
EE319K Fall 2010 Final Exam Version A Page 1 of 12

Jonathan Valvano December 8, 2010

First:________________ Last:____________________
 This is a closed book exam. You must put your answers in the space provided. You have 3
hours, so allocate your time accordingly. Please read the entire exam before starting.

Please read and affirm our honor code:
 “The core values of The University of Texas at Austin are learning, discovery, freedom, leadership,
individual opportunity, and responsibility. Each member of the university is expected to uphold these
values through integrity, honesty, trust, fairness, and respect toward peers and community.”

(4) Question 1. First, think of as many DAC parameters as you can. Listed here are experimental
procedures one might use to measure a DAC parameter. State the DAC parameter determined by each.

Part a) The input is stepped from minimum to maximum. For each input change, the change in DAC
output is measured. The results are processed to see if all the changes in output are positive.

Part b) The input is stepped from minimum to maximum. For each input change, the change in DAC
output is measured. The results are processed by averaging all the changes in output.

Part c) The input is stepped from minimum to maximum. For each input change, the change in DAC
output is measured. The results are processed by counting the number of changes in output.

Part d) The input is stepped from minimum to maximum. For each input change, the DAC output value
is measured. The results are processed by averaging the absolute values of the differences between the
measured output and the expected output.

(4) Question 2. Assume the SCI0 is already running, the E clock is 8 MHz, and value in TSCR2 is 3.
Write C code that changes the baud rate to 1000 bits/sec. Do not include more code than needed. Your
solution must compile as regular C code. It is not a function, just C code.

EE319K Fall 2010 Final Exam Version A Page 2 of 12

Jonathan Valvano December 8, 2010

(5) Question 3. What resistance is needed for R in the circuit so the output voltage Vout is 1V?

Vout

+5V

10 kΩ

R

(6) Question 4. A measurement system has a range of 0 to 19.9 cm and a resolution of 0.1 cm.
Assume a variable called position is allocated in RAM. Figure out the smallest number of bytes
needed to allocate position and write your code accordingly.
Part a) Write assembly code that multiplies the variable by 0.5 storing the result back into position.
For example, if the initial value is 2.4 cm, the final value will be 1.2 cm.

Part b) Write assembly code that adds 2.0 cm to the variable storing the result back into position.
For example, if the initial value is 2.4 cm, the final value will be 4.4 cm. You do not need to consider
overflow.

(4) Question 5. Assume the SCI0 is already initialized; write a C function that receives one character
using busy-wait synchronization.

EE319K Fall 2010 Final Exam Version A Page 3 of 12

Jonathan Valvano December 8, 2010

(4) Question 6. The desired LED operating point is 2V, 20mA. Assume the VOL of the 7406 is 0.5V.
Interface this LED to PP0 using positive logic. Specify values for any resistors needed.

7406

PP0

9S12

(4) Question 7. Assume RegB = $55, RegY=$1234 and RegX = $5678. What is the value in RegX
after executing these instructions?
 pshb
 stx 2,-sp
 sty 2,sp-
 leas 3,sp __________
 pulx

(6) Question 8. The goal is to write a function that multiplies a signed 16-bit number by 0.314. The
assembly on the left was generated by the Metrowerks compiler. Recall the input parameter is passed in
Reg D and the output result is returned in Reg D. This C code has an overflow bug. Rewrite the
assembly subroutine removing the bug, but maintaining the manner with which parameters are passed.
calc TFR D,X
 LDY 0,X
 LDD #314
 EMUL
 LDX #1000
 IDIVS
 TFR X,D
 RTS

short calc(short *in){
 short data;
 data = (*in);
 data = (314*data)/1000;
 return data;
}

EE319K Fall 2010 Final Exam Version A Page 4 of 12

Jonathan Valvano December 8, 2010

(2) Question 9. Consider the result of executing the following two 9S12 assembly instructions.
 ldaa #156
 adda #-50

What will be the value of the carry (C) bit?

What will be the value of the overflow (V) bit?

 (4) Question 10. These six events all occur during each output compare 6 interrupt.

