First:	Last:
This is a closed book exam. You must	put your answers on this piece of paper only. You
have 50 minutes, so allocate your time accordin	ngly. Please read the entire quiz before starting.

(5) Question 1. Answer A,B,C,D,E	
(5) Question 2. Answer \$00 to \$FF	
(4) Part 3a. Specify RegB	
(2) Part 3b. Specify 0 or 1	
(2) Part 3c. Specify 0 or 1	
(2) Part 3d. Specify 0 or 1	
(2) Part 3e. Specify 0 or 1	
(10) Question 4. Specify D	
(10) Question 5. Show the machine code	
(10) Question 6. What value is pushed	
(10) Question 7 Simplified memory cycles (v	(an max and not need all 5 antina)

(10) Question 7. Simplified memory cycles (you may or may not need all 5 entries)

R/W	Addr	Data	changes

(40) Ques	tion 8.	Write the assembly language program that implements a thermostat.
PORTA	equ	\$0000
PORTB	equ	\$0001
DDRA	equ	\$0002
DDRB	equ	\$0003

These two tables interpret indexed-mode machine codes	de machine codes
---	------------------

rr	register
00	Х
01	Y
10	SP
11	PC

postbyte, xb	syntax	mode	explanations
rr000000	,r	IDX	5-bit constant, n=0
rr00nnnn	n,r	IDX	5-bit constant, n=0 to +15
rr01nnnn	-n,r	IDX	5-bit constant, n=-16 to -1
rr100nnn	n,+r	IDX	pre-increment, n=1 to 8
rr101nnn	n,-r	IDX	pre-decrement, n=1 to 8
rr110nnn	n,r+	IDX	post-increment, n=1 to 8
rr111nnn	n,r-	IDX	post-decrement, n=1 to 8
111rr100	A,r	IDX	Reg A accumulator offset
111rr101	B,r	IDX	Reg B accumulator offset
111rr110	D,r	IDX	Reg D accumulator offset
111rr000 ff	n,r	IDX1	9-bit cons, n 16 to 255
111rr001 ff	-n,r	IDX1	9-bit const, n -256 to -16
111rr010 eeff	n,r	IDX2	16-bit const, any 16-bit n
111rr111	[D,r]	[D,IDX]	Reg D offset, indirect
111rr011 eeff	[n,r]	[IDX2]	16-bit constant, indirect

ORAB

Inclusive OR B

Operation: $(B) + (M) \Rightarrow B$

Description: Performs bitwise logical inclusive OR between the content of accumulator B and the content of memory location M. The result is placed in B. Each bit of B after the operation is the logical inclusive OR of the corre-

sponding bits of M and of B before the operation.

Condition Codes and Boolean Formulas:

s	х	н	1	Ν	Ζ	۷	С
(etc)	Ŧ	-	-	Δ	Δ	0	+

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is \$00; cleared otherwise.

Source Form	Address Mode	Object Code	Cycles	Access Detail
ORAB #opr8i	IMM	CA ii	1	P
ORAB opr8a	DIR	DA dd	3	rfP
ORAB opr16a	EXT	FA hh 11	3	rOP
ORAB oprx0_xysp	IDX	EA xb	3	rfP
ORAB oprx9,xysp	IDX1	EA xb ff	3	rPO
ORAB oprx16,xysp	IDX2	EA xb ee ff	4	frPP
ORAB [D, xysp]	[D,IDX]	EA xb	6	fIfrfP
ORAB [oprx16,xysp]	[IDX2]	EA xb ee ff	6	fIPrfP

