
EE319K Fall 2003 Quiz 3 Page 1

Jonathan W. Valvano November 21, 2003 11:00am-11:50am

First:________________ Middle Initial: _____ Last:____________________
 This is a closed book exam. You must put your answers on this piece of paper only. You
have 50 minutes, so allocate your time accordingly. Please read the entire quiz before starting.

(5) Question 1. Number of decimal digits

(5) Question 2. Decimal value

(2) Part 3a. Specify RegB

(2) Part 3b. Specify 0 or 1

(1) Part 3c. Specify 0 or 1

(5) Question 4. Choose A-E

(5) Question 5. Show the machine code

(5) Question 6. Show assembly

(5) Question 7. Simplified memory cycles (you may or may not need all 5 entries)

R/W Addr Data

EE319K Fall 2003 Quiz 3 Page 2

Jonathan W. Valvano November 21, 2003 11:00am-11:50am

(5) Question 8. Choose A-G

(5) Question 9. Give value of number

(5) Question 10. Effective address

(5) Question 11. Give op code

(5) Question 12. Number of bytes/sec

(5) Question13. Choose A, B, C or D.

(5) Question 14. Matrix equation

(5) Question 15. ADC conversion

(5) Question 16. LED equation

(5) Question 17. List all registers

(5) Question 18. Choose A-E

(5) Question 19a) Choose A-F

(5) Question 19b) Choose A-F

EE319K Fall 2003 Quiz 3 Page 3

Jonathan W. Valvano November 21, 2003 11:00am-11:50am

(5) Question 1. The measurement system range is 0 to 1999. How many decimal digits is it?

(5) Question 2. What is the unsigned decimal equivalent of the 8-bit hexadecimal $A5?

(5) Question 3. Consider the result of executing the following two 6812 assembly instructions.
 ldab #100
 addb #200

(2) Part a) What is the value in Register B after these two instructions are executed? Give
your answer in unsigned decimal (0 to 255).
(2) Part b) What will be the value of the carry (C) bit?
(1) Part c) What will be the value of the overflow (V) bit?

(5) Question 4. Which instruction reads the 16-bit TCNT register?
 A ldaa TCNT
 B. ldab TCNT
 C. std TCNT
 D. read TCNT
 E. ldy TCNT

(5) Question 5. Show the machine code for the following the instruction
 ldy 2,sp+

(5) Question 6. Write friendly assembly code that makes PORTT bit 6 an output. You may
assume the following two definitions.
PORTT equ $00AE
DDRT equ $00AF

(5) Question 7. Give the simplified memory cycles produced when the following one
instruction is executed. Assume the PC contains $F000, Register Y contains $0900, each
memory location from $0000 to $0BFF contains a value equal to the least significant byte of its
address. I.e., $0000 contains $00, $0001 contains $01, etc. Just show R/W=Read or Write,
Address, and Data for each cycle.
$F000 DD00 ldy 0

(5) Question 8. What is the effect of executing these two instructions?
 pshd
 pulx
Choose one of the following:
 A) “Read from unimplemented I/O port”
 B) “Read from uninitialized RAM address”
 C) “Read from unprogrammed ROM address”
 D) “Assembly syntax error”
 E) Value of Reg D is copied to Reg X
 F) Value of Reg X is copied to Reg D
 G) Values of Reg D and Reg X are exchanged

EE319K Fall 2003 Quiz 3 Page 4

Jonathan W. Valvano November 21, 2003 11:00am-11:50am

(5) Question 9. A signed 16-bit binary fixed point number system has a ∆ resolution of 1/4.
What is the corresponding value of the number if the integer part stored in memory is 2000?

(5) Question 10. Assume the PC contains $F000, Register A contains 5, Register X contains
$0800, Register Y contains $0900.
$F000 EDE4 ldy A,X
What is the effective address of this instruction?

(5) Question 11. Assume PORTA is an unsigned input and PORTB is an output. The goal of this
program is to clear PORTB if PORTA is larger than 100. Which op code should be used in the
??? position?

 ldaa PORTA
 cmpa #100
 ??? skip
 clr PORTB
skip

PORTA

PORTB=0

>100

(5) Question 12. What is the bandwidth in bytes/sec for a serial channel operating at a baud rate
of 9600 bits/sec? There is no parity and one stop bit.

