
EE319K Spring 2010 Final Exam Version B Page 1 of 12

Jonathan Valvano May 17, 2010

First:________________ Last:____________________
 This is a closed book exam. You must put your answers in the space provided. You have 3
hours, so allocate your time accordingly. Please read the entire exam before starting.

Please read and affirm our honor code:
 “The core values of The University of Texas at Austin are learning, discovery, freedom, leadership,
individual opportunity, and responsibility. Each member of the university is expected to uphold these
values through integrity, honesty, trust, fairness, and respect toward peers and community.”

(5) Question 1. What is the voltage at V? Show your work.

V

+3.3V

10 kΩ

10 kΩ 10 kΩ

(5) Question 2. The PLL is not active, and the E clock frequency is 8 MHz. The TCNT timer is active
with TSCR2 equal to 2. The ADC is active with ATD0CTR4=$03, so that the ADC clock is 1 MHz.
The SCI1 baud rate is 9600 bits/sec. Output compare 7 is used to sample the 10-bit ADC once every
interrupt. The data is stored in a buffer. The following code occurs in the output compare 7 ISR
 TC7 = TC7 + 100;
(3) Part a) What is the time period between output compare 7 interrupts?

(2) Part b) What is the largest frequency component faithfully represented in the data in the buffer?

EE319K Spring 2010 Final Exam Version B Page 2 of 12

Jonathan Valvano May 17, 2010

(10) Question 3. Initialize PTT so that PT1 is an input and PT0 is an output. Write a C program that
issues a short pulse on the PT0 output after every other each rising edge of the PT1 input.

PT1

PT0

Include all the software for this system. You may use the standard port names, such as PTT. Interrupts
and the timer are not needed. It does not matter how long the pulse width is on PT0.

EE319K Spring 2010 Final Exam Version B Page 3 of 12

Jonathan Valvano May 17, 2010

(20) Question 4. You can solve this problem in assembly or in C, your choice. This is a simplex
communication channel; there is SCI1 output, but no SCI1 input. In C, the user will call your function
by reference. In assembly, the user calls your function by reference using Reg D
void user(void){
 SCI1_Output(″Hello″);
}

Msg fcb ″Hello″,0
User ldd #Msg
 jsr SCI1_Output
 rts

Your SCI1_Output includes SCI1 initialization and output. The data is null-terminated. You may
assume the E clock is 8 MHz. The desired baud rate is 5000 Hz. You are allowed to add additional
RAM-based variables. Write the SCI1_Output function, the SCI1 interrupt service routine, and the
code to set the SCI1 interrupt vector. Disarm SCI1 interrupts after the last character is sent. You do not
have to transmit the null character. For full credit you must implement the SCI1 output using interrupt
synchronization. For a possible 5 points out of 20, you solve this problem with busy-wait.

EE319K Spring 2010 Final Exam Version B Page 4 of 12

Jonathan Valvano May 17, 2010

(6) Question 5. Your embedded system uses a 12-bit ADC to sample the fluid flow through an oil
pipe. The system will display flow rate on an LCD. The flow can vary from -20 to +20 L/min. The
appropriate transducer and analog circuit maps in a linear fashion the full scale flow rate into the 0 to
+5V full scale range of the ADC. I.e., -20 L/min maps to 0V and +20 L/min maps to +5V. The ADC
uses straight binary: 0V maps to 0 and +5V maps to the largest digital output.
(2) Part a) What ADC value do you get if the flow rate is -10 L/min.

(2) Part b) What resolution will you use for fixed-point number system to store the oil flow data?

(2) Part c) What precision will you use for fixed-point number system to store the oil flow data?

(4) Question 6. Consider the result of executing the following two 9S12 assembly instructions.
 ldaa #1
 adda #-1

What will be the value of the carry (C) bit?

What will be the value of the zero (Z) bit?

EE319K Spring 2010 Final Exam Version B Page 5 of 12

Jonathan Valvano May 17, 2010

(5) Question 7. Give the simplified memory cycles produced when the following one instruction is
executed. Initially, PC is $4065, DDRT is $FF, and PTT is $08. Just show R/W=Read or Write,
Address, and Data for each cycle. You may need more or less entries than the 5 boxes given.
$4065 1C024001 bset PTT,#$01

R/W Addr Data

(5) Question 8. For each activity choose the debugging term that best matches. Choose answers from
the word bank. Not all words in the bank will be used. No word is used twice.

