
EE319K Spring 2010 Final Exam Solution B Page 1

Jonathan Valvano May 17, 2010

(5) Question 1. 10k in parallel with 10k is 5k, using the rule R1 || R2 = (R1*R2)/(R1+R2). The total resistance is 15k.
Using the voltage divider equation V = 3.3V(5k/15k) = 1.1V. Another solution first uses Ohm’s Law to calculate current I
= 3.3V/15k, then uses Ohm’s Law again,

V = 5k*I = 3.3V(5k/15k) = 1.1V.

(5) Question 2.
(3) Part a) TCNT is running at 125ns times 4, which is 500ns. The output compare 7 interrupt occurs every 100 TCNT
cycles, which is 50 μsec.
(2) Part b) The sampling rate is determined by the interrupt frequency, 1/50μs is 20 kHz. According to the Nyquist
Theorem, the largest frequency component faithfully represented in the data in the buffer will be 10 kHz (one half the
sampling rate.)

(10) Question 3. The trick is you have to wait for both the rising and falling edges.
void main(void){ unsigned char count=0;
 DDRT |= 0x01; // PT0 is output
 DDRT &= ~0x02; // PT1 is input
 while(1){
 while((PTT&0x02)==0){}; // wait until rising edge
 // PT1 is now high
 count++;
 if((count&0x01)==0){ // count is even
 PTT |= 0x01; // pulse
 PTT &= ~0x01;
 }
 while(PTT&0x02){}; // wait until falling edge
 // PT1 is now low
}

(20) Question 4. We need a shared global pointer. Clear TDRE by read status, write data
unsigned char *Pt;
void SCI1_Output(unsigned char *Buffer){
 if(Buffer[0] == 0) return; // ignore empty buffers
 SCI1CR1 = 0;
 SCI1CR2 = 0x88; // or 8C, TIE arm and TE enable
 SCI1BD = 8000/16/5; // 8MHz/16/5kHz =100
 Pt = Buffer;
asm cli
}
void interrupt 21 SCI1Handler(void){ // TDRE trigger
 if((*Pt) == 0){ // disarm after last character sent
 SCI1CR2 = 0x08; // or 0x0C, TIE disarm and TE enable
 } else{
 if(SCI1SR1&0x80){ // read status with TDRE = 1
 SCI1DRL = (*Pt); // write data (acknowledge TDRE)
 Pt++;
 }
 }
}

(6) Question 5.
(2) Part a) Flow rate is -10 L/min is 25% between min and max, so ADC will be 4096*25% = 1024
(2) Part b) The resolution allowed by the ADC will be 40 L/min = 4096, which is about 40/4000 = 10/1000 = 1/100 = 0.01
L/min. I would use a decimal fixed-point resolution of 0.01 L/min.
(2) Part c) Since the ADC is 12 bits, I would use 16-bit precision for the fixed-point number system.

EE319K Spring 2010 Final Exam Solution B Page 2

Jonathan Valvano May 17, 2010

(4) Question 6. For the C bit, first convert to unsigned, -1 means 255. So 1+255 will cause an unsigned overflow, setting
the C bit to 1. The result in Register A will be 0, so the Z bit will be 1.

(5) Question 7. First fetch the four bytes the machine code, then read from PTT, and lastly write to PTT.

R/W Addr Data
R $4065 $1C
R $4066 $02
R $4067 $40
R $4068 $01
R $0240 $08
W $0240 $09

(5) Question 8. For each application choose the term that best matches.

Application Debugging term
Measuring where and when software executes Profile
Can be used record data during execution without
pausing

Scanpoint (similar to a dump)

Debugging with a small but inconsequential effect on
the system itself

Minimally intrusive

Adding a LCD to display important variables during
execution; the LCD is not part of the necessary
components of the system.

Monitor or highly intrusive

Flashing an LED letting the user know the software is
running

Heartbeat

(15) Question 9. Design and implement a FIFO that can hold up to 4 elements. Each element is 3 bytes. There will be three
subroutines: Initialization, Put one element into FIFO and Get one element from the FIFO.

(4) Part a) Show the RAM-based variables are available, and NO additional storage may be allocated
Fifo rmb 5*3 ; room for 4 elements
PutPt rmb 2 ;place to put
GetPt rmb 2 ;place to get

(4) Part b) Write an assembly function that initializes the FIFO.
Init ldx #Fifo
 stx PutPt
 sty GetPt
 rts

(4) Part c) Write an assembly function that puts one 3-byte element into the FIFO.
Put ldd #0
 ldx PutPt
 movw 0,y,2,x+ ;copy three bytes
 movb 2,y,1,x+
 cpx #Fifo+15 ;need to wrap
 bne Pok
 ldx #Fifo
Pok cpx GetPt ;check for full
 beq Pout ;skip if full
 stx PutPt ;data stored ok
 ldd #1 ;success
Pout rts

(3) Part d) Write an assembly function that gets one 3-byte element from the FIFO.
Get ldd #0

EE319K Spring 2010 Final Exam Solution B Page 3

Jonathan Valvano May 17, 2010

 ldx GetPt
 cpx PutPt
 beq Gout ;skip if empty
 movw 2,x+,0,y ;copy three bytes
 movb 1,x+,2,y
 cpx #Fifo+15 ;need to wrap
 bne Gok
 ldx #Fifo
Gok stx GetPt ;data retrieved ok
 ldd #1 ;success
Gout rts

(5) Question 10. The state sequence will be Stop,Go,Turn,Go,Turn… switching back and forth between Go and Turn. The
sequence of outputs will be 7,3,5,3,5,3,5,3,5,…

(10) Question 11. Consider output compare 7 interrupts.
(3) Part a) The three events are

Arm, C7I in TIE must be set by software
Enable, I=0 in CCR must be cleared by software, via the cli instruction
Trigger, C7F in TFLG1 must be set by hardware, when TCNT equals TC7

(4) Part b) The events that occur as the computer switches from foreground to background are
Finish instruction (can skip this step for full credit on the question)

 Push PC,Y,X,A,B,CCR on stack
 Set I=1 (to prevent interrupt from interrupting itself)
 Set PC = vector address at $FFE0, which will be TC7Handler
(3) Part c) Write assembly code to acknowledge an output compare 7 interrupt.
 ldaa #$80
 staa TFLG1
or
 movb #$80,TFLG1

(10) Question 12. In this question, you will translate the C code into 9S12 assembly.
void main(void){
unsigned short c;
unsigned char d;
 c = 0;
 for(;;){
 d = PTT;
 if(d&0x01){
 c = c+d;
 }
 }
}

main lds #$4000
 leas -3,sp ;allocate c,d
 tsy
c set 0
d set 2
 movw #0,c,Y
loop ldab PTT
 stab d,y
 bitb #1
 beq skip
 clra ;RegD = d
 addd c,y ;RegD = c+d
 std c,y ;c = c+d
skip bra loop
 org $FFFE
 fdb main