1) The TCNT equals TC6 and the hardware sets the flag bit (e.g., C6F=1)
2) The PC is set to the contents of the output compare 6 vector
3) The I bit in the CCR is set by hardware
4) The CCR, A, B, X, Y, PC are pushed on the stack
5) The software executes something like

movb #$40,TFLG1
ldd TC6
addd #5000
std TC6

6) The software executes rti
Which of the following sequences could be possible? Pick one answer A-F (only one is correct)

A) 1,2,3,4,5,6
B) 4,1,3,5,2,6 __________
C) 1,3,4,2,5,6
D) 1,4,3,2,5,6
E) 5,3,2,1,4,6
F) None of the above sequences are possible

(4) Question 11. Give the simplified memory cycles produced when the following one instruction is
executed. Assume the PC contains $4007, and the SP equals $3FF4. Just show R/W=Read or Write,
Address, and Data for each cycle. You may or may not need all 5 entries in the solution box.
$4007 164200 jsr $4200

R/W Address Data

EE319K Fall 2010 Final Exam Version A Page 5 of 12

Jonathan Valvano December 8, 2010

(4) Question 12. Consider a serial port operating with a baud rate of 2000 bits per second. The
following waveform was measured on the PS1 output (voltage levels are +5 and 0) when one SCI
occurs. The protocol is 1 start, 8 data and 1 stop bit. What data in hexadecimal was transmitted? You
may assume the channel is idle before and after the frame. Time flows from left to right.

1ms 1ms 1ms 1ms 1ms 1ms

(24) Question 13. In this problem you must use a C data structure that stores this Moore FSM. The
system is an AC thermostat, if the AC is off and temperature rises above 70 ºF, then the AC comes on.
If the AC is on and the temperature falls below 68 ºF, the AC is shut off. If the temperature is between
68 and 70 ºF, the AC remains in its present state. The temperature sensor is
attached to PAD0, such that in 10-bit mode a temperature of 68 ºF returns
a 10-bit ADC value of 680, and a temperature of 70 ºF returns a 10-bit
ADC value of 700. The AC unit is controlled by PT0, such that if the
software makes PT0=1, the AC is on. If the software makes PT0=0, the AC
is off. This hysteresis avoids the rapid on-off-on-off instability that would
occur if the temperature is near the set point.
 The controller should be run once a second in the background using output compare 0 interrupts. For
each execution, the ISR software should sample PAD0, compare it to the value in the current state,
select the next state depending on whether or not the current temperature is above or below threshold,
and finally the ISR should output the on/off command to PT0 as specified by the new state.
Part a) Show the C code that defines a linked structure for this FSM. Each state contains one output
value, one temperature threshold (0.1 ºF resolution), and two next states depending on whether the
input is above or below the threshold. Fill in necessary code into the two boxes.
const struct State{

};
typedef const struct State StateType;
typedef StateType * StatePtr;
#define ACon &fsm[0]
#define ACoff &fsm[1]
StateType fsm[2]={

};
Part b) You are given a function ADC_Init that initializes the ADC in 10-bit mode with an ADC
clock of 1 MHz. Write the main program that calls ADC_Init, initializes the FSM, sets up the output

Init

ACoff
0

<70oC

ACon
1

<68oC

>70oC
>68oC

EE319K Fall 2010 Final Exam Version A Page 6 of 12

Jonathan Valvano December 8, 2010

compare 0 interrupt, and enables interrupts. Assume the E clock is 8 MHz. The body of the main will
be a do nothing loop, such as while(1); or for(;;){};

Part c) Write a C function that samples ADC channel 0 using busy-wait synchronization. ADC format
should be right justified.

Part d) Write the output compare ISR in C that implements the FSM, interrupting every 1 sec.

EE319K Fall 2010 Final Exam Version A Page 7 of 12

Jonathan Valvano December 8, 2010

(10) Question 14. All four parts constitute one assembly subroutine. In this problem you will
implement three unsigned 16-bit local variables on the stack using Reg X stack frame addressing and
symbolic binding. The variables are called left center and right. The code in this question is
part of a subroutine, which ends in rts.
Part a) Show the assembly code that (in this order) saves Register X, establishes the Register X stack
frame, and allocates the three 16-bit local variables.

Part b) Assume the stack pointer is equal to $3F0A just before jsr
instruction is executed that calls this subroutine. Execute jsr and all of
part a) then draw the stack picture showing the return address, the three
variables, Register X, and the stack pointer SP. Cross-out the SP arrow
and move it to its new location.

Part c) Show the symbolic binding for left center and right.

Part d) Show code that implements center=100; using Reg X stack
frame addressing.

