
EE319K Fall 2005 Quiz 1A Page 1

Jonathan W. Valvano September 30, 2005 10:00am-10:50am

 First:_________________ Last:_____________________

 This is a closed book exam. You must put your answers on this piece of paper only. You have
50 minutes, so allocate your time accordingly. Please read the entire quiz before starting.

(5) Question 1. Give the decimal value….…

(5) Part 2a. Specify 0 or 1 ….….….….

(5) Part 2b. Specify 0 or 1 ….….….….

(5) Question 3. Specify A-H ….……..….

(5) Question 4. Give the range….

(5) Question 5. Show the machine code….

(5) Question 6. Give example inputs, specify
“none” if none exist.

(5) Question 7. Give example inputs, specify
“none” if none exist.

(5) Part 8a. What value is pushed?….….….

(10) Part 8b. Simplified memory cycles (you may or may not need all 5 entries)
R/W Addr Data Changes to A,B,X,Y,S,PC,IR,EAR

EE319K Fall 2005 Quiz 1A Page 2

Jonathan W. Valvano September 30, 2005 10:00am-10:50am

(15) Question 9. Write the assembly language. (not a subroutine or a main program, just instructions)
DDRM equ $0252 ; Port M Direction
DDRT equ $0242 ; Port T Direction
PTM equ $0250 ; Port M I/O Register
PTT equ $0240 ; Port T I/O Register

(30) Question 10. Write the assembly language subroutine. (Do not include the main program)
;*******Set5***********
; Initializes memory $3900 to 397F to value 5
; inputs: none
; outputs: none
; errors: none
Set5

 rts

EE319K Fall 2005 Quiz 1A Page 3

Jonathan W. Valvano September 30, 2005 10:00am-10:50am

aba 8-bit add RegA+RegB
abx unsigned add RegX+RegB
aby unsigned add RegY+RegB
adca 8-bit add with carry to RegA
adcb 8-bit add with carry to RegB
adda 8-bit add to RegA
addb 8-bit add to RegB
addd 16-bit add to RegD
anda 8-bit logical and to RegA
andb 8-bit logical and to RegB
andcc 8-bit logical and to RegCC
asl/lsl 8-bit left shift Memory
asla/lsla 8-bit left shift RegA
aslb/lslb 8-bit arith left shift RegB
asld/lsld 16-bit left shift RegD
asr 8-bit arith right shift Memory
asra 8-bit arith right shift
asrb 8-bit arith right shift to RegB
bcc branch if carry clear
bclr clear bits in memory
bcs branch if carry set
beq branch if result is zero (Z=1)
bge branch if signed =
bgnd enter background debug mode
bgt branch if signed >
bhi branch if unsigned >
bhs branch if unsigned =
bita 8-bit and with RegA, sets CCR
bitb 8-bit and with RegB, sets CCR
ble branch if signed =
blo branch if unsigned <
bls branch if unsigned =
blt branch if signed <
bmi branch if result is negative (N=1)
bne branch if result is nonzero (Z=0)
bpl branch if result is positive (N=0)
bra branch always
brclr branch if bits are clear,
brn branch never
brset branch if bits are set
bset set bits in memory
bsr branch to subroutine
bvc branch if overflow clear
bvs branch if overflow set
call subroutine in expanded memory
cba 8-bit compare RegA with RegB
clc clear carry bit, C=0
cli clear I=0, enable interrupts
clr 8-bit Memory clear
clra RegA clear
clrb RegB clear
clv clear overflow bit, V=0
cmpa 8-bit compare RegA with memory
cmpb 8-bit compare RegB with memory
com 8-bit logical complement to Memory
coma 8-bit logical complement to RegA
comb 8-bit logical complement to RegB
cpd 16-bit compare RegD with memory
cpx 16-bit compare RegX with memory
cpy 16-bit compare RegY with memory
daa 8-bit decimal adjust accumulator
dbeq decrement and branch if result=0
dbne decrement and branch if result?0
dec 8-bit decrement memory
deca 8-bit decrement RegA
decb 8-bit decrement RegB
des 16-bit decrement RegSP
dex 16-bit decrement RegX
dey 16-bit decrement RegY
ediv RegY=(Y:D)/RegX, unsigned divide
edivs RegY=(Y:D)/RegX, signed divide
emacs 16 by 16 signed mult, 32-bit add
emaxd 16-bit unsigned maximum in RegD