Word bank: heartbeat, breakpoint, drop out, scanpoint, friendly, profile, minimally intrusive, highly

intrusive, bandwidth, monitor, real-time, stabilization, volatile

Activity Debugging term
Measuring where and when software executes

Recording data during execution without
pausing

Debugging with a small but inconsequential
effect on the system itself

Adding a LCD to display important variables
during execution; the LCD is not part of the
necessary components of the system.

Flashing an LED letting the user know the
software is running

EE319K Spring 2010 Final Exam Version B Page 6 of 12

Jonathan Valvano May 17, 2010

(15) Question 9. Design and implement a FIFO that can hold up to 4 elements. Each element is 3
bytes. There will be three subroutines: Initialization, Put one element into FIFO and Get one
element from the FIFO.
(4) Part a) Show the RAM-based variables are available, and NO additional storage may be allocated

(4) Part b) Write an assembly function that initializes the FIFO.

(4) Part c) Write an assembly function that puts one 3-byte element into the FIFO. The input
parameter is call by reference using Register Y. The output parameter is returned in Register D, 0 for
failure because the FIFO was full, and 1 for success because the data was properly stored.

(3) Part d) Write an assembly function that gets one 3-byte element from the FIFO. When your Get
function is called, Register Y points to an empty 3-byte RAM buffer. The output parameters are return
by value in Register D and return by reference through Register Y. If data can be removed, three bytes
are copied into the buffer pointed to by Register Y and Register D is returned as 1. If no data can be
removed, because the FIFO was empty when the function was called, return Register D equal to 0.

EE319K Spring 2010 Final Exam Version B Page 7 of 12

Jonathan Valvano May 17, 2010

(5) Question 10. Assume the initial state is Stop and the input
is a constant value of 3. What will be the sequence of outputs?

(10) Question 11. Consider output compare 7 interrupts. Assume the name of the interrupt service
routine is TC7Handler.
(3) Part a) What three events in general need to be true for any interrupt to occur? Furthermore, give
those three events specifically for output compare 7.

(4) Part b) List the events that occur as the computer switches from running in the foreground to
running an output compare 7 interrupt in the background? E.g., the 9S12 is running the main program,
stuff happens, the 9S12 is running TC7Handler. List the events in stuff happens.

(3) Part c) Write assembly code to acknowledge an output compare 7 interrupt.

Stop

7

Go

3

Turn

5

0

1,2,3

1,2
3

1,3
0,2

0

EE319K Spring 2010 Final Exam Version B Page 8 of 12

Jonathan Valvano May 17, 2010

(10) Question 12. In this question, you will translate the C code into 9S12 assembly. You must use
stack frame binding using Register Y for the c and d parameters within the main program. I.e., both
local variables must be allocated on the stack. You may assume PTT is an input port. Use org
statements to place the program at an appropriate place within the 9S12, and include the reset vector.

void main(void){
unsigned short c;
unsigned char d;
 c = 0;
 for(;;){
 d = PTT;
 if(d&0x01){
 c = c+d;
 }
 }
}

EE319K Spring 2010 Final Exam Version B Page 9 of 12

Jonathan Valvano May 17, 2010

aba 8-bit add RegA=RegA+RegB
abx unsigned add RegX=RegX+RegB
aby unsigned add RegY=RegY+RegB
adca 8-bit add with carry to RegA
adcb 8-bit add with carry to RegB
adda 8-bit add to RegA
addb 8-bit add to RegB
addd 16-bit add to RegD
anda 8-bit logical and to RegA
andb 8-bit logical and to RegB
andcc 8-bit logical and to RegCC
asl/lsl 8-bit left shift Memory
asla/lsla 8-bit left shift RegA
aslb/lslb 8-bit arith left shift RegB
asld/lsld 16-bit left shift RegD
asr 8-bit arith right shift Memory
asra 8-bit arith right shift to RegA
asrb 8-bit arith right shift to RegB
bcc branch if carry clear
bclr bit clear in memory bclr PTT,#$01
bcs branch if carry set
beq branch if result is zero (Z=1)
bge branch if signed ≥
bgnd enter background debug mode
bgt branch if signed >
bhi branch if unsigned >
bhs branch if unsigned ≥
bita 8-bit and with RegA, sets CCR
bitb 8-bit and with RegB, sets CCR
ble branch if signed ≤
blo branch if unsigned <
bls branch if unsigned ≤
blt branch if signed <
bmi branch if result is negative (N=1)
bne branch if result is nonzero (Z=0)
bpl branch if result is positive (N=0)
bra branch always
brclr branch if bits are clear brclr PTT,#$01,loop
brn branch never
brset branch if bits are set brset PTT,#$01,loop
bset bit set in memory bset PTT,#$04
bsr branch to subroutine
bvc branch if overflow clear
bvs branch if overflow set
call subroutine in expanded memory
cba 8-bit compare RegA with RegB, RegA-RegB
clc clear carry bit, C=0
cli clear I=0, enable interrupts
clr 8-bit memory clear
clra RegA clear
clrb RegB clear
clv clear overflow bit, V=0
cmpa 8-bit compare RegA with memory
cmpb 8-bit compare RegB with memory
com 8-bit logical complement to memory
coma 8-bit logical complement to RegA
comb 8-bit logical complement to RegB
cpd 16-bit compare RegD with memory
cpx 16-bit compare RegX with memory
cpy 16-bit compare RegY with memory
daa 8-bit decimal adjust accumulator
dbeq decrement and branch if result=0 dbeq Y,loop
dbne decrement and branch if result≠0 dbne A,loop
dec 8-bit decrement memory
deca 8-bit decrement RegA
decb 8-bit decrement RegB