Part e) Show the assembly code that deallocates the local variables, and restores Reg X.

 rts

SP

$3F00
$3F01
$3F02
$3F03
$3F04
$3F05
$3F06
$3F07
$3F08
$3F09
$3F0A

8 bits

EE319K Fall 2010 Final Exam Version A Page 8 of 12

Jonathan Valvano December 8, 2010

(15) Question 15. Implement in assembly language a FIFO queue with the following specifications
 1) Two 16-bit words are allocated in RAM to store data in the FIFO
 2) One 8-bit counter is allocated in RAM to store the number of elements: 0, 1, or 2
 3) If there is one element in the FIFO, it is stored in the first location of the FIFO
 4) If there are two elements, the oldest is in the first location and the newest in the second
The following assembly code defines the FIFO in RAM. You can not make changes or additions to the
way in which these variables are defined. You can NOT add more variables.
 org $2000
Fifo rmb 4 ; place for two 16-bit numbers
Count rmb 1 ; 0 means empty, 1 means half, 2 means full
Part a) Write an assembly subroutine to initialize the FIFO.

Part b) Write an assembly subroutine that puts one 16-bit element into the FIFO. The input parameter
is call by value in Reg D, and the return parameter is call by value in Reg D: 0 meaning success, and 1
means the data was not stored because there were already two elements in the FIFO.

Part c) Write an assembly subroutine that gets one 16-bit element from the FIFO. At the time of the
call, Reg X points to an empty place into which the data can be stored. There are two output
parameters. The data is returned by reference using the pointer passed in Reg X. The other return
parameter is return by value in Reg D: 0 meaning success, and 1 means the data was not removed
because there were no elements in the FIFO at the time of the call. Here is an example call
MyData rmb 2 ;My variable is different from your fifo
...
MyProgram
 ldx #MyData ;pointer to empty place
 jsr YourGetFifo ; your program puts 16-bit data into MyData

EE319K Fall 2010 Final Exam Version A Page 9 of 12

Jonathan Valvano December 8, 2010

aba 8-bit add RegA=RegA+RegB
abx unsigned add RegX=RegX+RegB
aby unsigned add RegY=RegY+RegB
adca 8-bit add with carry to RegA
adcb 8-bit add with carry to RegB
adda 8-bit add to RegA
addb 8-bit add to RegB
addd 16-bit add to RegD
anda 8-bit logical and to RegA
andb 8-bit logical and to RegB
andcc 8-bit logical and to RegCC
asl/lsl 8-bit left shift Memory
asla/lsla 8-bit left shift RegA
aslb/lslb 8-bit arithmetic left shift RegB
asld/lsld 16-bit left shift RegD
asr 8-bit arithmetic right shift Memory
asra 8-bit arithmetic right shift to RegA
asrb 8-bit arithmetic right shift to RegB
bcc branch if carry clear
bclr bit clear in memory bclr PTT,#$01
bcs branch if carry set
beq branch if result is zero (Z=1)
bge branch if signed ≥
bgnd enter background debug mode
bgt branch if signed >
bhi branch if unsigned >
bhs branch if unsigned ≥
bita 8-bit and with RegA, sets CCR
bitb 8-bit and with RegB, sets CCR
ble branch if signed ≤
blo branch if unsigned <
bls branch if unsigned ≤
blt branch if signed <
bmi branch if result is negative (N=1)
bne branch if result is nonzero (Z=0)
bpl branch if result is positive (N=0)
bra branch always
brclr branch if bits are clear brclr PTT,#$01,loop
brn branch never
brset branch if bits are set brset PTT,#$01,loop
bset bit set in memory bset PTT,#$04
bsr branch to subroutine
bvc branch if overflow clear
bvs branch if overflow set
call subroutine in expanded memory
cba 8-bit compare RegA with RegB, RegA-RegB
clc clear carry bit, C=0
cli clear I=0, enable interrupts
clr 8-bit memory clear
clra RegA clear
clrb RegB clear
clv clear overflow bit, V=0
cmpa 8-bit compare RegA with memory
cmpb 8-bit compare RegB with memory
com 8-bit logical complement to memory
coma 8-bit logical complement to RegA
comb 8-bit logical complement to RegB
cpd 16-bit compare RegD with memory
cpx 16-bit compare RegX with memory
cpy 16-bit compare RegY with memory
daa 8-bit decimal adjust accumulator
dbeq decrement and branch if result=0 dbeq Y,loop
dbne decrement and branch if result≠0 dbne A,loop
dec 8-bit decrement memory
deca 8-bit decrement RegA
decb 8-bit decrement RegB