emaxm 16-bit unsigned maximum in memory
emind 16-bit unsigned minimum in RegD
eminm 16-bit unsigned minimum in memory
emul RegY:D=RegY*RegD unsigned mult
emuls RegY:D=RegY*RegD signed mult
eora 8-bit logical exclusive or to RegA
eorb 8-bit logical exclusive or to RegB
etbl 16-bit look up and interpolation
exg exchange register contents
fdiv unsigned fract div, X=(65536*D)/X
ibeq increment and branch if result=0
ibne increment and branch if result?0
idiv 16-bit unsigned divide, X=D/X, D=rem
idivs 16-bit signed divide, X=D/X, D=rem
inc 8-bit increment memory
inca 8-bit increment RegA
incb 8-bit increment RegB
ins 16-bit increment RegSP
inx 16-bit increment RegX
iny 16-bit increment RegY
jmp jump always
jsr jump to subroutine
lbcc long branch if carry clear
lbcs long branch if carry set
lbeq long branch if result is zero
lbge long branch if signed =
lbgt long branch if signed >
lbhi long branch if unsigned >
lbhs long branch if unsigned =
lble long branch if signed =
lblo long branch if unsigned <
lbls long branch if unsigned =
lblt long branch if signed <
lbmi long branch if result is negative
lbne long branch if result is nonzero
lbpl long branch if result is positive
lbra long branch always
lbrn long branch never
lbvc long branch if overflow clear
lbvs long branch if overflow set
ldaa 8-bit load memory into RegA
ldab 8-bit load memory into RegB
ldd 16-bit load memory into RegD
lds 16-bit load memory into RegSP
ldx 16-bit load memory into RegX
ldy 16-bit load memory into RegY
leas 16-bit load effective addr to SP
leax 16-bit load effective addr to X
leay 16-bit load effective addr to Y
lsr 8-bit logical right shift memory
lsra 8-bit logical right shift RegA
lsrb 8-bit logical right shift RegB
lsrd 16-bit logical right shift RegD
maxa 8-bit unsigned maximum in RegA
maxm 8-bit unsigned maximum in memory
mem determine the membership grade
mina 8-bit unsigned minimum in RegA
minm 8-bit unsigned minimum in memory
movb 8-bit move memory to memory
movw 16-bit move memory to memory
mul RegD=RegA*RegB
neg 8-bit 2's complement negate memory
nega 8-bit 2's complement negate RegA
negb 8-bit 2's complement negate RegB
oraa 8-bit logical or to RegA
orab 8-bit logical or to RegB
orcc 8-bit logical or to RegCC
psha push 8-bit RegA onto stack
pshb push 8-bit RegB onto stack
pshc push 8-bit RegCC onto stack
pshd push 16-bit RegD onto stack
pshx push 16-bit RegX onto stack
pshy push 16-bit RegY onto stack

EE319K Fall 2005 Quiz 1A Page 4

Jonathan W. Valvano September 30, 2005 10:00am-10:50am

pula pop 8 bits off stack into RegA
pulb pop 8 bits off stack into RegB
pulc pop 8 bits off stack into RegCC
puld pop 16 bits off stack into RegD
pulx pop 16 bits off stack into RegX
puly pop 16 bits off stack into RegY
rev Fuzzy logic rule evaluation
revw weighted Fuzzy rule evaluation
rol 8-bit roll shift left Memory
rola 8-bit roll shift left RegA
rolb 8-bit roll shift left RegB
ror 8-bit roll shift right Memory
rora 8-bit roll shift right RegA
rorb 8-bit roll shift right RegB
rtc return sub in expanded memory
rti return from interrupt
rts return from subroutine
sba 8-bit subtract RegA-RegB
sbca 8-bit sub with carry from RegA
sbcb 8-bit sub with carry from RegB
sec set carry bit, C=1
sei set I=1, disable interrupts
sev set overflow bit, V=1
sex sign extend 8-bit to 16-bit reg
staa 8-bit store memory from RegA
stab 8-bit store memory from RegB
std 16-bit store memory from RegD
sts 16-bit store memory from SP

stx 16-bit store memory from RegX
sty 16-bit store memory from RegY
suba 8-bit sub from RegA
subb 8-bit sub from RegB
subd 16-bit sub from RegD
swi software interrupt, trap
tab transfer A to B
tap transfer A to CC
tba transfer B to A
tbeq test and branch if result=0
tbl 8-bit look up and interpolation
tbne test and branch if result?0
tfr transfer register to register
tpa transfer CC to A
trap illegal instruction interrupt
trap illegal op code, or software trap
tst 8-bit compare memory with zero
tsta 8-bit compare RegA with zero
tstb 8-bit compare RegB with zero
tsx transfer S+1 to X
tsy transfer S+1 to Y
txs transfer X-1 to S
tys transfer Y-1 to S
wai wait for interrupt
wav weighted Fuzzy logic average
xgdx exchange RegD with RegX
xgdy exchange RegD with RegY