des 16-bit decrement RegSP
dex 16-bit decrement RegX
dey 16-bit decrement RegY
ediv RegY=(Y:D)/RegX, unsigned divide
edivs RegY=(Y:D)/RegX, signed divide
emacs 16 by 16 signed multiply, 32-bit add
emaxd 16-bit unsigned maximum in RegD
emaxm 16-bit unsigned maximum in memory
emind 16-bit unsigned minimum in RegD
eminm 16-bit unsigned minimum in memory
emul RegY:D=RegY*RegD unsigned multiply
emuls RegY:D=RegY*RegD signed multiply
eora 8-bit logical exclusive or to RegA
eorb 8-bit logical exclusive or to RegB
etbl 16-bit look up and interpolation
exg exchange register contents exg X,Y
fdiv unsigned fract div, X=(65536*D)/X
ibeq increment and branch if result=0 ibeq Y,loop
ibne increment and branch if result≠0 ibne A,loop
idiv 16-bit unsigned div, X=D/X, D=remainder
idivs 16-bit signed divide, X=D/X, D= remainder
inc 8-bit increment memory
inca 8-bit increment RegA
incb 8-bit increment RegB
ins 16-bit increment RegSP
inx 16-bit increment RegX
iny 16-bit increment RegY
jmp jump always
jsr jump to subroutine
lbcc long branch if carry clear
lbcs long branch if carry set
lbeq long branch if result is zero
lbge long branch if signed ≥
lbgt long branch if signed >
lbhi long branch if unsigned >
lbhs long branch if unsigned ≥
lble long branch if signed ≤
lblo long branch if unsigned <
lbls long branch if unsigned ≤
lblt long branch if signed <
lbmi long branch if result is negative
lbne long branch if result is nonzero
lbpl long branch if result is positive
lbra long branch always
lbrn long branch never
lbvc long branch if overflow clear
lbvs long branch if overflow set
ldaa 8-bit load memory into RegA
ldab 8-bit load memory into RegB
ldd 16-bit load memory into RegD
lds 16-bit load memory into RegSP
ldx 16-bit load memory into RegX
ldy 16-bit load memory into RegY
leas 16-bit load effective addr to SP leas 2,sp
leax 16-bit load effective addr to X leax 2,x
leay 16-bit load effective addr to Y leay 2,y
lsr 8-bit logical right shift memory
lsra 8-bit logical right shift RegA
lsrb 8-bit logical right shift RegB
lsrd 16-bit logical right shift RegD
maxa 8-bit unsigned maximum in RegA
maxm 8-bit unsigned maximum in memory
mem determine the Fuzzy logic membership grade
mina 8-bit unsigned minimum in RegA
minm 8-bit unsigned minimum in memory
movb 8-bit move memory to memory movb #100,PTT