des 16-bit decrement RegSP
dex 16-bit decrement RegX
dey 16-bit decrement RegY
ediv RegY=(Y:D)/RegX, 32-bit by 16-bit unsigned divide
edivs RegY=(Y:D)/RegX, 32-bit by 16-bit signed divide
emacs 16 by 16 signed multiply, 32-bit add
emaxd 16-bit unsigned maximum in RegD
emaxm 16-bit unsigned maximum in memory
emind 16-bit unsigned minimum in RegD
eminm 16-bit unsigned minimum in memory
emul RegY:D=RegY*RegD, 16 by 16 to 32-bit unsigned multiply
emuls RegY:D=RegY*RegD, 16 by 16 to 32-bit signed multiply
eora 8-bit logical exclusive or to RegA
eorb 8-bit logical exclusive or to RegB
etbl 16-bit look up and interpolation
exg exchange register contents exg X,Y
fdiv unsigned fract div, X=(65536*D)/X
ibeq increment and branch if result=0 ibeq Y,loop
ibne increment and branch if result≠0 ibne A,loop
idiv 16-bit by 16-bit unsigned div, X=D/X, D=remainder
idivs 16-bit by 16-bit signed divide, X=D/X, D= remainder
inc 8-bit increment memory
inca 8-bit increment RegA
incb 8-bit increment RegB
ins 16-bit increment RegSP
inx 16-bit increment RegX
iny 16-bit increment RegY
jmp jump always
jsr jump to subroutine
lbcc long branch if carry clear
lbcs long branch if carry set
lbeq long branch if result is zero
lbge long branch if signed ≥
lbgt long branch if signed >
lbhi long branch if unsigned >
lbhs long branch if unsigned ≥
lble long branch if signed ≤
lblo long branch if unsigned <
lbls long branch if unsigned ≤
lblt long branch if signed <
lbmi long branch if result is negative
lbne long branch if result is nonzero
lbpl long branch if result is positive
lbra long branch always
lbrn long branch never
lbvc long branch if overflow clear
lbvs long branch if overflow set
ldaa 8-bit load memory into RegA
ldab 8-bit load memory into RegB
ldd 16-bit load memory into RegD
lds 16-bit load memory into RegSP
ldx 16-bit load memory into RegX
ldy 16-bit load memory into RegY
leas 16-bit load effective addr to SP leas 2,sp
leax 16-bit load effective addr to X leax 2,x
leay 16-bit load effective addr to Y leay 2,y
lsr 8-bit logical right shift memory
lsra 8-bit logical right shift RegA
lsrb 8-bit logical right shift RegB
lsrd 16-bit logical right shift RegD
maxa 8-bit unsigned maximum in RegA
maxm 8-bit unsigned maximum in memory
mem determine the Fuzzy logic membership grade
mina 8-bit unsigned minimum in RegA
minm 8-bit unsigned minimum in memory
movb 8-bit move memory to memory movb #100,PTT

