EE319K Fall 2009 Final Exam Version A Page 1 of 12

First: Last:
This is a closed book exam. You must put your answers in the space provided. You have 3
hours, so allocate your time accordingly. Please read the entire exam before starting.

Please read and affirm our honor code:

“The core values of The University of Texas at Austin are learning, discovery, freedom, leadership,
individual opportunity, and responsibility. Each member of the university is expected to uphold these
values through integrity, honesty, trust, fairness, and respect toward peers and community.”

(4) Question 1. You are working for an engineering firm and have been given the task to design a new
DAC. After completing the design and construction of an initial prototype, you now have to test it. List
four experimental parameters you will measure to evaluate the quality of your new DAC. These
parameters will be measurable with test equipment, like you used in lab or like the professor/TAs
demonstrated to you in this class. For each parameter, give both the name of the parameter and the
definition of the parameter. You do not need to give the experimental procedure, rather simply list four
names and four definitions of the parameters. I do not mean physical parameters like size, weight, or
color. Furthermore, I do not mean economic factors like production costs, profit, mean time between
failures, or maintenance costs.

Part a) Give a parameter and its definition

Part b) Give a parameter and its definition

Part ¢) Give a parameter and its definition

Part d) Give a parameter and its definition

Jonathan Valvano December 15, 2009

EE319K Fall 2009 Final Exam Version A Page 2 of 12

(6) Question 2. What is the voltage V?
+5

%201@
\%

10 kQ 10 kQ

(10) Question 3. Write a C function to sample ADC channels 3 and 4 of the 9S12DP512. Assume the
ADC initialized for a 10-bit sample, sequence length is 2, and the ADC clock is 1 MHz. Implement
right-justified conversions, and return by value the larger of the two ADC samples.

Jonathan Valvano December 15, 2009

EE319K Fall 2009 Final Exam Version A Page 3 of 12

(15) Question 4. Write three C functions that operate the SCIO module.
(5) Part a) Write an initialization function that turns on both the transmitter and receiver for the SCIO.
Set the baud rate equal to 38400 bits/sec. You may assume the E clock is 8§ MHz.

(5) Part b) Write a C function that outputs one ASCII character to SCI0 using busy-wait
synchronization and call by value parameter passing.

(5) Part ¢) Write a C function that outputs an ASCII string to the SCI0O. You may assume the variable
length string is null-terminated. Use call by reference parameter passing.

Jonathan Valvano December 15, 2009

EE319K Fall 2009 Final Exam Version A Page 4 of 12

(5) Question 5. Write assembly code that implements the unsigned operation RegD = 0.3456*RegX,
eliminating overflow and minimizing dropout errors.

(5) Question 6. Consider the result of executing the following two 9S12 assembly instructions.
ldaa #156
suba #-50
What will be the value of the carry (C) bit?

What will be the value of the overflow (V) bit?

(5) Question 7. Give the simplified memory cycles produced when the following one instruction is
executed. Assume the PC contains $4200, and the SP equals $3FF2. Just show R/W=Read or Write,
Address, and Data for each cycle. You may not need all 5 entries in the solution box.

$4200 070E bsr $4210

R/W Addr Data

Jonathan Valvano December 15, 2009

EE319K Fall 2009 Final Exam Version A Page 5 of 12

(5) Question 8. Consider a serial port operating with a baud rate of 10,000 bits per second. Draw the
waveform occurring at the PS1 output (voltage levels are +5 and 0) when the ASCII ‘a’ ($61) is
transmitted on SCIO. The protocol is 1 start, 8 data and 1 stop bit. SCIO is initially idle, and the
software writes the $61 to SCIODRL at time=0. Show the PS1 line before and after the frame,
assuming the channel is idle before and after the frame.

PS1

t -1 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 us

(5) Question 9. For each application choose the data structure that best matches. Choose answers from
the word bank.

Word bank: first in first out queue, buffer, last in first out stack, linked list, table

Application Data structure

A data structure used to implement buffered
/0.

