(4) Question 1. The basis elements are $1000 = 27$, $0100 = 9$, $0010 = 3$, and $0001 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 34$.

(3) Question 2. Answer true/false for each of the following three statements

Part a) True, the stack pointer (SP) points to the data on top of the stack.

Part b) False, the order in which I add the numbers does not affect the final value of RegA.

Part c) False, drop out error cannot occur on a logical left shift (e.g., $1sl_a$). Overflow can occur.

(4) Question 3. Consider $ldab \#-6 \quad subb \#251$

Convert to signed, $251 = 251 - 256 = -5$. Subtract two signed $-6 - (-5) = -1$. This fits so $V = 0$.

Convert to unsigned $-6 = -6 + 256 = 250$. Subtract unsigned $250 - 251 = -1$. Does not fit, $C = 0$.

(4) Question 4. What is the binary representation of an 8-bit signed number -11?

Method 1) +11 is 8+2+1 or 00001011. Negative is 2’s complement. Complement 1111,0100, then add 1. \textbf{11110101}

Method 2) Look at basis elements, need -128,64,32,16,4,1, so \textbf{11110101}

Method 3) -11 is the same binary as -11+256 = 245. 245/16=15 remainder 5. So hex is $\$F5$

(20) Question 5. The current through LED resistor 25mA = (5-2-0.5)/R. Solve for R = 2.5V/25mA = 100\,\Omega$. The pull down resistor on the switch could be 10k\,\Omega or 100k\,\Omega. I will even count 1k\,\Omega or 1M\,\Omega.

(5) Question 6. The bus cycles occurring for \textbf{stx 3000}

<table>
<thead>
<tr>
<th>R/W</th>
<th>Addr</th>
<th>Data</th>
<th>Changes to D,X,Y,S,PC,IR,EAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>4200</td>
<td>$7E$</td>
<td>PC=4201,IR=$7E$</td>
</tr>
<tr>
<td>R</td>
<td>4201</td>
<td>30</td>
<td>PC=4202</td>
</tr>
<tr>
<td>R</td>
<td>4202</td>
<td>00</td>
<td>PC=4203,EAR=3000</td>
</tr>
<tr>
<td>W</td>
<td>3000</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>3001</td>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>

(20) Question 7. Mask the bits of interest, then compare.

; fastest execution
Check ldaa PTT ;read all 8 bits
 anda #$45 ;look at just bits 6,2,0
cmpa #$01 ;expected value
 bne done
 bset PTT,$#80 ;PT0=1, PT2=0, and PT6=0 so make PT7=1
done
rts

; simple to understand
Check ldaa PTT ;read all 8 bits
 bita #$44 ;look at bits 6,2
 bne done ;skip if either PT6 or PT2 are 1
 bita #$01 ;look at bit 0
 beq done ;skip if PT0 is 0
 oraa #$80 ;PT0=1, PT2=0, and PT6=0 so make PT7=1
 staa PTT
done
rts

; fewest number of instructions
Check brset PTT,$#44,done ;skip if either PT6 or PT2 are 1
 brclr PTT,$#01,done ;skip if PT0 is 0
 bset PTT,$#80 ;PT0=1, PT2=0, and PT6=0 so make PT7=1
done
rts
(20) Question 8. Write an assembly language subroutine that adds two unsigned 16-bit numbers.

; simple to understand
org $2000 ;RAM
yval rmb 2
org $4000
add sty yval ;save in variable
tfr x,d
add yval ;add two inputs
bcc ok
ldd #65535 ;ceiling on overflow
ok rts

; uses stack, so no global is required
add pshy ;save Y on stack
tfr x,d
add 2,sp+ ;add two inputs
bcc ok
ldd #65535 ;ceiling on overflow
ok rts

(20) Question 9. A subroutine that counts the number of binary bits that are zero.

; simple to understand
Count clrb ;result
ldx #8 ;loop counter
loop lsra ;bit into carry (could shift right or left)
 bcs skip
 incb ;found a zero
skip dbne x,loop
rts

; fastest to execute, does not require a loop counter
Count clrb ;result
coma ;will be counting 1’s now
loop bpl skip ;bit7=0, do not count
 incb ;found a 1 (means found a 0)
 lsla ;move bits into bit7
 bne loop ;done when A=0
rts