V. 0. Cleared

aba 8-bit add RegA+RegB unsigned add RegX+RegB abx unsigned add RegY+RegB aby adca 8-bit add with carry to RegA adcb 8-bit add with carry to RegB adda 8-bit add to RegA addb 8-bit add to RegB addd 16-bit add to RegD anda 8-bit logical and to RegA andb 8-bit logical and to RegB andcc 8-bit logical and to RegCC asl/lsl 8-bit left shift Memory asla/lsla 8-bit left shift RegA aslb/lslb 8-bit arith left shift RegB asld/lsld 16-bit left shift RegD 8-bit arith right shift Memory asr asra 8-bit arith right shift asrb 8-bit arith right shift to RegB bcc branch if carry clear bclr clear bits in memory branch if carry set bcs branch if result is zero (Z=1) beq branch if signed = bge bynd enter background debug mode bgt branch if signed > branch if unsigned > bhi bhs branch if unsigned = 8-bit and with RegA, sets CCR bita bitb 8-bit and with RegB, sets CCR ble branch if signed = branch if unsigned < blo bls branch if unsigned = branch if signed < blt branch if result is negative (N=1) bmi branch if result is nonzero (Z=O) bne bpl branch if result is positive (N=0) branch always bra brclr branch if bits are clear, branch never brn brset branch if bits are set bset set bits in memory bsr branch to subroutin branch to subroutine bsr branch if overflow clear bvc branch if overflow set bvs call subroutine in expanded memory 8-bit compare RegA with RegB cba clc clear carry bit, C=0 cli clear I=0, enable interrupts 8-bit Memory clear clr clra RegA clear clrb RegB clear ClipRegB clearmaxaclvclear overflow bit, V=0maxmcmpa8-bit compare RegA with memorymemcmpb8-bit compare RegB with memoryminacom8-bit logical complement to Memoryminmcoma8-bit logical complement to RegAmovbcomb8-bit logical complement to RegBmovbcomb8-bit logical complement to RegBmovbcpd16-bit compare RegD with memorymulcpx16-bit compare RegZ with memorynegcpy16-bit compare RegY with memorynegdaa8-bit decimal adjust accumulatornegb clear overflow bit, V=0 daa 8-bit decimal adjust accumulator dbeq decrement and branch if result=0 dbne decrement and branch if result?0 8-bit decrement memory dec deca 8-bit decrement RegA decb 8-bit decrement RegB 16-bit decrement RegSP des 16-bit decrement RegX dex dey 16-bit decrement RegY ediv RegY=(Y:D)/RegX, unsigned divide edivs RegY=(Y:D)/RegX, signed divide emacs 16 by 16 signed mult, 32-bit add emaxd 16-bit unsigned maximum in RegD emaxm16-bitunsigned maximum in memorypuldpop 16bitsoffstackinto RegDeminm16-bitunsigned minimum in RegDpulxpop 16bitsoffstackinto RegXeminm16-bitunsigned minimum in memorypulypop 16bitsoffstackinto RegX

emul RegY:D=RegY*RegD unsigned mult emuls ReqY:D=ReqY*ReqD signed mult emuls Regivernegt Regimented eora 8-bit logical exclusive or to Reg eorb 8-bit logical exclusive or to Reg etbl 16-bit look up and interpolation exg exchange register contents fdiv 16-bit unsigned fractional divide ibeq increment and branch if result=0 8-bit logical exclusive or to RegA 8-bit logical exclusive or to RegB 16-bit unsigned fractional divide ibeq increment and branch if recu-ibne increment and branch if recu-idiv 16-bit unsigned divide idivs 16-bit by 16-bit signed divide inc 8-bit increment memory inca 8-bit increment RegA incb 8-bit increment RegB ins 16-bit increment RegSP inx 16-bit increment RegY iny 16-bit increment RegY jmp jump always jsr jump to subroutine lbcc long branch if carry clear 'bes long branch if carry set in' if result is zero increment and branch if result?0 lbeq long branch if result is zero long branch if signed = lbge lbgt long branch if signed > lbhi long branch if unsigned > lbhs long branch if unsigned = lble lblo long branch if signed = long branch if unsigned < lbls long branch if unsigned = lblt long branch if signed < lbmi long branch if result is negative lbne long branch if result is nonzero lbpl long branch if result is positive lbra lbra lbrn lbvc lbra long branch always long branch never long branch if overflow clear lbvs long branch if overflow set 8-bit load memory into RegA 8-bit load memory into RegB ldaa Idab 8-bit load memory into RegB Idd 16-bit load memory into RegD Ids 16-bit load memory into RegSP Idx 16-bit load memory into RegX Idy 16-bit load memory into RegY leas 16-bit load effective addr to SP leax 16-bit load effective addr to X leay 16-bit load effective addr to Y lear 6-bit load effective addr to Y ldab lsr 8-bit logical right shift memory lsra lsrb 8-bit logical right shift RegA 8-bit logical right shift RegB lsrd 16-bit logical right shift RegD maxa 8-bit unsigned maximum in RegA maxm 8-bit unsigned maximum in memory determine the membership grade mina 8-bit unsigned minimum in RegA 8-bit unsigned minimum in memory minm movb 8-bit move memory to memory mov~ movw 16-bit move memory to memory mul RegD=RegA*RegB 8-bit 2's complement negate memory 8-bit 2's complement negate RegA nega negb 8-bit 2's complement negate RegB 8-bit logical or to RegA oraa orab 8-bit logical or to RegB 8-bit logical or to RegCC orcc psha push 8-bit RegA onto stack pshb push 8-bit RegB onto stack pshc push 8-bit RegCC onto stack pshd push 16-bit RegD onto stack pshx push 16-bit RegX onto stack push 16-bit RegY onto stack pshy pula pop 8 bits off stack into RegA pulb pop 8 bits off stack into RegA pulc pop 8 bits off stack into RegCC

