
EE319K Fall 2008 Exam 1B Page 1

Jonathan W. Valvano September 26, 2008 10:00am-10:50am

 First:_________________ Last:_____________________
 This is a closed book exam. You must put your answers on this piece of paper only. You have
50 minutes, so allocate your time accordingly. Please read the entire quiz before starting.
(5) Question 1. Assume an 8-bit signed integer format. If the binary is %11010100, what is the
corresponding decimal value of this signed integer?

(5) Question 2. What type of memory on the 9S12 is volatile? If there is more than one type, just list
one of them.

(5) Question 3. What will be the value of the carry (C) bit after executing the following?
 ldaa #110
 suba #140

(5) Question 4. What will be the value of the overflow (V) bit after executing the following?
 ldab #-90
 addb #-100

(5) Question 5. Consider the result of executing the following two 9S12 assembly instructions.

ldaa #$C2
asra

Part a) What is the value in Register A after two instructions are executed? Give the answer in
hexadecimal or in binary.

Part b) What is the value of the C bit after these two instructions are executed?

EE319K Fall 2008 Exam 1B Page 2

Jonathan W. Valvano September 26, 2008 10:00am-10:50am

(5) Question 6. Assume we wish to begin execution at $5000. Show the assembly code that
establishes the reset vector.

(10) Question 7. Assume PC is $4210, and the SP is initially $3FF6. Show the simplified bus cycles
occurring when the bsr instruction is executed. In the “changes” column, specify which registers get
modified during that cycle, and the corresponding new values. Do not worry about changes to the
CCR. Just show the one instruction.
$4210 07E0 bsr MyFunction

R/W Addr Data Changes to A,B,X,Y,S,PC,IR,EAR

For questions 8, 9 and 10, don’t worry about initializing the variables, establishing the reset vector,
creating a main program, or initializing the stack.
(20) Question 8. We wish to make PT5 an output and PT2 an input. You may use these definitions.
PTT equ $0240
DDRT equ $0242
Part a) Write assembly code that makes PT5 an output and PT2 an input. Comments are required.

Part b) Write assembly code that sets PT5 to 1 if PT2 is 0, and does not change PT5 if PT2 is 1.
Comments are required. +2 point bonus if both parts of Q8 are friendly.

EE319K Fall 2008 Exam 1B Page 3

Jonathan W. Valvano September 26, 2008 10:00am-10:50am

(20) Question 9. You will write a subroutine with two 8-bit unsigned inputs and one 8-bit unsigned
output. The inputs are passed in using RegA and RegB. The result is returned in RegA. The subroutine
implements the RegA=RegA-RegB. Implement the floor operation, such that if an unsigned overflow
occurs, set the output to the minimum value, RegA=0.
;*****Sub1 subroutine*********************
;Inputs: RegA is the first number
; RegB is the second number
;Outputs: RegA is the difference of the first-second numbers
; RegA is returned as 0 if an unsigned overflow occurs
Sub1

(20) Question 10. There are two 16-bit signed variables, called Input and Output. Write assembly
code that checks the Input, and if Input is less than -100, then the code sets the Output to 200.
Conversely if Input is greater than or equal to -100, then the code sets Output to 0.
 org $0800
Input rmb 2 ;signed 16-bit integer
Output rmb 2 ;signed 16-bit integer
 org $4000

