First: _____ Last: _____ Last: _____ This is a closed book exam. You must put your answers on this piece of paper only. You have 50 minutes, so allocate your time accordingly. *Please read the entire quiz before starting*.

(5) Question 1. Specify A, B, C, D, or E	
(5) Question 2. Answer the decimal value	
(4) Part 3a. Specify RegA	
(2) Part 3b. Specify 0 or 1	
(2) Part 3c. Specify 0 or 1	
(2) Part 3d. Specify 0 or 1	
(2) Part 3e. Specify 0 or 1	
(10) Question 4. Specify the range	
(10) Question 5. Show the machine code	
(5) Question 6. What is the EA?	

(15) Question 7. Simplified memory cycles (you may or may not need all 5 entries)

R/W	Addr	Data	Changes

(40) Question 8. Write the two assembly language subroutines.
DDRM equ \$0252 ; Port M Direction
DDRT equ \$0242 ; Port T Direction
PTM equ \$0250 ; Port M I/O Register
PTT equ \$0240 ; Port T I/O Register
org \$3800 ; RAM

8-bit add RegA+RegB aba abx unsigned add RegX+RegB aby unsigned add RegY+RegB adca 8-bit add with carry to RegA adca 8-bit add with carry to RegA adcb 8-bit add with carry to RegB adda 8-bit add to RegA addb 8-bit add to RegB addd 16-bit add to RegD addd 16-bit add to RegDdey16-bit decrement RegYanda 8-bit logical and to RegAedivRegY=(Y:D)/RegX, unsigned divideandb 8-bit logical and to RegBedivsRegY=(Y:D)/RegX, signed divideandcc 8-bit logical and to RegCCemacs 16 by 16 signed mult, 32-bit addasl/lsl8-bit left shift Memoryemaxd 16-bit unsigned maximum in RegDasla/lsla 8-bit left shift RegAemind 16-bit unsigned minimum in RegDasld/lsld 16-bit left shift RegDeminm 16-bit unsigned minimum in memoryasr8-bit arith right shiftemulsasra 8-bit arith right shift to RegBeorabccbranch if carry cleareorbbclrclear bits in memoryetblbclrclear bits in memory bclr clear bits in memory bcs branch if carry set beqbranch if result is zero (Z=1)fdiv 16-bit unsigned fractional dividebgebranch if signed =ibeq increment and branch if result=0 bge branch 11 signed -bgnd enter background debug mode bgt branch if signed > bhi branch if unsigned > bhs branch if unsigned = bita8-bit and with RegA, sets CCRinca8-bit increment RegAbitb8-bit and with RegB, sets CCRincb8-bit increment RegB ble branch if signed = blo branch if unsigned < bls branch if unsigned = Ditbranch if signed <</th>jmpjump alwaysbmibranch if result is negative (N=1)jsrjump to subroutinebnebranch if result is nonzero (Z=0)lbcclong branch if carry clearbplbranch if result is positive (N=0)lbcslong branch if carry setbrabranch alwayslbczlong branch if carry set brclr branch if bits are clear, brn branch never brset branch if bits are set bset set bits in memory bsr branch to subroutine bvc branch if overflow clear bvcDranen if overflow setlblslong pranen if unstancebvsbranch if overflow setlblslong pranen if unstancecallsubroutine in expanded memorylbltlong branch if signed <</td>cba8-bit compare RegA with RegBlbmilong branch if result is negativeclear carry bit, C=0lbnelong branch if result is nonzerolonglong branch if result is positive cli clear I=0, enable interrupts clr 8-bit Memory clear clra RegA clear clvclear overflow bit, V=0lbvclong branch if overflow clearcmpa8-bit compare RegA with memoryldaa8-bit load memory into RegAcmpb8-bit compare RegB with memoryldab8-bit load memory into RegBcom8-bit logical complement to Memoryldd16-bit load memory into RegDcomb8-bit logical complement to RegBldx16-bit load memory into RegSPcomb8-bit logical complement to RegBldx16-bit load memory into RegXcpd16-bit compare RegD with memoryldy16-bit load memory into RegYcpy16-bit compare RegY with memoryleas16-bit load effective addr to SPcpy16-bit compare RegY with memoryleax16-bit load effective addr to Y