EE319K Fall 2010 Final Exam Version A Page 10 of 12

Jonathan Valvano December 8, 2010

movw 16-bit move memory to memory movw #13,SCIBD
mul 8 by 8 to 16-bit unsigned RegD=RegA*RegB
neg 8-bit 2's complement negate memory
nega 8-bit 2's complement negate RegA
negb 8-bit 2's complement negate RegB
oraa 8-bit logical or to RegA
orab 8-bit logical or to RegB
orcc 8-bit logical or to RegCC
psha push 8-bit RegA onto stack
pshb push 8-bit RegB onto stack
pshc push 8-bit RegCC onto stack
pshd push 16-bit RegD onto stack
pshx push 16-bit RegX onto stack
pshy push 16-bit RegY onto stack
pula pop 8 bits off stack into RegA
pulb pop 8 bits off stack into RegB
pulc pop 8 bits off stack into RegCC
puld pop 16 bits off stack into RegD
pulx pop 16 bits off stack into RegX
puly pop 16 bits off stack into RegY
rev Fuzzy logic rule evaluation
revw weighted Fuzzy rule evaluation
rol 8-bit roll shift left Memory
rola 8-bit roll shift left RegA
rolb 8-bit roll shift left RegB
ror 8-bit roll shift right Memory
rora 8-bit roll shift right RegA
rorb 8-bit roll shift right RegB
rtc return sub in expanded memory
rti return from interrupt
rts return from subroutine
sba 8-bit subtract RegA=RegA-RegB
sbca 8-bit sub with carry from RegA
sbcb 8-bit sub with carry from RegB
sec set carry bit, C=1
sei set I=1, disable interrupts
sev set overflow bit, V=1
sex sign extend 8-bit to 16-bit reg sex B,D
staa 8-bit store memory from RegA
stab 8-bit store memory from RegB
std 16-bit store memory from RegD
sts 16-bit store memory from SP
stx 16-bit store memory from RegX
sty 16-bit store memory from RegY
suba 8-bit sub from RegA
subb 8-bit sub from RegB
subd 16-bit sub from RegD
swi software interrupt, trap
tab transfer A to B
tap transfer A to CC
tba transfer B to A
tbeq test and branch if result=0 tbeq Y,loop
tbl 8-bit look up and interpolation
tbne test and branch if result≠0 tbne A,loop
tfr transfer register to register tfr X,Y
tpa transfer CC to A
trap illegal instruction interrupt
trap illegal op code, or software trap
tst 8-bit compare memory with zero
tsta 8-bit compare RegA with zero
tstb 8-bit compare RegB with zero
tsx transfer S to X
tsy transfer S to Y
txs transfer X to S
tys transfer Y to S
wai wait for interrupt
wav weighted Fuzzy logic average

xgdx exchange RegD with RegX
xgdy exchange RegD with RegY

Example Mode Effective Address
ldaa #u immediate No EA
ldaa u direct EA is 8-bit address
ldaa U extended EA is a 16-bit address
ldaa m,r 5-bit index EA=r+m (-16 to 15)
ldaa v,+r pre-incr r=r+v, EA=r (1 to 8)
ldaa v,-r pre-dec r=r-v, EA=r (1 to 8)
ldaa v,r+ post-inc EA=r, r=r+v (1 to 8)
ldaa v,r- post-dec EA=r, r=r-v (1 to 8)
ldaa A,r Reg A offset EA=r+A, zero padded
ldaa B,r Reg B offset EA=r+B, zero padded
ldaa D,r Reg D offset EA=r+D
ldaa q,r 9-bit index EA=r+q
ldaa W,r 16-bit index EA=r+W
ldaa [D,r] D indirect EA={r+D}
ldaa [W,r] indirect EA={r+W}
Freescale 6812 addressing modes r is X, Y, SP, or PC

Pseudo op Meaning
org Where to put subsequent code
= equ set Define a constant symbol
dc.b db fcb .byte Allocate byte(s) with values
fcc Create an ASCII string
dc.w dw fdb .word Allocate word(s) with values
dc.l dl .long Allocate 32-bit with values
ds ds.b rmb .blkb Allocate bytes without init
ds.w .blkw Allocate word(s) without init

n is Metrowerks number

Vector n Interrupt Source Arm
$FFFE Reset None
$FFF8 3 Trap None
$FFF6 4 SWI None
$FFF0 7 Real time interrupt CRGINT.RTIE
$FFEE 8 Timer channel 0 TIE.C0I
$FFEC 9 Timer channel 1 TIE.C1I
$FFEA 10 Timer channel 2 TIE.C2I
$FFE8 11 Timer channel 3 TIE.C3I
$FFE6 12 Timer channel 4 TIE.C4I
$FFE4 13 Timer channel 5 TIE.C5I
$FFE2 14 Timer channel 6 TIE.C6I
$FFE0 15 Timer channel 7 TIE.C7I
$FFDE 16 Timer overflow TSCR2.TOI
$FFD6 20 SCI0 TDRE, RDRF SCI0CR2.TIE,RIE
$FFD4 21 SCI1 TDRE, RDRF SCI1CR2.TIE,RIE
$FFCE 24 Key Wakeup J PIEJ.[7,6,1,0]
$FFCC 25 Key Wakeup H PIEH.[7:0]
$FF8E 56 Key Wakeup P PIEP.[7:0]
Interrupt Vectors and interrupt number.