EE319K Fall 2008 Exam 1B Page 4

Jonathan W. Valvano September 26, 2008 10:00am-10:50am

aba 8-bit add RegA=RegA+RegB
abx unsigned add RegX=RegX+RegB
aby unsigned add RegY=RegY+RegB
adca 8-bit add with carry to RegA
adcb 8-bit add with carry to RegB
adda 8-bit add to RegA
addb 8-bit add to RegB
addd 16-bit add to RegD
anda 8-bit logical and to RegA
andb 8-bit logical and to RegB
andcc 8-bit logical and to RegCC
asl/lsl 8-bit left shift Memory
asla/lsla 8-bit left shift RegA
aslb/lslb 8-bit arith left shift RegB
asld/lsld 16-bit left shift RegD
asr 8-bit arith right shift Memory
asra 8-bit arith right shift to RegA
asrb 8-bit arith right shift to RegB
bcc branch if carry clear
bclr bit clear in memory
 bclr PTT,#$01
bcs branch if carry set
beq branch if result is zero (Z=1)
bge branch if signed ≥
bgnd enter background debug mode
bgt branch if signed >
bhi branch if unsigned >
bhs branch if unsigned ≥
bita 8-bit and with RegA, sets CCR
bitb 8-bit and with RegB, sets CCR
ble branch if signed ≤
blo branch if unsigned <
bls branch if unsigned ≤
blt branch if signed <
bmi branch if result is negative (N=1)
bne branch if result is nonzero (Z=0)
bpl branch if result is positive (N=0)
bra branch always
brclr branch if bits are clear
 brclr PTT,#$01,loop
brn branch never
brset branch if bits are set
 brset PTT,#$01,loop
bset bit set clear in memory
 bset PTT,#$04
bsr branch to subroutine
bvc branch if overflow clear
bvs branch if overflow set
call subroutine in expanded memory
cba 8-bit compare RegA with RegB
clc clear carry bit, C=0
cli clear I=0, enable interrupts
clr 8-bit memory clear
clra RegA clear
clrb RegB clear
clv clear overflow bit, V=0
cmpa 8-bit compare RegA with memory
cmpb 8-bit compare RegB with memory
com 8-bit logical complement to memory
coma 8-bit logical complement to RegA
comb 8-bit logical complement to RegB
cpd 16-bit compare RegD with memory
cpx 16-bit compare RegX with memory
cpy 16-bit compare RegY with memory
daa 8-bit decimal adjust accumulator
dbeq decrement and branch if result=0
 dbeq Y,loop
dbne decrement and branch if result≠0
 dbne A,loop
dec 8-bit decrement memory
deca 8-bit decrement RegA
decb 8-bit decrement RegB
des 16-bit decrement RegSP
dex 16-bit decrement RegX

dey 16-bit decrement RegY
ediv RegY=(Y:D)/RegX, unsigned divide
edivs RegY=(Y:D)/RegX, signed divide
emacs 16 by 16 signed mult, 32-bit add
emaxd 16-bit unsigned maximum in RegD
emaxm 16-bit unsigned maximum in memory
emind 16-bit unsigned minimum in RegD
eminm 16-bit unsigned minimum in memory
emul RegY:D=RegY*RegD unsigned mult
emuls RegY:D=RegY*RegD signed mult
eora 8-bit logical exclusive or to RegA
eorb 8-bit logical exclusive or to RegB
etbl 16-bit look up and interpolation
exg exchange register contents
 exg X,Y
fdiv unsigned fract div, X=(65536*D)/X
ibeq increment and branch if result=0
 ibeq Y,loop
ibne increment and branch if result≠0
 ibne A,loop
idiv 16-bit unsigned div, X=D/X, D=rem
idivs 16-bit signed divide, X=D/X, D=rem
inc 8-bit increment memory
inca 8-bit increment RegA
incb 8-bit increment RegB
ins 16-bit increment RegSP
inx 16-bit increment RegX
iny 16-bit increment RegY
jmp jump always
jsr jump to subroutine
lbcc long branch if carry clear
lbcs long branch if carry set
lbeq long branch if result is zero
lbge long branch if signed ≥
lbgt long branch if signed >
lbhi long branch if unsigned >
lbhs long branch if unsigned ≥
lble long branch if signed ≤
lblo long branch if unsigned <
lbls long branch if unsigned ≤
lblt long branch if signed <
lbmi long branch if result is negative
lbne long branch if result is nonzero
lbpl long branch if result is positive
lbra long branch always
lbrn long branch never
lbvc long branch if overflow clear
lbvs long branch if overflow set
ldaa 8-bit load memory into RegA
ldab 8-bit load memory into RegB
ldd 16-bit load memory into RegD
lds 16-bit load memory into RegSP
ldx 16-bit load memory into RegX
ldy 16-bit load memory into RegY
leas 16-bit load effective addr to SP
leax 16-bit load effective addr to X
leay 16-bit load effective addr to Y
lsr 8-bit logical right shift memory
lsra 8-bit logical right shift RegA
lsrb 8-bit logical right shift RegB
lsrd 16-bit logical right shift RegD
maxa 8-bit unsigned maximum in RegA
maxm 8-bit unsigned maximum in memory
mem determine the membership grade
mina 8-bit unsigned minimum in RegA
minm 8-bit unsigned minimum in memory
movb 8-bit move memory to memory
 movb #100,PTT
movw 16-bit move memory to memory
 movw #13,SCIBD
mul RegD=RegA*RegB
neg 8-bit 2's complement negate memory
nega 8-bit 2's complement negate RegA
negb 8-bit 2's complement negate RegB