subb	8-bit sub from RegB
subd	3
swi	
tab	transfer A to B
	transfer A to CC
t.ba	
	test and branch if result=0
tbl	8-bit look up and interpolation
t.bne	
tfr	transfer register to register
tpa	transfer CC to A
trap	
trap	
tst	
tsta	
tstb	
tsx	
	transfer S+1 to Y
-	transfer X-1 to S
	transfer Y-1 to S
wai	wait for interrupt
wav	weighted Fuzzy logic average
xqdx	
xqdy	exchange ReqD with ReqY

example	addressing mode	Effective Address
ldaa #u	immediate	EA is 8-bit address (0 to 255)
ldaa u	direct	EA is 8-bit address (0 to 255)
ldaa U	extended	EA is a 16-bit address
ldaa m,r	5-bit index	EA=r+m (-16 to 15)
ldaa v,+r	pre-increment	r=r+v, EA=r (1 to 8)
ldaa v,-r	pre-decrement	r=r-v, EA=r (1 to 8)
ldaa v,r+	post-increment	EA=r, r=r+v (1 to 8)
ldaa v,r-	post-decrement	EA=r, r=r-v (1 to 8)
ldaa A,r	Reg A offset	EA=r+A, zero padded
ldaa B,r	Reg B offset	EA=r+B, zero padded
ldaa D,r	Reg D offset	EA=r+D
ldaa q,r	9-bit index	EA=r+q (-256 to 255)
ldaa W,r	16-bit index	EA=r+W (-32768 to 65535)
ldaa [D,r]	D indirect	EA={r+D}
ldaa [W,r]	indirect	$EA=\{r+W\}$ (-32768 to 65535)

Motorola 6812 addressing modes

(5) **Question 1.** Which term best describes a memory that retains its information when power is removed and restored?

A) nonvolatile B) volatile C) memory mapped D) friendly E) none of these
(5) Question 2. What is the 8-bit unsigned hexadecimal representation of the number 171?
Question 3. Consider the result of executing the following two 6812 assembly instructions.

ldab #101 subb #110

(4) **Part a**) What is the value in Register B after these two instructions are executed? Give your answer in unsigned decimal (0 to 255).

(2) Part b) What will be the value of the carry (C) bit?

(2) Part c) What will be the value of the overflow (V) bit?

(2) Part d) What will be the value of the zero (Z) bit?

(2) Part e) What will be the value of the negative (N) bit?

(10) Question 4. The range of values spans 0 to 0.255 (2.55e-1), and you will use an 8-bit unsigned decimal fixed-point format. What resolution **D** would be best?