EE319K Fall 2010 Final Exam Version A Page 11 of 12

Jonathan Valvano December 8, 2010

Address Bit 7 6 5 4 3 2 1 Bit 0 Name
$0040 IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0 TIOS
$0044-5 Bit 15 14 13 12 11 10 Bit 0 TCNT
$0046 TEN TSWAI TSFRZ TFFCA 0 0 0 0 TSCR1
$004C C7I C6I C5I C4I C3I C2I C1I C0I TIE
$004D TOI 0 PUPT RDPT TCRE PR2 PR1 PR0 TSCR2
$004E C7F C6F C5F C4F C3F C2F C1F C0F TFLG1
$004F TOF 0 0 0 0 0 0 0 TFLG2
$0050-1 Bit 15 14 13 12 11 10 Bit 0 TC0
$0052-3 Bit 15 14 13 12 11 10 Bit 0 TC1
$0054-5 Bit 15 14 13 12 11 10 Bit 0 TC2
$0056-7 Bit 15 14 13 12 11 10 Bit 0 TC3
$0058-9 Bit 15 14 13 12 11 10 Bit 0 TC4
$005A-B Bit 15 14 13 12 11 10 Bit 0 TC5
$005C-D Bit 15 14 13 12 11 10 Bit 0 TC6
$005E-F Bit 15 14 13 12 11 10 Bit 0 TC7
$0082 ADPU AFFC ASWAI ETRIGLE ETRIGP ETRIG ASCIE ASCIF ATD0CTL2
$0083 0 S8C S4C S2C S1C FIFO FRZ1 FRZ0 ATD0CTL3
$0084 SRES8 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0 ATD0CTL4
$0085 DJM DSGN SCAN MULT 0 CC CB CA ATD0CTL5
$0086 SCF 0 ETORF FIFOR 0 CC2 CC1 CC0 ATD0STAT0
$008B CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0 ATD0STAT1
$008D Bit 7 6 5 4 3 2 1 Bit 0 ATD0DIEN
$008F PAD07 PAD06 PAD05 PAD04 PAD03 PAD02 PAD01 PAD00 PORTAD0
$0090-1 Bit 15 14 13 12 11 10 Bit 0 ATD0DR0
$0092-3 Bit 15 14 13 12 11 10 Bit 0 ATD0DR1
$0094-5 Bit 15 14 13 12 11 10 Bit 0 ATD0DR2
$0096-7 Bit 15 14 13 12 11 10 Bit 0 ATD0DR3
$0098-9 Bit 15 14 13 12 11 10 Bit 0 ATD0DR4
$009A-B Bit 15 14 13 12 11 10 Bit 0 ATD0DR5
$009C-D Bit 15 14 13 12 11 10 Bit 0 ATD0DR6
$009E-F Bit 15 14 13 12 11 10 Bit 0 ATD0DR7
$00C9 0 0 0 SBR12 SBR11 SBR10 SBR0 SCI0BD
$00CA LOOPS SCISWAI RSRC M WAKE ILT PE PT SCI0CR1
$00CB TIE TCIE RIE ILIE TE RE RWU SBK SCI0CR2
$00CC TDRE TC RDRF IDLE OR NF FE PF SCI0SR1
$00CD 0 0 0 0 0 BRK13 TXDIR RAF SCI0SR2
$00CF R7/T7 R6/T6 R5/T5 R4/T4 R3/T3 R2/T2 R1/T1 R0/T0 SCI0DRL
$00D0-1 0 0 0 SBR12 SBR11 SBR10 SBR0 SCI1BD
$00D2 LOOPS SCISWAI RSRC M WAKE ILT PE PT SCI1CR1
$00D3 TIE TCIE RIE ILIE TE RE RWU SBK SCI1CR2
$00D4 TDRE TC RDRF IDLE OR NF FE PF SCI1SR1
$00D5 0 0 0 0 0 BRK13 TXDIR RAF SCI1SR2
$00D7 R7/T7 R6/T6 R5/T5 R4/T4 R3/T3 R2/T2 R1/T1 R0/T0 SCI1DRL
$0240 PT7 PT6 PT5 PT4 PT3 PT2 PT1 PT0 PTT
$0242 DDRT7 DDRT6 DDRT5 DDRT4 DDRT3 DDRT2 DDRT1 DDRT0 DDRT
$0248 PS7 PS6 PS5 PS4 PS3 PS2 PS1 PS0 PTS
$024A DDRS7 DDRS6 DDRS5 DDRS4 DDRS3 DDRS2 DDRS1 DDRS0 DDRS
$0250 PM7 PM6 PM5 PM4 PM3 PM2 PM1 PM0 PTM
$0252 DDRM7 DDRM6 DDRM5 DDRM4 DDRM3 DDRM2 DDRM1 DDRM0 DDRM
$0258 PP7 PP6 PP5 PP4 PP3 PP2 PP1 PP0 PTP
$025A DDRP7 DDRP6 DDRP5 DDRP4 DDRP3 DDRP2 DDRP1 DDRP0 DDRP
$0260 PH7 PH6 PH5 PH4 PH3 PH2 PH1 PH0 PTH
$0262 DDRH7 DDRH6 DDRH5 DDRH4 DDRH3 DDRH2 DDRH1 DDRH0 DDRH
$0268 PJ7 PJ6 0 0 0 0 PJ1 PJ0 PTJ
$026A DDRJ7 DDRJ6 0 0 0 0 DDRJ1 DDRJ0 DDRJ