EE319K Fall 2008 Exam 1B Page 5

Jonathan W. Valvano September 26, 2008 10:00am-10:50am

oraa 8-bit logical or to RegA
orab 8-bit logical or to RegB
orcc 8-bit logical or to RegCC
psha push 8-bit RegA onto stack
pshb push 8-bit RegB onto stack
pshc push 8-bit RegCC onto stack
pshd push 16-bit RegD onto stack
pshx push 16-bit RegX onto stack
pshy push 16-bit RegY onto stack
pula pop 8 bits off stack into RegA
pulb pop 8 bits off stack into RegB
pulc pop 8 bits off stack into RegCC
puld pop 16 bits off stack into RegD
pulx pop 16 bits off stack into RegX
puly pop 16 bits off stack into RegY
rev Fuzzy logic rule evaluation
revw weighted Fuzzy rule evaluation
rol 8-bit roll shift left Memory
rola 8-bit roll shift left RegA
rolb 8-bit roll shift left RegB
ror 8-bit roll shift right Memory
rora 8-bit roll shift right RegA
rorb 8-bit roll shift right RegB
rtc return sub in expanded memory
rti return from interrupt
rts return from subroutine
sba 8-bit subtract RegA-RegB
sbca 8-bit sub with carry from RegA
sbcb 8-bit sub with carry from RegB
sec set carry bit, C=1
sei set I=1, disable interrupts
sev set overflow bit, V=1
sex sign extend 8-bit to 16-bit reg
 sex B,D

staa 8-bit store memory from RegA
stab 8-bit store memory from RegB
std 16-bit store memory from RegD
sts 16-bit store memory from SP
stx 16-bit store memory from RegX
sty 16-bit store memory from RegY
suba 8-bit sub from RegA
subb 8-bit sub from RegB
subd 16-bit sub from RegD
swi software interrupt, trap
tab transfer A to B
tap transfer A to CC
tba transfer B to A
tbeq test and branch if result=0
 tbeq Y,loop
tbl 8-bit look up and interpolation
tbne test and branch if result≠0
 tbne A,loop
tfr transfer register to register
 tfr X,Y
tpa transfer CC to A
trap illegal instruction interrupt
trap illegal op code, or software trap
tst 8-bit compare memory with zero
tsta 8-bit compare RegA with zero
tstb 8-bit compare RegB with zero
tsx transfer S to X
tsy transfer S to Y
txs transfer X to S
tys transfer Y to S
wai wait for interrupt
wav weighted Fuzzy logic average
xgdx exchange RegD with RegX
xgdy exchange RegD with RegY

example addressing mode Effective Address
ldaa #u immediate No EA
ldaa u direct EA is 8-bit address (0 to 255)
ldaa U extended EA is a 16-bit address
ldaa m,r 5-bit index EA=r+m (-16 to 15)
ldaa v,+r pre-increment r=r+v, EA=r (1 to 8)
ldaa v,-r pre-decrement r=r-v, EA=r (1 to 8)
ldaa v,r+ post-increment EA=r, r=r+v (1 to 8)
ldaa v,r- post-decrement EA=r, r=r-v (1 to 8)
ldaa A,r Reg A offset EA=r+A, zero padded
ldaa B,r Reg B offset EA=r+B, zero padded
ldaa D,r Reg D offset EA=r+D
ldaa q,r 9-bit index EA=r+q (-256 to 255)
ldaa W,r 16-bit index EA=r+W (-32768 to 65535)
ldaa [D,r] D indirect EA={r+D}
ldaa [W,r] indirect EA={r+W} (-32768 to 65535)
Freescale 6812 addressing modes r is X, Y, SP, or PC

Pseudo op meaning
 org Specific absolute address to put subsequent object code
 = equ Define a constant symbol
 set Define or redefine a constant symbol
 dc.b db fcb .byte Allocate byte(s) of storage with initialized values
 fcc Create an ASCII string (no termination character)
 dc.w dw fdb .word Allocate word(s) of storage with initialized values
 dc.l dl .long Allocate 32-bit long word(s) of storage with initialized values
 ds ds.b rmb .blkb Allocate bytes of storage without initialization
 ds.w .blkw Allocate bytes of storage without initialization
 ds.l .blkl Allocate 32-bit words of storage without initialization

EE319K Fall 2008 Exam 1B Page 6

Jonathan W. Valvano September 26, 2008 10:00am-10:50am

BSR Branch to Subroutine BSR

Operation: (SP) – $0002 ⇒ SP

RTNH : RTNL ⇒ M(SP) : M(SP+1)
(PC) + Rel ⇒ PC

Description: Sets up conditions to return to normal program flow, then transfers control to a
subroutine. Uses the address of the instruction after the BSR as a return address.
Decrements the SP by two, to allow the two bytes of the return address to be stacked. Stacks
the return address (the SP points to the high-order byte of the return address). Branches to a
location determined by the branch offset. Subroutines are normally terminated with an RTS
instruction, which restores the return address from the stack.
Source Form Address Mode Object Code Access Detail HCS12
BSR rel8 REL 07 rr SPPP

