(5) Question 2. Which of the following techniques can be used to handle the problem of overflow?

D) Implement ceiling and floor.

F) Use promotion.

(5) Question 3. Consider the following two instructions

ldab #-2

subb #250

To determine the overflow (V) bit, first convert both to signed -128 to +127

ldab #-2

subb
$$\#-6$$
 -2 - (-6) is +4, so V=0

To determine the carry (C) bit, first convert both to unsigned 0 to +255

ldab #254

subb #250 254-250 is 4, so C=0

(10) Question 4. For the circuit, see Figure 2.17 (b). The desired operating point is 2.5V at 20 mA.

$$R = \frac{5 - V_d - V_{OL}}{I_d} = \frac{5 - 2.5 - 0.5}{0.02} = 100\Omega$$

(10) Question 5. \$000A is pushed first, \$500B is the return address. Both numbers are big endian

\$3FFC = \$50 <= SP \$3FFD = \$0B

\$3FFE = \$00

\$3FFF = \$0A

Part b) The subroutine will be executed **10 times** because X is pushed and pulled (eliminating the action caused by **inx**.) (5) Question 6. Fetch all machine bytes, then store D to memory. The effective address of 2, x is X+2.

R/W	Addr	Data	Changes to D,X,Y,S,PC,IR,EAR
R	\$5000	\$6C	IR = \$6C, PC = \$5001
R	\$5001	\$02	EAR = \$3002, PC = \$5002
W	\$3002	\$22	(RegD and RegX are not changed)
W	\$3003	\$33	

(20) Question 7. Write assembly code that waits until the switch at PT6 is pressed.

Wait ldaa PTT Wait brclr PTT,#\$40,Wait anda #\$40 beq Wait

(20) Question 8. Write assembly code that initializes all numbers to its index value. Implement

		#Buffer #0	;pointer ;index			#Buffer #0	;pointer ;index
loop	-	0,x		loop	sty iny	2,x+	
	inx iny				cpy blo	#100 loop	
	сру	#100 loop					

(20) Question 9. If Reg B is greater than 100, turn on the LED at PT5

LEDout	zmpb #100
	ole done
	oset PTT,#\$20
done	rts