EE319K Spring 2010 Final Exam Version B Page 10 of 12

Jonathan Valvano May 17, 2010

movw 16-bit move memory to memory movw #13,SCIBD
mul unsigned RegD=RegA*RegB
neg 8-bit 2's complement negate memory
nega 8-bit 2's complement negate RegA
negb 8-bit 2's complement negate RegB
oraa 8-bit logical or to RegA
orab 8-bit logical or to RegB
orcc 8-bit logical or to RegCC
psha push 8-bit RegA onto stack
pshb push 8-bit RegB onto stack
pshc push 8-bit RegCC onto stack
pshd push 16-bit RegD onto stack
pshx push 16-bit RegX onto stack
pshy push 16-bit RegY onto stack
pula pop 8 bits off stack into RegA
pulb pop 8 bits off stack into RegB
pulc pop 8 bits off stack into RegCC
puld pop 16 bits off stack into RegD
pulx pop 16 bits off stack into RegX
puly pop 16 bits off stack into RegY
rev Fuzzy logic rule evaluation
revw weighted Fuzzy rule evaluation
rol 8-bit roll shift left Memory
rola 8-bit roll shift left RegA
rolb 8-bit roll shift left RegB
ror 8-bit roll shift right Memory
rora 8-bit roll shift right RegA
rorb 8-bit roll shift right RegB
rtc return sub in expanded memory
rti return from interrupt
rts return from subroutine
sba 8-bit subtract RegA=RegA-RegB
sbca 8-bit sub with carry from RegA
sbcb 8-bit sub with carry from RegB
sec set carry bit, C=1
sei set I=1, disable interrupts
sev set overflow bit, V=1
sex sign extend 8-bit to 16-bit reg sex B,D
staa 8-bit store memory from RegA
stab 8-bit store memory from RegB
std 16-bit store memory from RegD
sts 16-bit store memory from SP
stx 16-bit store memory from RegX
sty 16-bit store memory from RegY
suba 8-bit sub from RegA
subb 8-bit sub from RegB
subd 16-bit sub from RegD
swi software interrupt, trap
tab transfer A to B
tap transfer A to CC
tba transfer B to A
tbeq test and branch if result=0 tbeq Y,loop
tbl 8-bit look up and interpolation
tbne test and branch if result≠0 tbne A,loop
tfr transfer register to register tfr X,Y
tpa transfer CC to A
trap illegal instruction interrupt
trap illegal op code, or software trap
tst 8-bit compare memory with zero
tsta 8-bit compare RegA with zero
tstb 8-bit compare RegB with zero
tsx transfer S to X
tsy transfer S to Y
txs transfer X to S
tys transfer Y to S
wai wait for interrupt
wav weighted Fuzzy logic average

xgdx exchange RegD with RegX
xgdy exchange RegD with RegY

Example Mode Effective Address
ldaa #u immediate No EA
ldaa u direct EA is 8-bit address
ldaa U extended EA is a 16-bit address
ldaa m,r 5-bit index EA=r+m (-16 to 15)
ldaa v,+r pre-incr r=r+v, EA=r (1 to 8)
ldaa v,-r pre-dec r=r-v, EA=r (1 to 8)
ldaa v,r+ post-inc EA=r, r=r+v (1 to 8)
ldaa v,r- post-dec EA=r, r=r-v (1 to 8)
ldaa A,r Reg A offset EA=r+A, zero padded
ldaa B,r Reg B offset EA=r+B, zero padded
ldaa D,r Reg D offset EA=r+D
ldaa q,r 9-bit index EA=r+q
ldaa W,r 16-bit index EA=r+W
ldaa [D,r] D indirect EA={r+D}
ldaa [W,r] indirect EA={r+W}
Freescale 6812 addressing modes r is X, Y, SP, or PC

Pseudo op Meaning
org Where to put subsequent code
= equ set Define a constant symbol
dc.b db fcb .byte Allocate byte(s) with values
fcc Create an ASCII string
dc.w dw fdb .word Allocate word(s) with values
dc.l dl .long Allocate 32-bit with values
ds ds.b rmb .blkb Allocate bytes without init
ds.w .blkw Allocate word(s) without init

n is Metrowerks number

Vector n Interrupt Source Arm
$FFFE Reset None
$FFF8 3 Trap None
$FFF6 4 SWI None
$FFF0 7 Real time interrupt CRGINT.RTIE
$FFEE 8 Timer channel 0 TIE.C0I
$FFEC 9 Timer channel 1 TIE.C1I
$FFEA 10 Timer channel 2 TIE.C2I
$FFE8 11 Timer channel 3 TIE.C3I
$FFE6 12 Timer channel 4 TIE.C4I
$FFE4 13 Timer channel 5 TIE.C5I
$FFE2 14 Timer channel 6 TIE.C6I
$FFE0 15 Timer channel 7 TIE.C7I
$FFDE 16 Timer overflow TSCR2.TOI
$FFD6 20 SCI0 TDRE, RDRF SCI0CR2.TIE,RIE
$FFD4 21 SCI1 TDRE, RDRF SCI1CR2.TIE,RIE
$FFCE 24 Key Wakeup J PIEJ.[7,6,1,0]
$FFCC 25 Key Wakeup H PIEH.[7:0]
$FF8E 56 Key Wakeup P PIEP.[7:0]
Interrupt Vectors and interrupt number.