(5) Question 13. Which answer is the data flow graph for the following program? The main
program calls InChar.
RDRF equ $20
InChar brclr SC0SR1,#RDRF,*
 ldaa SC0DRL read ASCII character
 rts

InChar

RDRF

Read
SC0DRL

0

1

rts

mainSCI input serial port
driver

SCI output

A B

C

main

serial port
driver

SCI hardware

D

SCI input serial port
driver

(5) Question 14. Consider a matrix with 4 rows and 7 columns, stored in column-major zero-
index format. Each element is 1 byte or 8 bits. Which equation correctly calculates the address of
the element at row I and column J?
 A. base+I+J
 B. base+4*I+J
 C. base+I+4*J
 D. base+7*I+J
 E. base+I+7*J

EE319K Fall 2003 Quiz 3 Page 5

Jonathan W. Valvano November 21, 2003 11:00am-11:50am

(5) Question 15. What digital result occurs when the 6812
ADC converts 1.00V?

(5) Question 16. Give the general equation showing LED
current Id as a function of LED voltage Vd, gate output voltage
VOL, and resistance R1.

(5) Question 17. Which registers are pushed on the stack by
swi and pulled off by rti?
 A. all registers but the SP
 B. PC
 C. PC and CCR
 D. all registers including the SP
 E. SP

(5) Question 18. Five interpreters were presented in Tutorial 10. Assuming each interpreter was
modified to accept 26 commands, labeled A-Z, which technique will have the fastest lookup
speed?
 A. direct coding using the switch statement
 B. array containing the list of functions to execute
 C. table containing the letter command and the corresponding function to execute
 D. linked list containing the letter command and the corresponding function to execute
 E. binary tree containing the letter command and the corresponding function to execute

(10) Question 19. Consider the following linked list FSM

*****A) place it here*******
PORTA equ 0
DDRA equ 2
*****B) place it here*******
 org $0800
*****C) place it here*******
 org $F000
*****D) place it here*******
main movw #SA,pt
loop ldx pt
 movb 0,x,PORTA
*****E) place it here*******
 ldx 1,x
 stx pt
 bra loop
 org $FFFE
 fdb main
*****F) place it here*******

Part a) Where should you place the variable,
pt? Answer A-F.
pt rmb 2

Part b) Where should you place the FDM
data structure? Answer A-F.
SA fcb 10 output
 fdb SB next state
SB fcb 25 output
 fdb SA next state

EE319K Fall 2003 Quiz 3 Page 6

Jonathan W. Valvano November 21, 2003 11:00am-11:50am

These two tables interpret indexed-mode machine codes
rr register
00 X
01 Y
10 SP
11 PC

postbyte,xb syntax mode explanations
rr000000 ,r IDX 5-bit constant, n=0
rr00nnnn n,r IDX 5-bit constant, n=0 to +15
rr01nnnn -n,r IDX 5-bit constant, n=-16 to -1
rr100nnn n,+r IDX pre-increment, n=1 to 8
rr101nnn n,-r IDX pre-decrement, n=1 to 8
rr110nnn n,r+ IDX post-increment, n=1 to 8
rr111nnn n,r- IDX post-decrement, n=1 to 8
111rr100 A,r IDX Reg A accumulator offset
111rr101 B,r IDX Reg B accumulator offset
111rr110 D,r IDX Reg D accumulator offset
111rr000 ff n,r IDX1 9-bit cons, n 16 to 255
111rr001 ff -n,r IDX1 9-bit const, n -256 to -16
111rr010 eeff n,r IDX2 16-bit const, any 16-bit n
111rr111 [D,r] [D,IDX] Reg D offset, indirect
111rr011 eeff [n,r] [IDX2] 16-bit constant, indirect

