
EE319K Spring 2010 Exam 2B Page 1

Jonathan W. Valvano March 2010

Procedure
 First, you will log onto the computer and download files from the web as instructed by the TAs.
Please put the three starter files called Exam2B.rtf Exam2B.uc Exam2B.io into the temp
folder on drive D. You are not allowed to archive this exam. Within TExaS open these files, put your
name on the first comment line. Before writing any code, please
assemble and run the system. You should get output like this figure on
the right (with no score). Each time you assemble, TExaS will create
a backup version of your program. If you wish to roll back to a
previous version, simply open one of the backup versions. If you do
roll back, I suggest you perform a SaveAs, so a new sequence of
backup files will be started.
 You will write one subroutine and one FSM controller. My main program will call your
subroutine, it will give you a grade on this subroutine, then my program will jump to your FSM
controller. During each loop of your FSM controller, you will call my grader subroutine and points
will be awarded. When my grader subroutine is done testing your FSM controller it will output a
performance score of 0 to 100. You should not modify my main program or my example data. When
you have written your subroutine and FSM controller, you should run my main program, which will
output the results to the TheCRT.rtf window. You are NOT allowed to create
global variables. After you are finished, raise you hand and wait for a TA. The TA
will direct you how and when to print your source code. You will run your program
in front of the TA, who will record your performance score on your exam paper.
Please sort all materials in this order: 1) this paper, 2) software source code
printout, and 3) all scratch work. These papers will be stapled together and turned
in. The scoring page is the only work that will be returned to you.

Part a) The first subroutine, called Addem, will add two 16-bit numbers and return
the 16-bit sum. You do not have to worry about overflow. One example is:

DataSet fdb 1000 ; first parameter
 fdb 2000 ; second parameter
Input parameter: The data set is passed call by reference on the stack
Output parameter: The result is returned as a value on the stack
Error conditions: none

A typical calling sequence is
 movw #DataSet,2,-sp ;call by reference on the stack
 leas -2,sp ;place for your 16-bit result
 jsr Addem ;your subroutine
 puld ;your result from the stack
 leas 2,sp ;balance stack

Part b) Next, you will write a controller for a Moore FSM. The inputs are on Port V bits 4 and 3, and
the outputs are on Port Y bits 4, 3, and 2. For example, if you are in the sleepy state the output is 4. If
the input is 2, then go to the happy state. The output values are shown in decimal. You will leave the IO
window open but minimized, because you will not interact with the IO window. The input/output
testing will be performed by my grader subroutine.

EE319K Spring 2010 Exam 2B Page 2

Jonathan W. Valvano March 2010

happy hungry

sleepy

0

1

0

1
0

1

2

2

33

2
3

Initial state

3-bit output
2-bit input

7 3

4

You may not use global variables. Allocate one local variable to hold the current
state pointer. Additional local variables can be allocated. For each local variable
please include binding, allocation and access (since your FSM controller loops over
and over, the local variables will never be deallocated. All I/O accesses should be performed in a
friendly manner. Your FSM controller does not execute rts (notice that my program invokes
YourFSMController with a jmp). There are five error codes my grader program may issue
a Your DDRV is correct but not friendly
b Your DDRY is correct but not friendly
c You wrote to the input port PTV
d Your PTY output is incorrect
e Your PTY output is correct but not friendly
My grader program will stop your FSM controller if the direction bits on any of the two inputs or three
outputs are incorrect. There are three parts to this FSM controller.

Part 1) Convert the Moore FSM graph to a linked data structure (a graph) and store it in EEPROM.

Part 2) Write assembly software to initialize the system. You should create local variable(s) with
binding, initialize ports, and initialize variables. The initial state is happy. Place your initialization
between YourFSMController and loop jsr Grader.

Part 3) Write assembly software to run the FSM. The proper sequence is output, input, and go to next
state. Place your FSM engine between loop jsr Grader and bsr loop. Notice that the grader
subroutine must be called before you execute the output, input, next sequence. The grader program will
change all the registers, so you have to store the state pointer in a local variable on the stack. Your FSM
controller will have the following structure.

; Part 1) put your data structure here
YourFSMController
; Part 2) put your initialization here
loop jsr Grader ;do not remove this line
; Part 3) put your output-input-next engine here
 bra loop ;do not remove this line

PV7
PV6
PV5
PV4
PV3
PV2
PV1
PV0

Input

PY7
PY6
PY5
PY4
PY3
PY2
PY1
PY0

Output

EE319K Spring 2010 Exam 2B Page 3

Jonathan W. Valvano March 2010

First:_______________ Last:_____________________

Scoring
Your grade will be based both on the numerical results returned by your program and on your
programming style. In particular, write code that is easy to understand, easy to debug, easy to change.
Please employ good labels, pretty structure, and good comments.

Program style,
 rtf file printed by TA

labels

pretty structure

comments,
name on RTF

Performance score, S=
Run by TA at the checkout

total

I promise to follow these rules
 This is a closed book exam. You must develop the software solution using the TExaS
simulator. You have 55 minutes, so allocate your time accordingly. You are allowed to bring only
some pencils (no books, laptops, cell phones, hats, disks, CDs, or notes). You will have to leave other
materials up front. Each person works alone (no groups). You have full access to TExaS, with all the
TExaS examples and the TExaS help. You may use the Window’s calculator. You sit in front of a
computer and edit/assemble/run/debug the programming assignment. You do not have access the
Freescale manuals, just the help system in TExaS. You may not take this paper, scratch paper, or
rough drafts out of the room. You may not access your network drive or the Internet. You are not
allowed to discuss this exam with other EE319K students until Thursday.

The following activities occurring during the exam will be considered scholastic dishonesty:

0) reading, writing or viewing any file outside of test files on the desktop
1) running any program from the PC other than TExaS or the Windows calculator,
2) communicating to other students by any means about this exam until Friday,
3) using material/equipment other than a pen/pencil.

Students caught cheating will be turned to the Dean of Students.

Signed: ____________________ March 2010

http://users.ece.utexas.edu/~valvano/Exam2B
user LED password red