A data structure used to store calibration data

A data structure used to implement a local
variables

A data structure used to implement a
debugging dump

A data structure used to implement a Mealy
machine

(20) Question 10. Write assembly code to implement the
following FSM using output compare interrupts. After
initialization, the entire FSM will run within the output
compare 0 ISR. The command sequence will be output, wait
Ims, input, then branch to next state. There can be NO
backward jumps or conditional branches within the ISR. The 2-
bit input is on Port H (PH1 and PHO) and the 3-bit output is on
Port T (PT2, PT1, PTO). Assume the E clock is 8 MHz. You
may use a 16-bit pointer named Pt, located in RAM.

Jonathan Valvano December 15, 2009

EE319K Fall 2009 Final Exam Version A Page 6 of 12

(5) Part a) Show the assembly code defining the FSM graph in ROM.

(7) Part b) Show the assembly subroutine to initialize the FSM controller, arm OCO0, and enable
interrupts. Please initialize the state pointer Pt and perform the first output.

(8) Part ¢) Show the assembly language for the output compare 0 ISR that runs the FSM including
interrupt vector.

Jonathan Valvano December 15, 2009

EE319K Fall 2009

Final Exam Version A

Page 7 of 12

(10) Question 11. In this question, you will translate the C code line by line into 9S12 assembly. The
assembly code for the global variables and main are given. The two parameters are passed into Add
using call by reference, and both MUST be pushed on the stack. You must use SP-relative binding for
the p1 and p2 parameters within the Add function.

short D1; org $0800
short D2; D1 rmb 2
void main(void){ D2 rmb 2
D1 = -1000; org $4000
D2 = +500; main Ids #$4000
for(;;){ movw #-1000,D1
Run(Q); movw #500,D2
} loop bsr Run
} bra loop
void Run(void){
Add(&D1,é&D2);
}
void Add(short *pl, pl set ;SP relative binding
short *p2){
p2 set ;SP relative binding

Add

*p2 = *p2 + *pl;

Jonathan Valvano

December 15, 2009

EE319K Fall 2009 Final Exam Version A Page 8 of 12

(10) Question 12. For each definition, fill in the term that best matches. Choose answers from the
word bank. Some words will not be used.

Word bank: accuracy, arm, baud rate, acknowledge , bandwidth, big endian, ceiling, disarm,
drop out, enable, friendly, intrusive, little endian, nonintrusive, noninvasive, nonvolatile,
open collector, overflow, real-time, resolution, stabilization, thread, tristate, volatile

Definition Term
Activate an individual trigger so that
interrupts are requested when that trigger flag
is set.

The information transfer rate, the amount of
real data transferred per second.

A measure of how close our instrument
measures the desired parameter referred to the
NIST.

A debugging process that fixes all the inputs
to a system

Mechanism for storing multiple byte numbers
such that the most significant byte exists first

Establishing an upper bound on the result of
an operation.

Clearing the interrupt trigger flag that
requested the interrupt.

An error that occurs after a right shift or a
divide, loosing its ability to represent all of the
values.

A characteristic when the presence of the
collection of information itself does not affect
the parameters being measured.

A digital logic output that has two states low
and HiZ.

Jonathan Valvano December 15, 2009

EE319K Fall 2009 Final Exam Version A

aba 8-bitadd RegA=RegA+RegB

abx unsigned add RegX=RegX+RegB

aby unsigned add RegY=RegY+RegB

adca 8-bit add with carry to RegA

adcb 8-bit add with carry to RegB

adda 8-bit add to RegA

addb 8-bit add to RegB

addd 16-bit add to RegD

anda 8-bit logical and to RegA

andb 8-bit logical and to RegB

andcc 8-bit logical and to RegCC

asl/Isl 8-bit left shift Memory

asla/lIsla 8-bit left shift RegA

aslb/Islb 8-bit arith left shift RegB
asld/Isld 16-bit left shift RegD

asr 8-bit arith right shift Memory

asra 8-bit arith right shift to RegA

asrb 8-bit arith right shift to RegB

bcc branch if carry clear

bclr bit clear in memory bclr PTT,#3$01
bcs branch if carry set

beq branch if result is zero (Z=1)

