(4) Question 1. The basis elements are $1000 = 27$, $0100 = 9$, $0010 = 3$, and $0001 = 1$.

(3) Question 2. Answer true/false for each of the following three statements:

Part a) False, Flash EEPROM memory on the 9S12 is nonvolatile.

Part b) True, the order in which I add the numbers does affect the final value of the carry bit.

Part c) True, dropout error can occur on a logical right shift (e.g., $lsra$). Overflow can occur.

(4) Question 3. Consider $ldab \#-100$ $subb \#50$

Convert to signed (done), Subtract two signed: $-100 - 50 = -150$. Does not fit, so $V=1$.

Convert to unsigned: $-100 = -100 + 256 = 156$. Subtract unsigned: $156 - 50 = 106$. This fits, so $C=0$.

(4) Question 4. What is the binary representation of 8-bit signed number -10?

Method 1) $+10$ is 8+2 or 00001010. Negative is 2's complement. Complement 1111,0101, then add 1. 11110110

Method 2) Look at basis elements, need -128,64,32,16,4,2, so 11110110

Method 3) -11 is the same binary as $-10 + 256 = 246$. 246/16=15 remainder 6. So hex is $SF6$

(20) Question 5. The current through LED resistor 25mA = $(5 - 2.5)/R$. Solve for $R = 2.5V/25mA = 100\Omega$.

The pull down resistor on the switch could be 10kΩ or 100kΩ. I will even count 1kΩ or 1MΩ.

![9S12 circuit diagram]

(5) Question 6. The bus cycles occurring for $stx \$2000$

<table>
<thead>
<tr>
<th>R/W</th>
<th>Addr</th>
<th>Data</th>
<th>Changes to D,X,Y,S,PC,IR,EAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>5200</td>
<td>$7E$</td>
<td>PC=5201,IR=$7E$</td>
</tr>
<tr>
<td>R</td>
<td>5201</td>
<td>20</td>
<td>PC=5202</td>
</tr>
<tr>
<td>R</td>
<td>5202</td>
<td>00</td>
<td>PC=5203,EAR=2000</td>
</tr>
<tr>
<td>W</td>
<td>2000</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>2001</td>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>

(20) Question 7. Mask the bits of interest, then compare.

; fastest execution

Check $ldaa$ PTT ;read all 8 bits

 anda #45 ;look at just bits 6,2,0
 cmpa #01 ;expected value
 bne done
 bset PTT,$#80$;PT0=1, PT2=0, and PT6=0 so make PT7=1

done rts

; simple to understand

Check $ldaa$ PTT ;read all 8 bits

 bita #44 ;look at bits 6,2
 bne done ;skip if either PT6 or PT2 are 1
 bita #01 ;look at bit 0
 beq done ;skip if PT0 is 0
 oraa #80 ;PT0=1, PT2=0, and PT6=0 so make PT7=1
 staa PTT

done rts

; fewest number of instructions

Check $brsset$ PTT,$#44$,done ;skip if either PT6 or PT2 are 1

 $brclr$ PTT,$#01$,done ;skip if PT0 is 0
 bset PTT,$#80$;PT0=1, PT2=0, and PT6=0 so make PT7=1

done rts
(20) Question 8. Write an assembly language subroutine that adds two unsigned 16-bit numbers.

```
: simple to understand
org $2000 ;RAM
yval rmb 2
org $4000
add sty yval ;save in variable
tfr x,d
addd yval ;add two inputs
bcc ok
ldd #65535 ;ceiling on overflow
ok rts
```

; uses stack, so no global is required
add pshy ;save Y on stack
tfr x,d
addd 2,sp+ ;add two inputs
bcc ok
ldd #65535 ;ceiling on overflow
ok rts

(20) Question 9. A subroutine that counts the number of binary bits that are zero.

```
: simple to understand
Count clrb ;result
ldx #8 ;loop counter
loop lsra ;bit into carry (could shift right or left)
 bcs skip
 incb ;found a zero
skip dbne x,loop
rts
```

; fastest to execute, does not require a loop counter
Count clrb ;result
coma ;will be counting 1’s now
loop bpl skip ;bit7=0, do not count
incb ;found a 1 (means found a 0)
lsla ;move bits into bit7
bne loop ;done when A=0
rts