dbeq decrement and branch if result=0 dbne decrement and branch if result?0 dec 8-bit decrement memory deca 8-bit decrement RegA decb 8-bit decrement RegB des 16-bit decrement RegSP dex 16-bit decrement RegX dev 16-bit decrement RegY etbl 16-bit look up and interpolation exg exchange register contents ibne increment and branch if result?0 idiv 16-bit unsigned divide, X=D/X idivs 16-bit signed divide, X=D/X inc 8-bit increment memory ins 16-bit increment RegSP inx 16-bit increment RegX iny 16-bit increment RegY lbeq long branch if result is zero lbge long branch if signed = lbgt long branch if signed > lbhi long branch if unsigned > lbhs long branch if unsigned = lble long branch if signed = lblo long branch if unsigned < lbpl long branch if result is positive lbra long branch always lbrn long branch never

LESING TAIL 2004 Quilt TArage 4lar8-bit logical right shift memorylars8-bit logical right shift RegAlard8-bit logical right shift RegBlard8-bit logical right shift RegBmax8-bit unsigned maximum in memorymax8-bit unsigned minimum in memorymax8-bit unsigned minimu in memorymins8-bit unsigned minimu in memorymovb8-bit unsigned minimu in memorymovb8-bit scomplement negate RegAmovb8-bit 2's complement negate RegArage 48-bit 2's complement negate RegArage 88-bit 2's complement negate RegArage 89 bit 3rage 98-bit 2's complement negate RegArage 98-bit 2's complement negate RegArage 98-bit rti return from interrupt

ANDB

```
Operation: (B) \bullet (M) \Rightarrow B
```

Source Form	Address Mode	Object Code	Cycles	Access Detail
ANDB #opr8i	IMM	C4 ii	1	р
ANDB opr8a	DIR	D4 dd	3	rfP
ANDB opr16a	EXT	F4 hh 11	3	rOP
ANDB oprx0_xysp	IDX	E4 xb	3	rfP
ANDB oprx9,xysp	IDX1	E4 xb ff	3	rPO
ANDB oprx16,xysp	IDX2	E4 xb ee ff	4	frPP
ANDB [D,xysp]	[D,IDX]	E4 xb	6	fIfrfP
ANDB [oprx16,xysp]	[IDX2]	E4 xb ee ff	6	fIPrfP