bge branch if signed >

bgnd enter background debug mode

bgt branch if signed >

bhi branch if unsigned >

bhs branch if unsigned >

bita 8-bitand with RegA, sets CCR

bitb 8-bit and with RegB, sets CCR

ble branch if signed <

blo branch if unsigned <

bls branch if unsigned <

blt branch if signed <

bmi branch if result is negative (N=1)

bne branch if result is nonzero (Z=0)

bpl branch if result is positive (N=0)

bra branch always

brclr branch if bits are clear brclr PTT,#$01, loop
brn branch never

brset branch if bits are set brset PTT,#$01, loop
bset bit set in memory bset PTT,#$04
bsr branch to subroutine

bvc branch if overflow clear

bvs branch if overflow set

call subroutine in expanded memory

cba 8-bit compare RegA with RegB, RegA-RegB
clc clear carry bit, C=0

cli clear [=0, enable interrupts

clr 8-bit memory clear

clra RegA clear

clrb RegB clear

clv clear overflow bit, V=0

cmpa 8-bit compare RegA with memory

cmpb 8-bit compare RegB with memory

com 8-bit logical complement to memory

coma 8-bit logical complement to RegA

comb 8-bit logical complement to RegB

cpd 16-bit compare RegD with memory

cpx 16-bit compare RegX with memory

cpy 16-bit compare RegY with memory

daa 8-bit decimal adjust accumulator

dbeq decrement and branch if result=0 dbeq Y, loop
dbne decrement and branch if result20 dbne A, loop
dec 8-bit decrement memory

deca 8-bit decrement RegA

decb 8-bit decrement RegB

Jonathan Valvano

des
dex
dey
ediv
edivs
emacs
emaxd
emaxm
emind
eminm
emul
emuls
eora
eorb
etbl
exg
fdiv
ibeq
ibne
idiv
idivs
inc
inca
incb
ins
inx
iny
imp
jsr
Ibcc
Ibcs
Ibeq
Ibge
Ibgt
1bhi
Ibhs
Ible
Iblo
Ibls
Iblt
1bmi
Ibne
1bpl
Ibra
Ibrn
Ibvc
Ibvs
ldaa
Idab
1dd
Ids
1dx
1dy
leas
leax
leay
Isr
Isra
Isrb
Isrd
maxa
maxm
mem
mina
minm
movb

Page 9 of 12

16-bit decrement RegSP

16-bit decrement RegX

16-bit decrement RegY

RegY=(Y:D)/RegX, unsigned divide
RegY=(Y:D)/RegX, signed divide

16 by 16 signed multiply, 32-bit add

16-bit unsigned maximum in RegD

16-bit unsigned maximum in memory

16-bit unsigned minimum in RegD

16-bit unsigned minimum in memory
RegY:D=RegY*RegD unsigned multiply
RegY:D=RegY *RegD signed multiply

8-bit logical exclusive or to RegA

8-bit logical exclusive or to RegB

16-bit look up and interpolation

exchange register contents exg X,Y
unsigned fract div, X=(65536*D)/X
increment and branch if result=0 ibeq Y, loop
increment and branch if result#0 ibne A, loop
16-bit unsigned div, X=D/X, D=remainder
16-bit signed divide, X=D/X, D= remainder
8-bit increment memory