EE319K Fall 2003 Quiz 3 Page 7

Jonathan W. Valvano November 21, 2003 11:00am-11:50am

aba 8-bit add RegA=RegA+RegB
abx unsigned add RegX=RegX+RegB
aby unsigned add RegY=RegY+RegB
adca 8-bit add with carry to RegA
adcb 8-bit add with carry to RegB
adda 8-bit add to RegA
addb 8-bit add to RegB
addd 16-bit add to RegD
anda 8-bit logical and to RegA
andb 8-bit logical and to RegB
andcc 8-bit logical and to RegCC
asl/lsl 8-bit left shift Memory
asla/lsla 8-bit left shift RegA
aslb/lslb 8-bit arith left shift RegB
asld/lsld 16-bit left shift RegD
asr 8-bit arith right shift Memory
asra 8-bit arith right shift
asrb 8-bit arith right shift to RegB
bcc branch if carry clear
bclr clear bits in memory
bcs branch if carry set
beq branch if result is zero (Z=1)
bge branch if signed ≥
bgnd enter background debug mode
bgt branch if signed >
bhi branch if unsigned >
bhs branch if unsigned ≥
bita 8-bit and with RegA, sets CCR
bitb 8-bit and with RegB, sets CCR
ble branch if signed ≤
blo branch if unsigned <
bls branch if unsigned ≤
blt branch if signed <
bmi branch if result is negative (N=1)
bne branch if result is nonzero (Z=0)
bpl branch if result is positive (N=0)
bra branch always
brclr branch if bits are clear,
brn branch never
brset branch if bits are set
bset set bits in memory
bsr branch to subroutine
bvc branch if overflow clear
bvs branch if overflow set
call subroutine in expanded memory
cba 8-bit compare RegA with RegB
clc clear carry bit, C=0
cli clear I=0, enable interrupts
clr 8-bit Memory clear
clra RegA clear
clrb RegB clear
clv clear overflow bit, V=0
cmpa 8-bit compare RegA with memory
cmpb 8-bit compare RegB with memory
com 8-bit logical complement to Memory
coma 8-bit logical complement to RegA
comb 8-bit logical complement to RegB
cpd 16-bit compare RegD with memory
cpx 16-bit compare RegX with memory
cpy 16-bit compare RegY with memory
daa 8-bit decimal adjust accumulator
dbeq decrement and branch if result=0
dbne decrement and branch if result≠0
dec 8-bit decrement memory
deca 8-bit decrement RegA
decb 8-bit decrement RegB
des 16-bit decrement RegSP
dex 16-bit decrement RegX
dey 16-bit decrement RegY
ediv RegY=(Y:D)/RegX, unsigned divide
edivs RegY=(Y:D)/RegX, signed divide
emacs 16 by 16 signed mult, 32-bit add
emaxd 16-bit unsigned maximum in RegD
emaxm 16-bit unsigned maximum in memory
emind 16-bit unsigned minimum in RegD

eminm 16-bit unsigned minimum in memory
emul RegY:D=RegY*RegD unsigned mult
emuls RegY:D=RegY*RegD signed mult
eora 8-bit logical exclusive or to RegA
eorb 8-bit logical exclusive or to RegB
etbl 16-bit look up and interpolation
exg exchange register contents
fdiv 16-bit unsigned fractional divide
ibeq increment and branch if result=0
ibne increment and branch if result≠0
idiv 16-bit unsigned divide
idivs 16-bit by 16-bit signed divide
inc 8-bit increment memory
inca 8-bit increment RegA
incb 8-bit increment RegB
ins 16-bit increment RegSP
inx 16-bit increment RegX
iny 16-bit increment RegY
jmp jump always
jsr jump to subroutine
lbcc long branch if carry clear
lbcs long branch if carry set
lbeq long branch if result is zero
lbge long branch if signed ≥
lbgt long branch if signed >
lbhi long branch if unsigned >
lbhs long branch if unsigned ≥
lble long branch if signed ≤
lblo long branch if unsigned <
lbls long branch if unsigned ≤
lblt long branch if signed <
lbmi long branch if result is negative
lbne long branch if result is nonzero
lbpl long branch if result is positive
lbra long branch always
lbrn long branch never
lbvc long branch if overflow clear
lbvs long branch if overflow set
ldaa 8-bit load memory into RegA
ldab 8-bit load memory into RegB
ldd 16-bit load memory into RegD
lds 16-bit load memory into RegSP
ldx 16-bit load memory into RegX
ldy 16-bit load memory into RegY
leas 16-bit load effective addr to SP
leax 16-bit load effective addr to X
leay 16-bit load effective addr to Y
lsr 8-bit logical right shift memory
lsra 8-bit logical right shift RegA
lsrb 8-bit logical right shift RegB
lsrd 16-bit logical right shift RegD
maxa 8-bit unsigned maximum in RegA
maxm 8-bit unsigned maximum in memory
mem determine the membership grade
mina 8-bit unsigned minimum in RegA
minm 8-bit unsigned minimum in memory
movb 8-bit move memory to memory
movw 16-bit move memory to memory
mul RegD=RegA*RegB
neg 8-bit 2's complement negate memory
nega 8-bit 2's complement negate RegA
negb 8-bit 2's complement negate RegB
oraa 8-bit logical or to RegA
orab 8-bit logical or to RegB
orcc 8-bit logical or to RegCC
psha push 8-bit RegA onto stack
pshb push 8-bit RegB onto stack
pshc push 8-bit RegCC onto stack
pshd push 16-bit RegD onto stack
pshx push 16-bit RegX onto stack
pshy push 16-bit RegY onto stack
pula pop 8 bits off stack into RegA
pulb pop 8 bits off stack into RegB
pulc pop 8 bits off stack into RegCC
puld pop 16 bits off stack into RegD