TSCR1 is the first 8-bit timer control register
 bit 7 TEN, 1 allows the timer to function normally, 0 means disable timer including TCNT
TIOS is the 8-bit output compare select register, one bit for each channel (1 = output compare, 0 = input capture)
TIE is the 8-bit output compare arm register, one bit for each channel (1 = armed, 0 = disarmed)

EE319K Fall 2009 Final Exam Page 12 of 12

Jonathan Valvano December 15, 2009

TSCR2 is the second 8-bit timer control register
 bits 2,1,0 are PR2, PR1, PR0, which select the rate, let n be the 3-bit number formed by PR2, PR1, PR0
 without PLL TCNT is 8MHz/2n, with PLL TCNT is 24MHz/2n, n ranges from 0 to 7

E = 8 MHz E = 24 MHz

PR2

PR1

PR0

Divide

by
TCNT
period

TCNT
frequency

TCNT
period

TCNT
frequency

0 0 0 1 125 ns 8 MHz 41.7 ns 24 MHz
0 0 1 2 250 ns 4 MHz 83.3 ns 12 MHz
0 1 0 4 500 ns 2 MHz 167 ns 6 MHz
0 1 1 8 1 µs 1 MHz 333 ns 3 MHz
1 0 0 16 2 µs 500 kHz 667 ns 1.5 MHz
1 0 1 32 4 µs 250 kHz 1.33 µs 667 kHz
1 1 0 64 8 µs 125 kHz 2.67 µs 333 kHz
1 1 1 128 16 µs 62.5 kHz 5.33 µs 167 kHz

SCI0DRL 8-bit SCI0 data register
SCI0BD is 16-bit SCI0 baud rate register, let n be the 13-bit number Baud rate is EClk/n/16
SCI0CR1 is 8-bit SCI0 control register
 bit 4 M, Mode, 0 = One start, eight data, one stop bit, 1 = One start, eight data, ninth data, one stop bit
SCI0CR2 is 8-bit SCI0 control register
 bit 7 TIE, Transmit Interrupt Enable, 0 = TDRE interrupts disabled, 1 = interrupt whenever TDRE set
 bit 5 RIE, Receiver Interrupt Enable, 0 = RDRF interrupts disabled, 1 = interrupt whenever RDRF set
 bit 3 TE, Transmitter Enable, 0 = Transmitter disabled, 1 = SCI transmit logic is enabled
 bit 2 RE, Receiver Enable, 0 = Receiver disabled, 1 = Enables the SCI receive circuitry.
SCI0SR1 is 8-bit SCI0 status register
 bit 7 TDRE, Transmit Data Register Empty Flag
 Set if transmit data can be written to SCI0DRL
 Cleared by SCI0SR1 read with TDRE set followed by SCI0DRL write
 bit 5 RDRF, Receive Data Register Full
 set if a received character is ready to be read from SCI0DRL
 Clear the RDRF flag by reading SCI0SR1 with RDRF set and then reading SCI0DRL
ATD0CTL5 is used to start an ADC conversion
 bit 7 DJM is set to 1 for right justified and to 0 for left justified
 bits 2-0 specify the ADC channel to sample
ATD0STAT0 is used to tell when the ADC conversion is done
 bit 7 SCF cleared on a write to ATD0CTL5 and is set when the conversion sequence is done