8-bit increment RegA

8-bit increment RegB

16-bit increment RegSP

16-bit increment RegX

16-bit increment RegY

jump always

jump to subroutine

long branch if carry clear

long branch if carry set

long branch if result is zero

long branch if signed >

long branch if signed >

long branch if unsigned >

long branch if unsigned >

long branch if signed <

long branch if unsigned <

long branch if unsigned <

long branch if signed <

long branch if result is negative

long branch if result is nonzero

long branch if result is positive

long branch always

long branch never

long branch if overflow clear

long branch if overflow set

8-bit load memory into RegA

8-bit load memory into RegB

16-bit load memory into RegD

16-bit load memory into RegSP

16-bit load memory into RegX

16-bit load memory into RegY

16-bit load effective addrto SP leas 2,sp
16-bit load effective addrto X leax 2,X
16-bit load effectiveaddrtoY leay 2,y
8-bit logical right shift memory

8-bit logical right shift RegA

8-bit logical right shift RegB

16-bit logical right shift RegD

8-bit unsigned maximum in RegA

8-bit unsigned maximum in memory
determine the Fuzzy logic membership grade
8-bit unsigned minimum in RegA

8-bit unsigned minimum in memory

8-bit move memory to memory ~movb #100,PTT

December 15, 2009

EE319K Fall 2009

movw
mul
neg
nega
negb
oraa
orab
orcc
psha
pshb
pshc
pshd
pshx
pshy
pula
pulb
pulc
puld
pulx
puly
rev
revw
rol
rola
rolb
ror
rora
rorb
rtc
rti
rts
sba
sbca
sbcb
sec
sei
sev
sex
staa
stab
std
sts
stx
sty
suba
subb
subd
swi
tab
tap
tha
tbeq
tbl
tbne
tfr
tpa
trap
trap
tst
tsta
tstb
tsx
tsy
txs
tys
wai
wav

16-bit move memory to memory movw #13,SCIBD
unsigned RegD=RegA*RegB

8-bit 2's complement negate memory

8-bit 2's complement negate RegA

8-bit 2's complement negate RegB

8-bit logical or to RegA

8-bit logical or to RegB

8-bit logical or to RegCC

push 8-bit RegA onto stack

push 8-bit RegB onto stack

push 8-bit RegCC onto stack

push 16-bit RegD onto stack

push 16-bit RegX onto stack

push 16-bit RegY onto stack

pop 8 bits off stack into RegA

pop 8 bits off stack into RegB

pop 8 bits off stack into RegCC

pop 16 bits off stack into RegD

pop 16 bits off stack into RegX

pop 16 bits off stack into RegY

Fuzzy logic rule evaluation

weighted Fuzzy rule evaluation

8-bit roll shift left Memory

8-bit roll shift left RegA

8-bit roll shift left RegB

8-bit roll shift right Memory

8-bit roll shift right RegA

8-bit roll shift right RegB

return sub in expanded memory

return from interrupt

return from subroutine

8-bit subtract RegA=RegA-RegB

8-bit sub with carry from RegA
8-bit sub with carry from RegB
set carry bit, C=1

set I=1, disable interrupts

set overflow bit, V=1

sign extend 8-bit to 16-bit reg
8-bit store memory from RegA
8-bit store memory from RegB
16-bit store memory from RegD
16-bit store memory from SP
16-bit store memory from RegX
16-bit store memory from RegY
8-bit sub from RegA

8-bit sub from RegB

16-bit sub from RegD

software interrupt, trap

transfer A to B

transfer A to CC

transfer B to A

test and branch if result=0

8-bit look up and interpolation
test and branch if result#0
transfer register to register
transfer CC to A

illegal instruction interrupt
illegal op code, or software trap
8-bit compare memory with zero
8-bit compare RegA with zero
8-bit compare RegB with zero
transfer S to X

