(5) **Question 1.** The format is 8-bit signed. What is the hexadecimal representation of the value -50? First way using basis.

-128 needed
-50 + 128 = 78, 64 needed
78 - 64 = 14, 8 needed
14 - 8 = 6, 4 needed
6 - 4 = 2, 2 needed. Binary is 11001110, which is CE. Second way, first calculate +50 = 32 + 16 + 2, which in binary is 00110010. Next complement 11001101, then add one 11001110 = CE.

(5) **Question 2.** Which of the following techniques can be used to handle the problem of overflow?

D) Implement ceiling and floor.
F) Use promotion.

(5) **Question 3.** Consider the following two instructions

```
ldab #-2
subb #250
```

To determine the overflow (V) bit, first convert both to signed -128 to +127

```
ldab #-2
subb #-6
```

-2 - (-6) is +4, so V = 0

To determine the carry (C) bit, first convert both to unsigned 0 to +255

```
ldab #254
subb #250
```

254 - 250 is 4, so C = 0

(10) **Question 4.** For the circuit, see Figure 2.17 (b). The desired operating point is 2.5V at 20 mA.

\[
R = \frac{5 - V_d - V_{OL}}{I_d} = \frac{5 - 2.5 - 0.5}{0.02} = 100\Omega
\]

(10) **Question 5.** $000A$ is pushed first, $500B$ is the return address. Both numbers are big endian

| $3FFC = 50 | <= SP |
| $3FDD = 0B |
| $3FFE = 00 |
| $3FFF = 0A |

Part b) The subroutine will be executed 10 times because X is pushed and pulled (eliminating the action caused by inx.)

(5) **Question 6.** Fetch all machine bytes, then store D to memory. The effective address of $2,x$ is $X + 2$.

<table>
<thead>
<tr>
<th>R/W</th>
<th>Addr</th>
<th>Data</th>
<th>Changes to D, X, Y, S, PC, IR, EAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>$5000</td>
<td>$6C</td>
<td>IR = $6C, PC = $5001</td>
</tr>
<tr>
<td>R</td>
<td>$5001</td>
<td>$02</td>
<td>EAR = $3002, PC = $5002</td>
</tr>
<tr>
<td>W</td>
<td>$3002</td>
<td>$22</td>
<td>(RegD and RegX are not changed)</td>
</tr>
<tr>
<td>W</td>
<td>$3003</td>
<td>$33</td>
<td></td>
</tr>
</tbody>
</table>

(20) **Question 7.** Write assembly code that waits until the switch at PT6 is pressed.

```
Wait ldaa PTT
anda #$40
beq Wait
Wait brclr PTT,#$40,Wait
```

(20) **Question 8.** Write assembly code that initializes all numbers to its index value. Implement

```
loop sty 0,x
iny
iny
cpy #100
blo loop
```

```
loop sty 2,x+
iny
cpy #100
blo loop
```

(20) **Question 9.** If Reg B is greater than 100, turn on the LED at PT5

```
LEDout cmpb #100
ble done
bset PTT,#$20
done rts
```

Jonathan W. Valvano October 1, 2010 10:00am-10:50am