(10) Question 5. Show the machine code generated by the instruction

	OI	cab -	20,у				
(10) Qu	estion 6.	When t	he bsr	sub instruc	ction is e	xecuted	, what value is pushed on the stack?
\$F120	CF0C00] [2](0){OP	}main	lds	#\$0C00
\$F123	87	[1](2){0	}	clra	
\$F124	0766	[4](3){PPPS	}loop	bsr	sub
\$F126	20FC	[3](7){PPP	}	bra	loop
					; Pu	rpose	: increment a number
					; Inj	put:	RegA, range 0 to 255
					; Ou	tput:	RegA=Input+1
					; Er:	rors:	overflow if 255
\$F18C				10){O	}sub	inca	
\$F18D	3D	[5](11){Ufppp	P }	rts	
\$FFFE						org	\$fffe
\$FFFE	F120					fdb 1	main
(10) 0		~.		11.01 1			

(10) Question 7. Give the simplified memory cycles produced when the following one instruction is executed. Assume the PC contains \$F129, Reg Y equals \$0980, Reg B is 0, and each memory location from \$0900 to \$09FF contains a value equal to the least significant byte of its address. I.e., \$0900 contains \$00, \$0901 contains \$01, \$0902 contains \$02 etc. Show changes during the cycle they occur to the memory, PC, Y, B, IR, and EAR. Ignore changes to the CCR.

\$F129 EA4A 3{rfP } orab 10,y

(40) Question 8. Write the assembly language program that implements a thermostat. PORTB is an 8bit output that controls the heater to the room. If you set PORTB to \$00, the heater will go off. If you set PORTB to \$FF, then the heater will turn on. PORTA is an 8-bit input containing the current temperature in unsigned binary fixed-point format with a resolution of 2^{-1} °F. The range is 0°F to 127.5°F. For example, if the room temperature is 70°F, then reading PORTA will return 140 (decimal). If the temperature goes below 68°F, turn the heater on. If it goes above 72°F, turn the heater off.