transfer Sto Y

transfer X to S

transfer Y to S

wait for interrupt

weighted Fuzzy logic average

sex B,D

tbeq Y, loop

tbne A, loop
tfr X,Y

Jonathan Valvano

Final Exam Version A

xgdx

Page 10 of 12

exchange RegD with RegX

xgdy exchange RegD with RegY

Example Mode Effective Address
ldaa #u immediate No EA

Idaa u direct EA is 8-bit address
Idaa U extended EA is a 16-bit address
Idaa m,r 5-bitindex | EA=r+m (-16 to 15)
ldaa v,+r | pre-incr r=r+v, EA=r (1to08)
ldaa v,-r | pre-dec r=r-v, EA=r (1t08)
Idaa v,r+ | post-inc EA=r, r=r+v (1to0 §)
ldaa v,r- | post-dec EA=r, r=r-v (I to 8)
ldaa A,r Reg A offset | EA=r+A, zero padded
Idaa B,r Reg B offset | EA=r+B, zero padded
Idaa D,r | RegD offset | EA=r+D

ldaa q,r 9-bit index | EA=r+q

Idaa W,r 16-bit index | EA=r+W

Idaa [D,r] | Dindirect | EA={r+D}

Idaa [W,r] | indirect EA={r+W}

Freescale 6812 addressing modes r is X, Y, SP, or PC

Pseudo op

org

= equ set
dc.b db fcb .byte Allocate byte(s) with values

fcc

Meaning
Where to put subsequent code
Define a constant symbol

Create an ASCII string

dc.w dw fdb .word Allocate word(s) with values

dc.1

ds ds.b
ds.w .blkw

dl _.long
rmb _blkb Allocate bytes without init

Allocate 32-bit with values

Allocate word(s) without init

n is Metrowerks number

Vector
$FFFE
$FFF8
$FFF6
$FFFO
$FFEE
$FFEC
$FFEA
$FFES8
$FFE6
$FFE4
$FFE2
$FFEO
$FFDE
$FFD6
$FFD4
$FFCE
$FFCC
$FFS8E

n

[BN

9

10
11
12
13
14
15
16
20
21
24
25
56

Interrupt Source Arm

Reset None

Trap None

SWi None

Real time interrupt CRGINT.RTIE
Timer channel 0 TIE.COI

Timer channel 1 TIE.C1I

Timer channel 2 TIE.C2I

Timer channel 3 TIE.C3I

Timer channel 4 TIE.C41

Timer channel 5 TIE.C5I

Timer channel 6 TIE.C6I

Timer channel 7 TIE.C71

Timer overflow TSCR2.TOI

SCI0 TDRE, RDRF SCIOCR2.TIE,RIE
SCI1 TDRE, RDRF SCI1CR2.TIE,RIE
Key Wakeup J PIEJ.[7,6,1,0]

Key Wakeup H PIEH.[7:0]

Key Wakeup P PIEP.[7:0]

Interrupt Vectors and interrupt number.

December 15, 2009

EE319K Fall 2009

Address
$0040
$0044-5
$0046
$004C
$004D
$004E
$004F
$0050-1
$0052-3
$0054-5
$0056-7
$0058-9
$005A-B
$005C-D
$005E-F
$0082
$0083
$0084
$0085
$0086
$008B
$008D
$008F
$0090-1
$0092-3
$0094-5
$0096-7
$0098-9
$009A-B
$009C-D
$009E-F
$00C9
$00CA
$00CB
$00CC
$00CD
$00CF
$00DO-1
$00D2
$00D3
$00D4
$00D5
$00D7
$0240
$0242
$0248
$024A
$0250
$0252
$0258
$025A
$0260
$0262
$0268
$026A

TSCRL1 is the first 8-bit timer control register
bit 7 TEN, 1 allows the timer to function normally, 0 means disable timer including TCNT