EE319K Fall 2003 Quiz 3 Page 8

Jonathan W. Valvano November 21, 2003 11:00am-11:50am

pulx pop 16 bits off stack into RegX
puly pop 16 bits off stack into RegY
rev Fuzzy logic rule evaluation
revw weighted Fuzzy rule evaluation
rol 8-bit roll shift left Memory
rola 8-bit roll shift left RegA
rolb 8-bit roll shift left RegB
ror 8-bit roll shift right Memory
rora 8-bit roll shift right RegA
rorb 8-bit roll shift right RegB
rtc return sub in expanded memory
rti return from interrupt
rts return from subroutine
sba 8-bit subtract RegA=RegA-RegB
sbca 8-bit sub with carry from RegA
sbcb 8-bit sub with carry from RegB
sec set carry bit, C=1
sei set I=1, disable interrupts
sev set overflow bit, V=1
sex sign extend 8-bit to 16-bit reg
staa 8-bit store memory from RegA
stab 8-bit store memory from RegB
std 16-bit store memory from RegD
sts 16-bit store memory from SP
stx 16-bit store memory from RegX

sty 16-bit store memory from RegY
suba 8-bit sub from RegA
subb 8-bit sub from RegB
subd 16-bit sub from RegD
swi software interrupt, trap
tab transfer A to B
tap transfer A to CC
tba transfer B to A
tbeq test and branch if result=0
tbl 8-bit look up and interpolation
tbne test and branch if result≠0
tfr transfer register to register
tpa transfer CC to A
trap illegal op code, or software trap
tst 8-bit compare memory with zero
tsta 8-bit compare RegA with zero
tstb 8-bit compare RegB with zero
tsx transfer S+1 to X
tsy transfer S+1 to Y
txs transfer X-1 to S
tys transfer Y-1 to S
wai wait for interrupt
wav weighted Fuzzy logic average
xgdx exchange RegD with RegX
xgdy exchange RegD with RegY

example addressing mode Effective Address
ldaa #u immediate none
ldaa u direct EA is 8-bit address (0 to 255)
ldaa U extended EA is a 16-bit address
ldaa m,r 5-bit index EA=r+m (-16 to 15)
ldaa v,+r pre-increment r=r+v, EA=r (1 to 8)
ldaa v,-r pre-decrement r=r-v, EA=r (1 to 8)
ldaa v,r+ post-increment EA=r, r=r+v (1 to 8)
ldaa v,r- post-decrement EA=r, r=r-v (1 to 8)
ldaa A,r Reg A offset EA=r+A, zero padded
ldaa B,r Reg B offset EA=r+B, zero padded
ldaa D,r Reg D offset EA=r+D
ldaa q,r 9-bit index EA=r+q (-256 to 255)
ldaa W,r 16-bit index EA=r+W (-32768 to 65535)
ldaa [D,r] D indirect EA={r+D}
ldaa [W,r] indirect EA={r+W} (-32768 to 65535)

Motorola 6812 addressing modes