STX Store Index Register X STX
Operation: (XH : XL) ⇒ M : M + 1

Source Form Address Mode Object Code Access Detail
STX opr8a DIR 5E dd PW
STX opr16a EXT 7E hh ll PWO
STX oprx0_xysp IDX 6E xb PW
STX oprx9,xysp IDX1 6E xb ff PWO
STX oprx16,xysp IDX2 6E xb ee ff PWP
STX [D ,xysp] [D,IDX] 6E xb PIfW
STX [oprx16,xysp] [IDX2] 6E xb ee ff PIPW

example addressing mode Effective Address
ldaa #u immediate No EA
ldaa u direct EA is 8-bit address (0 to 255)
ldaa U extended EA is a 16-bit address
ldaa m,r 5-bit index EA=r+m (-16 to 15)
ldaa v,+r pre-increment r=r+v, EA=r (1 to 8)
ldaa v,-r pre-decrement r=r-v, EA=r (1 to 8)
ldaa v,r+ post-increment EA=r, r=r+v (1 to 8)
ldaa v,r- post-decrement EA=r, r=r-v (1 to 8)
ldaa A,r Reg A offset EA=r+A, zero padded
ldaa B,r Reg B offset EA=r+B, zero padded
ldaa D,r Reg D offset EA=r+D
ldaa q,r 9-bit index EA=r+q (-256 to 255)
ldaa W,r 16-bit index EA=r+W (-32768 to 65535)
ldaa [D,r] D indirect EA={r+D}

EE319K Fall 2005 Quiz 1A Page 5

Jonathan W. Valvano September 30, 2005 10:00am-10:50am

ldaa [W,r] indirect EA={r+W} (-32768 to 65535)
Motorola 6812 addressing modes r is X, Y, SP, or PC

EE319K Fall 2005 Quiz 1A Page 6

Jonathan W. Valvano September 30, 2005 10:00am-10:50am

EE319K Fall 2005 Quiz 1A Page 7

Jonathan W. Valvano September 30, 2005 10:00am-10:50am

(5) Question 1. What is the signed integer value (in decimal) of the 8-bit hexadecimal number $C3?
Question 2. Consider the result of executing the following two 6812 assembly instructions.
 ldab #100
 subb #210

(5) Part a) What will be the value of the carry (C) bit?
(5) Part b) What will be the value of the overflow (V) bit?

(5) Question 3. A software variable can take on the following specific values -5.00, -4.99, -4.98, ...,
4.98, 4.99, 5.00. Which number format should be used for this variable? If more than one format could
be used to solve the problem, choose the most space-efficient format. Enter the correct letter A-H.

A) 8-bit signed fixed-point number with
resolution of 0.1

B) 8-bit signed fixed-point number with
resolution of 0.01

C) 16-bit signed fixed-point number with
resolution of 0.01

D) 16-bit unsigned fixed-point number with
resolution of 0.001

E) 32-bit floating point
F) 8-bit signed integer
G) 16-bit signed integer
H) 32-bit signed integer

(5) Question 4. A certain ohmmeter has a range of 0 to Rmax, a resolution of 0.1 Ω, and a precision of
3¾ decimal digits. What is Rmax?
(5) Question 5. Show the machine code generated by the instruction
 stx -5,y
(5) Question 6. The mul instruction multiplies the unsigned value in RegA by the unsigned value in
RegB and stores the product in RegD. Give example input values (if any) that cause an overflow.
(5) Question 7. The idiv instruction divides the unsigned value in RegD by the unsigned value in
RegX and stores the quotient in RegX. Give example input values (if any) that cause an overflow.
Question 8. Consider the following program
$5000 org $5000
$5000 CF4000 [2](0){OP }main lds #$4000
$5003 0707 [4](2){PPPS } bsr Add1 ;part a)
$5005 CE1234 [2](6){OP } ldx #$1234
$5008 5E02 [2](8){PW } stx 2 ;part b)
$500A 183E [16](10){OOSSSfSsf+} stop
$500C 720240 [4](26){rOPw }Add1 inc $0240
$500F 3D [5](30){UfPPP } rts
$FFFE org $FFFE
$FFFE 5000 fdb main
(5) Part a) What value(s) is(are) pushed on the stack when the bsr Add1 instruction is executed?
(10) Part b) Show the simplified bus cycles occurring when the stx 2 instruction is executed. In the
“changes” column, specify which registers get modified during that cycle, and the corresponding new
values. Do not worry about changes to the CCR. Just show the one instruction.
(15) Question 9. Write assembly language instructions that make Port T bit 3 an input and Port T bit 2
an output. Full credit will be given to the code that modifies two bits in the direction register, without
modifying the other six.
(30) Question 10. Write an assembly language subroutine, called Set5, which sets memory locations
$3900 to $397F (128 locations) equal to the value $05. Full credit will be given to the code that
implements a for-loop and uses the post-increment indexed addressing mode.