Final Exam Version A

Page 11 of 12

Bit7 6 5 4 3 2 1 Bit 0
1087 1056 1085 1054 1083 1082 10S1 1080
Bit 15 14 13 12 11 10 Bit 0
TEN TSWAI TSFRZ TFFCA 0 0 0 0
C71 Col Csl C4l C3I C21 ClI Co1
TOI 0 PUPT RDPT TCRE PR2 PR1 PRO
C7F C6F CSF C4F C3F C2F CIF COF
TOF 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 Bit 0
Bit 15 14 13 12 11 10 Bit 0
Bit 15 14 13 12 11 10 Bit 0
Bit 15 14 13 12 11 10 Bit 0
Bit 15 14 13 12 11 10 Bit 0
Bit 15 14 13 12 11 10 Bit 0
Bit 15 14 13 12 11 10 Bit 0
Bit 15 14 13 12 11 10 Bit 0
ADPU AFFC ASWAI ETRIGLE ETRIGP ETRIG ASCIE ASCIF
0 S8C S4C S2C S1C FIFO FRZ1 FRZ0
SRESS SMP1 SMPO PRS4 PRS3 PRS2 PRS1 PRSO
DIM DSGN SCAN MULT 0 CcC CB CA
SCF 0 ETORF FIFOR 0 CC2 CCl1 CCo
CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCFO0
Bit 7 6 5 4 3 2 1 Bit 0
PADO7 PADO06 PADOS PADO4 PADO3 PADO02 PADO1 PADOO
Bit 15 14 13 12 11 10 Bit 0
Bit 15 14 13 12 11 10 Bit 0
Bit 15 14 13 12 11 10 Bit 0
Bit 15 14 13 12 11 10 Bit 0
Bit 15 14 13 12 11 10 Bit 0
Bit 15 14 13 12 11 10 Bit 0
Bit 15 14 13 12 11 10 Bit 0
Bit 15 14 13 12 11 10 Bit 0
0 0 0 SBR12 SBR11 SBR10 SBRO
LOOPS SCISWAI RSRC M WAKE ILT PE PT
TIE TCIE RIE ILIE TE RE RWU SBK
TDRE TC RDRF IDLE OR NF FE PF
0 0 0 0 0 BRK13 TXDIR RAF
R7/T7 R6/T6 RS5/TS R4/T4 R3/T3 R2/T2 R1/T1 RO/TO
0 0 0 SBR12 SBR11 SBR10 SBRO
LOOPS SCISWAI RSRC M WAKE ILT PE PT
TIE TCIE RIE ILIE TE RE RWU SBK
TDRE TC RDRF IDLE OR NF FE PF
0 0 0 0 0 BRK13 TXDIR RAF
R7/T7 R6/T6 RS/TS R4/T4 R3/T3 R2/T2 RI1/T1 RO/TO
PT7 PT6 PT5 PT4 PT3 PT2 PT1 PTO
DDRT7 DDRT6 DDRTS DDRT4 DDRT3 DDRT2 DDRTI1 DDRTO
PS7 PS6 PS5 PS4 PS3 PS2 PS1 PSO
DDRS7 DDRS6 DDRSS5 DDRS4 DDRS3 DDRS2 DDRS1 DDRS0
PM7 PM6 PM5 PM4 PM3 PM2 PM1 PMO
DDRM?7 DDRM6 DDRMS5 DDRM4 DDRM3 DDRM2 DDRM1 DDRMO
PP7 PP6 PP5 PP4 PP3 PP2 PP1 PPO
DDRP7 DDRP6 DDRPS5 DDRP4 DDRP3 DDRP2 DDRP1 DDRPO
PH7 PH6 PHS PH4 PH3 PH2 PH1 PHO
DDRH7 DDRH6 DDRHS5 DDRH4 DDRH3 DDRH2 DDRHI DDRHO
PJ7 PJ6 0 0 0 0 PJ1 PJO
DDRJ7 DDRJ6 0 0 0 0 DDRIJ1 DDRJO

Name

TIOS
TCNT
TSCR1

TIE

TSCR2
TFLG1
TFLG2
TCO

TC1

TC2

TC3

TC4

TCS

TC6

TC7
ATDOCTL2
ATDOCTL3
ATDOCTL4
ATDOCTLS
ATDOSTATO
ATDOSTATI
ATDODIEN
PORTADO
ATDODRO
ATDODRI1
ATDODR2
ATDODR3
ATDODR4
ATDODRS
ATDODR6
ATDODR7
SCIOBD
SCIOCR1
SCIOCR2
SCIOSR1
SCIOSR2
SCIODRL
SCI1BD
SCIICR1
SCI1ICR2
SCI1SR1
SCI1SR2
SCI1DRL
PTT