EE319K Spring 2010 Final Exam Version B Page 11 of 12

Jonathan Valvano May 17, 2010

Address Bit 7 6 5 4 3 2 1 Bit 0 Name
$0040 IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0 TIOS
$0044-5 Bit 15 14 13 12 11 10 Bit 0 TCNT
$0046 TEN TSWAI TSFRZ TFFCA 0 0 0 0 TSCR1
$004C C7I C6I C5I C4I C3I C2I C1I C0I TIE
$004D TOI 0 PUPT RDPT TCRE PR2 PR1 PR0 TSCR2
$004E C7F C6F C5F C4F C3F C2F C1F C0F TFLG1
$004F TOF 0 0 0 0 0 0 0 TFLG2
$0050-1 Bit 15 14 13 12 11 10 Bit 0 TC0
$0052-3 Bit 15 14 13 12 11 10 Bit 0 TC1
$0054-5 Bit 15 14 13 12 11 10 Bit 0 TC2
$0056-7 Bit 15 14 13 12 11 10 Bit 0 TC3
$0058-9 Bit 15 14 13 12 11 10 Bit 0 TC4
$005A-B Bit 15 14 13 12 11 10 Bit 0 TC5
$005C-D Bit 15 14 13 12 11 10 Bit 0 TC6
$005E-F Bit 15 14 13 12 11 10 Bit 0 TC7
$0082 ADPU AFFC ASWAI ETRIGLE ETRIGP ETRIG ASCIE ASCIF ATD0CTL2
$0083 0 S8C S4C S2C S1C FIFO FRZ1 FRZ0 ATD0CTL3
$0084 SRES8 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0 ATD0CTL4
$0085 DJM DSGN SCAN MULT 0 CC CB CA ATD0CTL5
$0086 SCF 0 ETORF FIFOR 0 CC2 CC1 CC0 ATD0STAT0
$008B CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0 ATD0STAT1
$008D Bit 7 6 5 4 3 2 1 Bit 0 ATD0DIEN
$008F PAD07 PAD06 PAD05 PAD04 PAD03 PAD02 PAD01 PAD00 PORTAD0
$0090-1 Bit 15 14 13 12 11 10 Bit 0 ATD0DR0
$0092-3 Bit 15 14 13 12 11 10 Bit 0 ATD0DR1
$0094-5 Bit 15 14 13 12 11 10 Bit 0 ATD0DR2
$0096-7 Bit 15 14 13 12 11 10 Bit 0 ATD0DR3
$0098-9 Bit 15 14 13 12 11 10 Bit 0 ATD0DR4
$009A-B Bit 15 14 13 12 11 10 Bit 0 ATD0DR5
$009C-D Bit 15 14 13 12 11 10 Bit 0 ATD0DR6
$009E-F Bit 15 14 13 12 11 10 Bit 0 ATD0DR7
$00C9 0 0 0 SBR12 SBR11 SBR10 SBR0 SCI0BD
$00CA LOOPS SCISWAI RSRC M WAKE ILT PE PT SCI0CR1
$00CB TIE TCIE RIE ILIE TE RE RWU SBK SCI0CR2
$00CC TDRE TC RDRF IDLE OR NF FE PF SCI0SR1
$00CD 0 0 0 0 0 BRK13 TXDIR RAF SCI0SR2
$00CF R7/T7 R6/T6 R5/T5 R4/T4 R3/T3 R2/T2 R1/T1 R0/T0 SCI0DRL
$00D0-1 0 0 0 SBR12 SBR11 SBR10 SBR0 SCI1BD
$00D2 LOOPS SCISWAI RSRC M WAKE ILT PE PT SCI1CR1
$00D3 TIE TCIE RIE ILIE TE RE RWU SBK SCI1CR2
$00D4 TDRE TC RDRF IDLE OR NF FE PF SCI1SR1
$00D5 0 0 0 0 0 BRK13 TXDIR RAF SCI1SR2
$00D7 R7/T7 R6/T6 R5/T5 R4/T4 R3/T3 R2/T2 R1/T1 R0/T0 SCI1DRL
$0240 PT7 PT6 PT5 PT4 PT3 PT2 PT1 PT0 PTT
$0242 DDRT7 DDRT6 DDRT5 DDRT4 DDRT3 DDRT2 DDRT1 DDRT0 DDRT
$0248 PS7 PS6 PS5 PS4 PS3 PS2 PS1 PS0 PTS
$024A DDRS7 DDRS6 DDRS5 DDRS4 DDRS3 DDRS2 DDRS1 DDRS0 DDRS
$0250 PM7 PM6 PM5 PM4 PM3 PM2 PM1 PM0 PTM
$0252 DDRM7 DDRM6 DDRM5 DDRM4 DDRM3 DDRM2 DDRM1 DDRM0 DDRM
$0258 PP7 PP6 PP5 PP4 PP3 PP2 PP1 PP0 PTP
$025A DDRP7 DDRP6 DDRP5 DDRP4 DDRP3 DDRP2 DDRP1 DDRP0 DDRP
$0260 PH7 PH6 PH5 PH4 PH3 PH2 PH1 PH0 PTH
$0262 DDRH7 DDRH6 DDRH5 DDRH4 DDRH3 DDRH2 DDRH1 DDRH0 DDRH
$0268 PJ7 PJ6 0 0 0 0 PJ1 PJ0 PTJ
$026A DDRJ7 DDRJ6 0 0 0 0 DDRJ1 DDRJ0 DDRJ