			_			_		_				_		-		<u> </u>	_	-		_			-				_		-		-		
F0 n,SP	9b const	F1 _n.SP	9b const	F2 n.SP	16b const	F3 1- cm	16b indr	F4	A,SP A offiset	F5	B,SP B offset	F6	D offset	F7	[D,SP] D indirect	F8	D, PC	BD CONSI	F9 Ly PC	9b const	FA FA	16b const	8	[n, PC] 16b indr	5 D	A offset	ß	B offset	3	D,PC	D offset	PF DPC	D indirect
EDX	9b const	E1 ⊣nX	9b const	E2 n X	16b const	E3 5- 55	16b indr	E4	A offset	E5 	B offset	E6	D offiset	E7	D indirect	E8	۲, n, Y	BD CONST	ہ 1	9b const	EA	n,Y 16b const	EB	[n,Y] 16b indr	S	A,Y A offiset	8	B.Y Boffset	11	č	D offset	EF DV	D indirect
D0 -16,PC	5b const	D1 -15.PC	5b const	D2 -14 PC	5b const	D3	5b const	D4	-12,PC 5b const	D5	-11,PC Sb const	80	-10,PC Bb const	D7	-9, PC 5b const	B8	-8,PC	50 const	D9 _7 DC	5b const	DA	5b const	DB	-5,PC 5b const	В	-4,PC 5b const	00	-3,PC 5b const	Ë	-2,PC	5b const	DF -1.PC	5b const
00 0,PC	5b const	сі 1.РС	5b const	02 2 10 10	5b const	c; C	5b const	2	4, PC 5b const	S S	5, PC 5b canst	8	6, PC 5b const	C7	7, PC 5b const	C8	8,PC	DD CONSI	C9 ° DC	5b const	CA	5b const	CB	11, PC 5b const	8	12, PC 50 const	8	13, PC Bo const	5	14,PC	5b const	0F 15 PC	5b const
B0 1,SP+	post-inc	B1 2.SP+	post-inc	82 3 SP+	post-inc	B3	4,5P+ post-inc	B4	5,SP+ post-inc	B5	6,SP+ post-inc	8	7,SP+ post-inc	B7	8,SP+ post-inc	B8	8,SP_	post-dec	89 7 cp_	post-dec	BA	6, SP- post-dec	88	5,SP- post-dec	BC	4,SP- post-dec	BD	3,SP- post-dec	BF.	2SP-	post-dec	BF 1 SP-	post-dec
AD 1,+SP	pre-inc	A1 2.+SP	pre-inc	A2 3 +SP	pre-inc	A3	4,+SP pre-inc	A4	5,+SP pre-inc	A5	6,+SP pre-inc	A6	7,+SP pre-inc	A7	8,+SP pre-inc	A8	8-SP	pre-dec	A9 7_cp	pre-dec	AA AA	6,-SP pre-dec	AB	5,-SP pre-dec	AC AC	4,-SP pre-dec	ą	3,-SP ore-dec	AF	2,-SP	pre-dec	AF 1_SP	pre-dec
90 -16,SP	5b const	91 -15.SP	5b const	92 _14.SP	5b const	93	5b const	94	-12,SP 5b const	95	-11,SP Sb const	98	-10,SP Sb const	26	-9,SP 5b const	86	-8,SP	5b const	99 7 ep	5b const	9A	5b const	9B	-5,SP 5b const	90	-4,SP 5b const	D 6	-3,SP 5b const	0L	-2,SP	5b const	9F -1 SP	5b const
80 0,SP	5b const	81 1.SP	5b const	82 2 SP	5b const	83	5b const	84	4,SP 5b const	85	5,SP 5b canst	86	6,SP 5b const	87	7,SP 5b const	88	8,SP	5b const	89 0 c D	5b const	8A	10,SP 5b const	88	11,SP 5b const	ß	12,SP Bb const	8	13,SP 50 const	RF RF	14,SP	5b const	8F 15.SP	5b const
70 1,Y+	post-inc	71	post-inc	72 3 V+	post-inc	73	4,Y+ post-inc	74	5,Y+ post-inc	75	6,Y+ post-inc	92	7,Y+ post-inc	11	8,Y+ post-inc	78	8,Y-	post-dec	79	post-dec	7A	6,Y- post-dec	7B	5,Y- post-dec	70	4,Y- post-dec	2	3, Y- nost-dec	75	2, Y-	post-dec	7F 1V-	post-dec
60 1,+1	pre-inc	61 2+Y	pre-inc	62 3+V	pre-inc	63	4,+Y pre-inc	64	5,+Y pre-inc	65	B,+Y pre-inc	99	7,+Y pre-inc	67	8,+Y pre-inc	89	8,	pre-dec	69	pre-dec	6A	6,-Y pre-dec	68	5,-Y pre-dec	8	4,-Y cre-dec	8	3,-Y ne-dec	RF F	2,-Y	pre-dec	6F 1_V	pre-dec
50 -16,Y	5b const	51 57	5b const	52 14 V	5b const	53	-13,Y 5b const	24	-12,Y 5b const	55	-11,Y Sb const	\$8	-10,Y Sb const	15	-9,Y 5b const	58	7,8	5b const	59	5b const	5A	-6,Y 5b const	58	-5,Y 5b const	50	-4,Y 5b const	SD	-3,Y Sh const	12	ос -2,Ү	5b const	5F -1 <	5b const
40 0,Y	5b const	41	5b const	42 ~ ~	5b const	43	3,Y 5b const	44	4,Y 5b const	45	5,Y 5b const	46	6,Y 5b const	47	7,Y 5b const	48	8,7	5b const	49	5b const	44	10, Y 5b const	4B	11,Y 5b const	Q	12,Y Sb const	0	13,Y 5h const	AE	14,Y	5b const	4F 15 V	5b const
30 1,X+	post-inc	31 2 X+	post-inc	32 3 X 4	post-inc	33	4,X+ post-inc	34	5,X+ post-inc	35	6,X+ post-inc	男	7,X+ post-inc	37	8,X+ bost-inc	38	8,X-	post-dec	39	post-dec	3A	6,X- post-dec	38	5,X- post-dec	30	4,X- post-dec	30	3,X- nost-dec	35	ос 2,Х-	post-dec	3F 1 Y-	post-dec
20 1,+X	pre-inc	21 2.+X	pre-inc	22 3 4 Y	pre-inc	23	4,+X pre-inc	24	5,+X pre-inc	25	6,+X pre-inc	26	7,+X pre-inc	27	8,+X pre-inc	28	8,X	pre-dec	29 、	pre-dec	2A	6,-X pre-dec	2B	5,-X pre-dec	8	4,X ore-dec	ส	3,-X ma-dao	35	2,-X	pre-dec	2F 1	pre-dec
10 -16,X	5b const	11 15.X	5b const	12 14 V	5b const	13	-13,X 5b const	14	-12,X 5b const	15	-11,X Sb const	16	-10,X Sb const	17	-9,X 5b const	18	×,8–	5b const	19	5b const	1A	-6,X 5b const	18	-5,X 5b const	10	-4,X Sh const	ē	-3,X Sh const	ų	-2,X	5b const	1F -1 X	5b const