<u> </u>										1			1 - 11		
00	10	20	30	40	50	60	70	80	90	A0	BO	CO	D0	E0	F0
0,X	-16,X	1,+X	1,X+	0.Y	-16,Y	1,+Y	1,Y+	0,SP	-16,SP	1,+SP	1,SP+	0,PC	-16,PC	n,X 9b const	n,SP 9b const
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const		1. And the second second
01	11	21	31	41	51	61	71	81	91	A1	B1	C1	D1	E1	F1
1,X	-15,X	2,+X	2,X+	1,Y	-15,Y	2,+Y	2,Y+	1,SP	-15,SP	2,+SP	2,SP+	1,PC 5b const	-15,PC 5b const	-n,X 9b const	-n,SP 9b const
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc				
02	12	22	32	42	52	62	72	82	92	A2	B2	C2	D2	E2	F2
2,X	-14,X	3,+X	3,X+	2,Y	-14,Y	3,+Y	3,Y+	2,SP	-14,SP 5b const	3,+SP pre-inc	3,SP+ post-inc	2,PC 5b const	-14,PC 5b const	n,X 16b const	n,SP 16b const
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const			1				
03	13	23	33	43	53	63	73	83	93	A3	B3	C3	D3	E3	F3
3,X	-13,X	4,+X	4,X+	3,Y	-13,Y	4,+Y	4,Y+ post-inc	3,SP 5b const	-13,SP 5b const	4,+SP pre-inc	4,SP+ post-inc	3,PC 5b const	-13,PC 5b const	[n,X] 16b indr	[n,SP] 16b indr
5b const	5b canst	pre-inc	post-inc	5b const	5b canst	pre-inc				-	Part of Carton and			1 Marsh 6 6 6 6 7	F4
04	14	24	34	44	54	64	74	84	94	A	B4	C4 4.PC	D4 -12.PC	E4 AX	A.SP
4,X	-12,X	5,+X	5,X+	4.Y Sp const	-12,Y 5b const	5,+Y pre-inc	5,Y+ post-inc	4,SP 5b const	-12,SP 5b const	5,+SP pre-inc	5,SP+ post-inc	5 const	5b canst	A offset	A offset
5b const	5b canst	pre-inc	post-inc		- 212/09/21/2010	*						and the set			
05	15	25	35	45	55	65	75	85	95	AS	85 6.SP+	C5 5.PC	D5 -11,PC	E5 B.X	F5 B.SP
5,X	-11,X	6,+X pre-inc	6,X+ post-inc	5,Y 5b const	-11,Y 5b const	6,+Y pre-inc	6,Y+ post-inc	5,SP 5b const	-11,SP 5b const	6,+SP pre-inc	post-inc	5b const	5b const	B offset	B offset
5b const	5b const					P				-	8	100000000000000	100000000000000000000000000000000000000		
06	16	26	36	46	56	66	76	86	96 -10.SP	A6 7.+SP	86 7.SP+	06 6.PC	D6 -10.PC	E6 DX	F6 D.SP
6,X 5b const	-10,X 5b const	7,+X pre-inc	7,X+ post-inc	6,Y 5b const	-10,Y 5b const	7,+Y	7,Y+ post-inc	6,SP 5b const	5b const	pre-inc	post-inc	5b const	5b const	Doffset	D offset
									-		5			E7	F7
07	17	27	37	47	57	67	77 8.Y+	87 7.SP	97 -9.SP	A7 8.+SP	87 8.SP+	C7 7.PC	D7 -9.PC	ID,XI	F7 [D.SP]
7,X 5b const	-0,X 5b const	8,+X pre-inc	8,X+ post-inc	7,Y 5b const	-0,Y 5b const	8,+Y pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	D indirect	D indirect
Sec. 2011. 1920		1				1	78	88		A8	B8	C8	D8	E8	F8
08	18	28	38	48	58 -8.Y	68 8Y	78 8.Y-	88 8.SP	98 8,SP	A8 8SP	8.SP-	8.PC	-8.PC	LO n.Y	n.PC
8,X 5b const	-8,X 5b const	8,-X pre-dec	8,X- post-dec	8,Y 5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	9b const	9b const
			39	49	59	69	79	89	99	A9	B9	C9	D9	E9	F9
09 9,X	19 -7,X	29 7X	39 7.X-	99 9.Y	59 -7.Y	09 7Y	7.Y-	9.SP	-7.SP	7SP	7.SP-	9.PC	-7.PC	-n.Y	-n.PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	9b const	9b const
0A	1A	2A	34	4A	5A	6A	7A	8A	9A	AA	BA	CA	DA	EA	FA
10.X	-6.X	6X	6.X-	10.Y	-6.Y	6Y	6.Y-	10.SP	-6.SP	6,-SP	6.SP-	10.PC	-6.PC	n.Y	n.PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	16b const	16b const
08	1B	28	38	4B	58	6B	7B	8B	98	AB	BB	CB	DB	EB	FB
11.X	-5.X	5X	5.X-	4D 11.Y	-5.Y	5Y	5.Y-	11.SP	-5.SP	5SP	5.SP-	11.PC	-5.PC	[n,Y]	In.PCI
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	16b indr	16b indr
0C	1C	2C	30	4C	50	6C	70	8C	90	AC	BC	CC	DC	EC	FC
12.X	-4X	4X	4.X-	12,Y	-4.Y	4Y	4.Y-	12.SP	-4.SP	4SP	4.SP-	12.PC	-4.PC	A,Y	A,PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	Aoffset	A offset
0D	1D	2D	3D	4D	5D	6D	7D	8D	9D	AD	BD	CD	DD	ED	FD
13,X	-3,X	3X	3,X-	13,Y	-3,Y	3,-Y	3,Y-	13,SP	-3,SP	3,-SP	3.SP-	13,PC	-3,PC	B,Y	B,PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	B offset	B offset
0E	1E	2E	3E	4E	5E	6E	7E	8E	9E	AE	BE	CE	DE	EE	FE
14.X	-2,X	2-X	2,X-	14,Y	-2,Y	2-Y	2.Y-	14,SP	-2,SP	2,-SP	2,SP-	14,PC	-2,PC	D,Y	D,PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	D offset	D offset
0F	1F	2F	3F	4F	5F	6F	7F	8F	9F	AF	BF	CF	DF	EF	FF
				15.Y	-1.Y	1,-Y	1.Y-	15.SP	-1.SP	1SP	1.SP-	15.PC	-1.PC	[D,Y]	[D.PC]
15,X	-1,X	1,-X	1,X-	13, 1	-1.1	1. A	1,1-	10,01	-1,51	1, WI	1,00	10,00	-1,-0	10.0	

Table A-3 Indexed Addressing Mode Postbyte Encoding (xb)