	PAD05	PAD04	PAD03	PAD02	PAD01	PAD00	PORTAD0
\$0090-1	Bit 15	14	13	12	11	10		Bit 0	ATD0DR0
\$0092-3	Bit 15	14	13	12	11	10		Bit 0	ATD0DR1
\$0094-5	Bit 15	14	13	12	11	10		Bit 0	ATD0DR2
\$0096-7	Bit 15	14	13	12	11	10		Bit 0	ATD0DR3
\$0098-9	Bit 15	14	13	12	11	10		Bit 0	ATD0DR4
\$009A-B	Bit 15	14	13	12	11	10		Bit 0	ATD0DR5
\$009C-D	Bit 15	14	13	12	11	10		Bit 0	ATD0DR6
\$009E-F	Bit 15	14	13	12	11	10		Bit 0	ATD0DR7
\$00C9	0	0	0	SBR12	SBR11	SBR10		SBR0	SCI0BD
\$00CA	LOOPS	SCISWAI	RSRC	M	WAKE	ILT	PE	PT	SCI0CR1
\$00CB	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK	SCI0CR2
\$00CC	TDRE	TC	RDRF	IDLE	OR	NF	FE	PF	SCI0SR1
\$00CD	0	0	0	0	0	BRK13	TXDIR	RAF	SCI0SR2
\$00CF	R7/T7	R6/T6	R5/T5	R4/T4	R3/T3	R2/T2	R1/T1	R0/T0	SCI0DRL
\$00D0-1	0	0	0	SBR12	SBR11	SBR10		SBR0	SCI1BD
\$00D2	LOOPS	SCISWAI	RSRC	M	WAKE	ILT	PE	PT	SCI1CR1
\$00D3	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK	SCI1CR2
\$00D4	TDRE	TC	RDRF	IDLE	OR	NF	FE	PF	SCI1SR1
\$00D5	0	0	0	0	0	BRK13	TXDIR	RAF	SCI1SR2
\$00D7	R7/T7	R6/T6	R5/T5	R4/T4	R3/T3	R2/T2	R1/T1	R0/T0	SCI1DRL
\$0240	PT7	PT6	PT5	PT4	PT3	PT2	PT1	PT0	PTT
\$0242	DDRT7	DDRT6	DDRT5	DDRT4	DDRT3	DDRT2	DDRT1	DDRT0	DDRT
\$0248	PS7	PS6	PS5	PS4	PS3	PS2	PS1	PS0	PTS
\$024A	DDRS7	DDRS6	DDRS5	DDRS4	DDRS3	DDRS2	DDRS1	DDRS0	DDRS
\$0250	PM7	PM6	PM5	PM4	PM3	PM2	PM1	PM0	PTM
\$0252	DDRM7	DDRM6	DDRM5	DDRM4	DDRM3	DDRM2	DDRM1	DDRM0	DDRM
\$0258	PP7	PP6	PP5	PP4	PP3	PP2	PP1	PP0	PTP
\$025A	DDRP7	DDRP6	DDRP5	DDRP4	DDRP3	DDRP2	DDRP1	DDRP0	DDRP
\$0260	PH7	PH6	PH5	PH4	PH3	PH2	PH1	PH0	PTH
\$0262	DDRH7	DDRH6	DDRH5	DDRH4	DDRH3	DDRH2	DDRH1	DDRH0	DDRH
\$0268	PJ7	PJ6	0	0	0	0	PJ1	PJ0	PTJ
\$026A	DDRJ7	DDRJ6	0	0	0	0	DDRJ1	DDRJ0	DDRJ
maan1 is	the Court O le		1						_

TSCR1 is the first 8-bit timer control register

bit 7 TEN, 1 allows the timer to function normally, 0 means disable timer including TCNT

TSCR2 is the second 8-bit timer control register

bits 2,1,0 are PR2, PR1, PR0, which select the rate, let $\bf n$ be the 3-bit number formed by PR2, PR1, PR0 without PLL **TCNT** is $8 \rm MHz/2^n$, with PLL **TCNT** is $24 \rm MHz/2^n$, $\bf n$ ranges from 0 to 7

TIOS is the 8-bit output compare select register, one bit for each channel (1 = output compare, 0 = input capture)

TIE is the 8-bit output compare arm register, one bit for each channel (1 = armed, 0 = disarmed)

SCIxBD is 16-bit SCI baud rate register, let $\bf n$ be the 16-bit number Baud rate is 250 kHz/ $\bf n$

SCIxCR2 is 8-bit SCI control register

bit 7 TIE, Transmit Interrupt Enable, 0 = TDRE interrupts disabled, 1 = interrupt whenever TDRE set

bit 5 RIE, Receiver Interrupt Enable, 0 = RDRF interrupts disabled, 1 = interrupt whenever RDRF set

bit 3 TE, Transmitter Enable, 0 = Transmitter disabled, 1 = SCI transmit logic is enabled

bit 2 RE, Receiver Enable, 0 = Receiver disabled, 1 = Enables the SCI receive circuitry.

SCIXSR1 is 8-bit SCI status register

bit 7 TDRE, Transmit Data Register Empty Flag

Set if transmit data can be written to SCDR

Cleared by SCIXSR1 read with TDRE set followed by SCIXDRL write.

bit 5 RDRF, Receive Data Register Full

set if a received character is ready to be read from SCIXDRL

Clear the RDRF flag by reading SCIXSR1 with RDRF set and then reading SCIXDRL.

LDAA

Load Accumulator A

LDAA

Description: Loads the content of memory location M into accumulator A. The

condition codes are set according to the data.

CCR Details:

	s	Х	Н	I	N	Z	٧	С	
ĺ	-	-	-	-	Δ	Δ	0	-	l

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is \$00; cleared otherwise

V: 0: cleared

Source Form	Address Mode	Object Code
LDAA #opr8i	IMM	86 ii
LDAA opr8a	DIR	96 dd
LDAA opr16a	EXT	B6 hh 11
LDAA oprx0_xysp	IDX	A6 xb
LDAA oprx9,xysp	IDX1	A6 xb ff
LDAA oprx16,xysp	IDX2	A6 xb ee ff
LDAA [D,xysp]	[D,IDX]	A6 xb
LDAA [oprx16,xysp]	[IDX2]	A6 xb ee ff

EMUL

Extended Multiply 16-Bit by 16-Bit (Unsigned)

Operation: $(D) \times (Y) \Rightarrow Y : D$

Source Form	Address Mode	Object Code
EMUL	INH	13

EDIV

Extended Divide 32-Bit by 16-Bit (Unsigned)

Operation: $(Y : D) \div (X) \Rightarrow Y$; Remainder $\Rightarrow D$

Source Form	Address Mode	Object Code
EDIV	INH	11

BSR

Branch to Subroutine

Operation: $(SP) - \$0002 \Rightarrow SP$

 $RTN_H : RTN_L \Rightarrow M_{(SP)} : M_{(SP+1)}$

(PC) + Rel ⇒ PC

Source Form	Address Mode	Object Code
BSR rel8	REL	07 rr

RTS

Return from Subroutine

Operation: $(M_{(SP)}: M_{(SP+1)}) \Rightarrow PC_H: PC_L; (SP) + \$0002 \Rightarrow SP$

Source Form	Address Mode	Object Code
RTS	INH	3D

Jonathan W. Valvano

December 12, 2008