TSCR1 is the first 8-bit timer control register
 bit 7 TEN, 1 allows the timer to function normally, 0 means disable timer including TCNT
TIOS is the 8-bit output compare select register, one bit for each channel (1 = output compare, 0 = input capture)
TIE is the 8-bit output compare arm register, one bit for each channel (1 = armed, 0 = disarmed)

EE319K Spring 2010 Final Exam Version B Page 12 of 12

Jonathan Valvano May 17, 2010

TSCR2 is the second 8-bit timer control register
 bits 2,1,0 are PR2, PR1, PR0, which select the rate, let n be the 3-bit number formed by PR2, PR1, PR0
 without PLL TCNT is 8MHz/2n, with PLL TCNT is 24MHz/2n, n ranges from 0 to 7

PR2

PR1

PR0

Divide

by

E = 8 MHz E = 24 MHz
TCNT
period

TCNT
frequency

TCNT
period

TCNT
frequency

0 0 0 1 125 ns 8 MHz 41.7 ns 24 MHz
0 0 1 2 250 ns 4 MHz 83.3 ns 12 MHz
0 1 0 4 500 ns 2 MHz 167 ns 6 MHz
0 1 1 8 1 µs 1 MHz 333 ns 3 MHz
1 0 0 16 2 µs 500 kHz 667 ns 1.5 MHz
1 0 1 32 4 µs 250 kHz 1.33 µs 667 kHz
1 1 0 64 8 µs 125 kHz 2.67 µs 333 kHz
1 1 1 128 16 µs 62.5 kHz 5.33 µs 167 kHz

SCI1DRL 8-bit SCI1 data register
SCI1BD is 16-bit SCI1 baud rate register, let n be the 13-bit number Baud rate is EClk/n/16
SCI1CR1 is 8-bit SCI1 control register
 bit 4 M, Mode, 0 = One start, eight data, one stop bit, 1 = One start, eight data, ninth data, one stop bit
SCI1CR2 is 8-bit SCI1 control register
 bit 7 TIE, Transmit Interrupt Enable, 0 = TDRE interrupts disabled, 1 = interrupt whenever TDRE set
 bit 5 RIE, Receiver Interrupt Enable, 0 = RDRF interrupts disabled, 1 = interrupt whenever RDRF set
 bit 3 TE, Transmitter Enable, 0 = Transmitter disabled, 1 = SCI transmit logic is enabled
 bit 2 RE, Receiver Enable, 0 = Receiver disabled, 1 = Enables the SCI receive circuitry.
SCI1SR1 is 8-bit SCI1 status register
 bit 7 TDRE, Transmit Data Register Empty Flag
 Set if transmit data can be written to SCI1DRL
 Cleared by SCI1SR1 read with TDRE set followed by SCI1DRL write
 bit 5 RDRF, Receive Data Register Full
 set if a received character is ready to be read from SCI1DRL
 Clear the RDRF flag by reading SCI1SR1 with RDRF set and then reading SCI1DRL

