(4) **Question 1.** List four experimental parameters to evaluate the quality of your new DAC.

1) The DAC **range** is the maximum and minimum DAC output.
2) The DAC **resolution** is the smallest distinguishable change in output. The most dominate factor affecting resolution is **noise**.
3) The DAC **precision** is the number of different output values it can generate. Since, resolution is dominated by noise, and range is another term for signal, precision is very similar to **signal to noise ratio**.
4) The DAC **accuracy** is (Actual - Ideal) / Ideal where Ideal is the desired output.
5) A DAC is **monotonic** if an increase in digital value always causes an increase in analog value.
6) The **speed** of a DAC is how fast the output changes after the input changes. Similarly, the **bandwidth** of a DAC is the fastest sine wave that can be created.

(6) **Question 2.** 10kΩ in parallel with 10kΩ is 5kΩ. V = 5V*(5kΩ/25kΩ) = 1V

(10) **Question 3.** Write a C function to sample ADC channels 3 and 4 of the 9S12DP512.

```c
unsigned short ADC_In34(void){
    ATD0CTL5 = 0x93; // start at Channel 3 and do multiple channels
    while((ATD0STAT0&0x80)==0){}; // wait for SCF
    if(ATD0DR0>ATD0DR1) return ATD0DR0;
    return ATD0DR1;
}
```

(15) **Question 4.** Write three C functions that operate the SCI0 module.

(5) **Part a**) Write an initialization function that turns on SCI0 with a baud rate of 38400 bits/sec.

```c
#define E 8000000
#define BAUD 38400
void SCI0_Init(void){
    SCI0BD = E/16/BAUD; // 500,000/38,400 = 13
    SCI0CR1 = 0; // 8-bit
    SCI0CR2 = 0x0C; // enable
}
```

(5) **Part b**) Write a C function that outputs one ASCII character.

```c
#define TDRE 0x80
void SCI0_OutChar(char data){
    while((SCI0SR1&TDRE) == 0){}; // TDRE
    SCI0DRL = data;
}
```

(5) **Part c**) Write a C function that outputs an ASCII string to the SCI0.

```c
void SCI0_OutString(char *pt){
    while(*pt){ // stop if data is zero
        SCI0_OutChar(*pt);
        pt++;
    }
```
(5) Question 5. Write assembly code that implements RegD = 0.3456 * RegX.

```
tfr X,Y    ; input in X
ldd #3456
emul
ldx #10000
div

ediv       ; result in D
```

(5) Question 6. Consider the result of executing the following two 9S12 assembly instructions. First convert to unsigned. -50 is equivalent to -50 + 256 = 206. 156 - 206 = -50 does not fit, so C = 1

First convert to signed. 156 is equivalent to 156 - 256 = -100. -100 - -50 = -50 fits, so V = 0.

(5) Question 7. Give the simplified memory cycles produced

<table>
<thead>
<tr>
<th>R/W</th>
<th>Addr</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>$4200</td>
<td>$07</td>
</tr>
<tr>
<td>R</td>
<td>$4201</td>
<td>$0E</td>
</tr>
<tr>
<td>W</td>
<td>$3FF0</td>
<td>$42</td>
</tr>
<tr>
<td>W</td>
<td>$3FF1</td>
<td>$02</td>
</tr>
</tbody>
</table>

(5) Question 8. Start bit, bit 0, bit 1, bit 2, bit 3, bit 4, bit 5, bit 6, bit 7, stop bit

```
s 0 1 2 3 4 5 6 7 s
```

(5) Question 9. For each application choose the data structure that best matches.

<table>
<thead>
<tr>
<th>Application</th>
<th>Data structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>A data structure used to implement buffered I/O.</td>
<td>fifo</td>
</tr>
<tr>
<td>A data structure used to store calibration data</td>
<td>table</td>
</tr>
<tr>
<td>A data structure used to implement a local variables</td>
<td>stack</td>
</tr>
<tr>
<td>A data structure used to implement a debugging dump</td>
<td>buffer</td>
</tr>
<tr>
<td>A data structure used to implement a Mealy machine</td>
<td>linked list</td>
</tr>
</tbody>
</table>

(20) Question 10. Write assembly code to implement the following FSM.

(5) Part a) Show the assembly code defining the FSM graph in ROM.

```
org  $0800
Pt   rmb  2              ; pointer to current state
org  $4000          ; Put linked list in ROM
Stop fcb  7              ; Output
fdb  Stop,Go,Go,Go  ; Next
Go    fcb  3
fdb  Stop,Go,Go,Turn
Turn fcb  5
fdb  Stop,Go,Stop,Go
```

(7) Part b) Show the assembly subroutine to initialize the FSM controller

```
Init bset DDRT,#$07    ; PT2-0 are outputs
bclr  DDRH,#$03    ; PH0,PH1 are inputs
ldy  #Stop           ; Pt is the State pointer
ldab 0,y          ; RegB is output value for this state
stab PTT           ; Perform the first output to PTT
movb #$80,TSCR1   ; enable TCNT
movb #$03,TSCR2   ; TCNT is 1 MHz
bset TIOS,#$01    ; output compare 0
```
bset TIE,#$01 ; arm output compare 0
ldd TCNT
add #1000 ; first output occurs for 1ms
std TC0
cli ; enable all interrupts
rts

(8) Part c) Show the output compare 0 ISR including interrupt vector that runs the FSM.

OC0ISR movb #$01,TFLG1 ; acknowledge by clearing C0F
ldy Pt ; RegY points to the current state
ldab PTH ; Read input
andb #$03 ; just interested in bits 1,0
ls1b ; 0,1,2,3 converted to 0,2,4,6
aby ; add 0,2,4,6 depending on input
ldy 1,y ; Next state depending on input
ldab 0,y ; RegB is output value for this state
stab PTT ; Perform the output to PTT
sty Pt
ldd TC0
add #1000 ; output occurs for 1ms
std TC0
rti

org $FFEE
fdb OC0ISR

(10) Question 11. In this question, you will translate the C code line by line into 9S12 assembly.

```c
void Run(void){
    Add(&D1,&D2);
}

void Add(char *p1, char *p2){
    *p2 = *p2 + *p1;
}
```

<table>
<thead>
<tr>
<th>Definition</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activate an individual trigger.</td>
<td>arm</td>
</tr>
<tr>
<td>The information transfer rate</td>
<td>bandwidth</td>
</tr>
<tr>
<td>how close it measures the desired parameter</td>
<td>accuracy</td>
</tr>
<tr>
<td>A process that fixes the inputs to a system</td>
<td>stabilization</td>
</tr>
<tr>
<td>storing most significant byte exists first</td>
<td>big endian</td>
</tr>
<tr>
<td>Establishing an upper bound.</td>
<td>ceiling</td>
</tr>
<tr>
<td>Clearing the interrupt trigger flag</td>
<td>acknowledge</td>
</tr>
<tr>
<td>An error that occurs after a right shift</td>
<td>drop out</td>
</tr>
<tr>
<td>presence does not affect</td>
<td>nonintrusive</td>
</tr>
<tr>
<td>A digital logic output that has two states low and HiZ.</td>
<td>open collector</td>
</tr>
</tbody>
</table>

(10) Question 12. For each definition fill in the term that best matches.