DDRT

PTS

DDRS

PTM
DDRM

PTP

DDRP

PTH
DDRH

PTJ

DDRIJ

TI0S is the 8-bit output compare select register, one bit for each channel (1 = output compare, 0 = input capture)
TIE is the 8-bit output compare arm register, one bit for each channel (1 = armed, 0 = disarmed)

Jonathan Valvano

December 15, 2009

EE319K Fall 2009 Final Exam Page 12 of 12

TSCR2 is the second 8-bit timer control register
bits 2,1,0 are PR2, PR1, PRO, which select the rate, let n be the 3-bit number formed by PR2, PR1, PRO

without PLL TCNT is 8MHZ/2n, with PLL TCNT is 24MHZ/2n, n ranges from 0 to 7

E =8 MHz E =24 MHz

Divide | TCNT TCNT TCNT TCNT
PR2 PR1 PRO by period frequency | period frequency
0 0 0 1 125 ns 8 MHz 41.7 ns 24 MHz
0 0 1 2 250 ns 4 MHz 83.3 ns 12 MHz
0 1 0 4 500 ns 2 MHz 167 ns 6 MHz
0 1 1 8 1 us 1 MHz 333 ns 3 MHz
1 0 0 16 2 us 500 kHz 667 ns 1.5 MHz
1 0 1 32 4 ps 250 kHz 1.33 ps 667 kHz
1 1 0 64 8 us 125 kHz 2.67 us 333 kHz
1 1 1 128 16 us 62.5 kHz 5.33 us 167 kHz

SCI0DRL 8-bit SCIO data register
SCI10BD is 16-bit SCIO baud rate register, let n be the 13-bit number Baud rate is EClk/n/16
SCIO0OCR1 is 8-bit SCIO control register
bit 4 M, Mode, 0 = One start, eight data, one stop bit, 1 = One start, eight data, ninth data, one stop bit
SCI0CR2 is 8-bit SCIO control register
bit 7 TIE, Transmit Interrupt Enable, 0 = TDRE interrupts disabled, 1 = interrupt whenever TDRE set
bit 5 RIE, Receiver Interrupt Enable, 0 = RDRF interrupts disabled, 1 = interrupt whenever RDRF set
bit 3 TE, Transmitter Enable, 0 = Transmitter disabled, 1 = SCI transmit logic is enabled
bit 2 RE, Receiver Enable, 0 = Receiver disabled, 1 = Enables the SCI receive circuitry.
SCIO0SR1 is 8-bit SCIO status register
bit 7 TDRE, Transmit Data Register Empty Flag
Set if transmit data can be written to SCIODRL
Cleared by SCIOSR1 read with TDRE set followed by SCIODRL write
bit 5 RDRF, Receive Data Register Full
set if a received character is ready to be read from SC10DRL
Clear the RDRF flag by reading SCIOSR1 with RDRF set and then reading SC10DRL

Extended Multiply Address .
E M U L 16-Bit by 16-Bit (Unsigned) Source Form Mode Object Code
Operation: (D)x(Y)=Y:D EMUL INH 13
Extended Divide 32-Bit by 16-Bit Address .
E D IV (Unsigned) Source Form Mode Object Code
Operation: (Y : D) + (X) = Y: Remainder = D EDIV INH 11

B S R Branch to Subroutine

Source Form Aai:njeess Object Code

Operation: (SP)-$0002 = SP

RTNH : RTNL = M[SP) : M(SP+1'J .

(PC) + Rel = PC ! BSR rels REL 07 rr

RTS Return from Subroutine Address i
Source Form Object Code
Mode

Operation: (M{SP): M(SPH)) = PCy: PCy; (SP) + 30002 = SP RTS INH 3aD

Jonathan Valvano December 15, 2009