2,X 5b const

5b const

ž,

0,X 5b const

8

3,X 5b const

g

5,X 5b const

5b const

兇

¥,

켱

ሟ

6,X 5b const

5

7,X 5b const

99

8,X const

â

9,X 5b const

13,X Sb const

Щ

14,X 5b const

붱

15,X 5b const

8

12,X 5b const

g

ġ

11,X 5b const

10,X 5b const

(5) **Question 1.** An integer divide sometimes causes a/an _____error because information is lost in the least significant bits. Fill in the blank

A) overflow B) underflow C) drop out D) floor E) ceiling (5) Question 2. What is signed integer value (in decimal) of the 8-bit binary number %11010011?

Question 3. Consider the result of executing the following two 6812 assembly instructions.

ldaa #101 adda #210

(4) **Part a**) What is the value in Register A after these two instructions are executed? Give your answer as an unsigned decimal.

(2) Part b) What will be the value of the carry (C) bit?

(2) Part c) What will be the value of the overflow (V) bit?

(2) Part d) What will be the value of the zero (Z) bit?

(2) Part e) What will be the value of the negative (N) bit?

(10) Question 4. What range of values can be represented an 8-bit signed binary fixed-point format with a resolution, **D**, of 1/8? Give the smallest and the largest values.

(10) Question 5. Show the machine code generated by the instruction

and -2,y

(5) Question 6. Assume Reg X is initially \$3A00, RegY is initially \$3900, what is the effective address of this instruction

leax 2,y-

(15) Question 7. Show the simplified bus cycles that occur when the **bsr sub** instruction is executed. In the **'thanges**'' column, specify which registers get modified during that cycle, and the corresponding new values. *Just show the one instruction*.

```
0){OP
$F120 CF4000
              [2](
                            }main lds
                                       #$4000
                     2){0
$F123 87
              [ 1](
                                  clra
                     3){PPPS }loop bsr
$F124 0766
              [ 4](
                                       sub
              [ 3](
                     7) \{ PPP \}
$F126 20FC
                                  bra
                                       loop
    ; Purpose: increment a number
                             ; Input:
                                      RegA, range 0 to 255
                             ; Output: RegA=Input+1
                             ; Errors: overflow if 255
$F18C 42
              [1](10){0}
                            }sub
                                  inca
              [ 5]( 11){UfPPP}
$F18D 3D
                                  rts
ŚFFFE
                                  org $fffe
$FFFE F120
                                  fdb main
```

(40) Question 8.

Part a) Write an assembly language subroutine that sets all of Port T to outputs and all of Port M to inputs. Basically, this function sets the appropriate direction registers.

Part b) Write a second assembly language subroutine that sets Port T to \$55 if the value of Port M is less than \$20 (treated as an unsigned number). Conversely, if the value of Port M is greater than or equal to \$20, then Port T is unchanged. Do this once then return from the subroutine.