
EE319K Fall 2004 Quiz 3A Page 1

Jonathan W. Valvano November 19, 2004 11:00am-11:50am

First:________________ Middle Initial: _____ Last:____________________
 This is a closed book exam. You must put your answers on this piece of paper only. You have
50 minutes, so allocate your time accordingly. Please read the entire quiz before starting.

(5) Question 1. Digital value

(5) Question 2. Baud rate in bits/sec

(25) Question 3. Show subroutine

(5) Question 4. Show the code

(5) Question 5. List variables A,B,C,D,E,F,G

(5) Question 6. List variables A,B,C,D,E,F,G

EE319K Fall 2004 Quiz 3A Page 2

Jonathan W. Valvano November 19, 2004 11:00am-11:50am

(5) Question 7. Give value of xxx

(5) Question 8. Give value of xxx

(5) Question 9. Specify A, B, C, D, E

(5) Question 10. Give the output sequence

(5) Question 11. Give instruction for yyy

(5) Question 12. Give value of zzz

(5) Question 13. Specify A, B, C, D, E

(5) Question 14. Give R1 in ohms

(5) Question 15. Specify A, B, C, D, E

EE319K Fall 2004 Quiz 3A Page 3

Jonathan W. Valvano November 19, 2004 11:00am-11:50am

(5) Question 1. An analog voltage of 1.25 V is placed on the ADC input pin. What digital value results
from the 10-bit unsigned right-justified ADC conversion?

(5) Question 2. A serial port is configured to run with a bandwidth of 1000 bytes/sec. The protocol is
8-bit data, 1 stop, and no parity. What is the baud rate of this port in bits/sec?

(15) Question 3. The SCISR1 register contains the TDRE and RDRF flags

The SCIDRL register serial input/output data. Write a subroutine that inputs a CR-terminated string
from the keyboard. For each character, it waits for new input using busy-wait (gadfly) synchronization.
The subroutine uses call by reference parameter passing with RegY. When CR is typed, save the CR in
the string and return. You don’t need to write the initialization ritual.
CR equ 13 ; return
SCISR1 equ $00CC ; SCI Status Register 1
SCIDRL equ $00CF ; SCI Data Register Low

(5) Question 4. Write assembly code that allocates a 16-bit signed local variable with an initial value of
50?

Consider the following C program.
static short A=4;
const short B=5;
volatile short C=6;
void function(const short D, short E){
 static short F=7;
 short G=8;
}
(5) Question 5. List all the variables in the above C program are stored in ROM?

EE319K Fall 2004 Quiz 3A Page 4

Jonathan W. Valvano November 19, 2004 11:00am-11:50am

(5) Question 6. List all the variables in the above C program are local (stored temporarily on the stack
or in a register)?
 (5) Question 7. Consider the following assembly subroutine that creates a local variable called buff
of size 25 bytes.
buff set xxx ; binding
sub1 pshx ; save register X
 leas -25,s ; allocate buff
;****body of the subroutine
 staa buff,s ; store into buff[0]
;****end of body
 leas 25,s ; deallocate buff
 pulx ; restore register X
 rts ; return
What value should you use in the xxx position to implement the proper binding of this local variable?

(5) Question 8. Consider the following main program that calls an assembly subroutine using call by
value parameter passing on the stack. The subroutine uses Register X stack frame.
data set xxx ; binding
main lds #$4000
 ldy #1000
 pshy ; pass 16-bit data parameter on stack
 jsr sub2
 puly
 stop

sub2 pshx ; save register X
 tsx ; create Register X stack frame
 leas -10,sp ; allocate locals
;****body of the subroutine
 ldd data,x ; get data parameter
;****end of body
 leas 10,sp ; deallocate locals
 pulx ; restore register X
 rts ; return
What value should you use in the xxx position to implement the proper binding of this parameter?

(5) Question 9. When debugging a subroutine, we often call the subroutine with a specific set of
inputs. If the outputs are incorrect, we make changes to the subroutine and call it again with the exact
same inputs as before. What debugging process is this?
 A) Stabilization,
 B) Profiling
 C) Desk check
 D) Nonintrusiveness
 E) Monitor

EE319K Fall 2004 Quiz 3A Page 5

Jonathan W. Valvano November 19, 2004 11:00am-11:50am

The following 6812 assembly program implements a two-input two-output finite state machine.
 org $4000 Put in ROM

S1 fcb %01 Output
 fcb 5 Wait Time
 fdb S2,S1,S2,S3
S2 fcb %10 Output
 fcb 10 Wait Time
 fdb S3,S1,S2,S3
S3 fcb %11 Output
 fcb 20 Wait Time
 fdb S1,S1,S2,S1
Main lds #$4000
 bset DDRT,#$03 ; PTT1,PTT0 are LED outputs
 yyy DDRM,#$03 ; PTM1,PTM0 are switch inputs
 ldx #S1 ; Initial State pointer
FSM ldab 0,x ; Output value for this state in bits 1,0
 stab PTT
 ldaa 1,x ; 8-bit Wait in this state
 bsr WAIT
 ldab PTM ; Read input
 andb #$03 ; just interested in bits 1,0
 lslb ; 2 bytes per 16 bit address
 abx ; add 0,2,4,6 depending on input
 ldx zzz,x ; Next state depending on input
 bra FSM
(5) Question 10. If the input is 10, what will be the output sequence?

(5) Question 11. Which instruction goes in the yyy position?

(5) Question 12. Which number goes in the zzz position?

EE319K Fall 2004 Quiz 3A Page 6

Jonathan W. Valvano November 19, 2004 11:00am-11:50am

(5) Question 13. Consider a matrix with 4 rows and 6 columns, stored in column-major zero-index
format. Each element is 1 byte or 8 bits. Which equation correctly calculates the address of the element
at row I and column J?
 A. base+I+J
 B. base+4*I+J
 C. base+I+4*J
 D. base+6*I+J
 E. base+I+6*J

(5) Question 14. Specify the resistor value for R1, assuming LED current Id
is 1 mA, the LED voltage Vd is 1 V, and the gate output voltage VOL is
0.5V.

(5) Question 15. Which registers are pushed on the stack by swi and pulled off by rti?
 A. all registers but the SP
 B. PC
 C. PC and CCR
 D. all registers including the SP
 E. SP

EE319K Fall 2004 Quiz 3A Page 7

Jonathan W. Valvano November 19, 2004 11:00am-11:50am

aba 8-bit add RegA=RegA+RegB
abx unsigned add RegX=RegX+RegB
aby unsigned add RegY=RegY+RegB
adca 8-bit add with carry to RegA
adcb 8-bit add with carry to RegB
adda 8-bit add to RegA
addb 8-bit add to RegB
addd 16-bit add to RegD
anda 8-bit logical and to RegA
andb 8-bit logical and to RegB
andcc 8-bit logical and to RegCC
asl/lsl 8-bit left shift Memory
asla/lsla 8-bit left shift RegA
aslb/lslb 8-bit arith left shift RegB
asld/lsld 16-bit left shift RegD
asr 8-bit arith right shift Memory
asra 8-bit arith right shift
asrb 8-bit arith right shift to RegB
bcc branch if carry clear
bclr clear bits in memory
bcs branch if carry set
beq branch if result is zero (Z=1)
bge branch if signed =
bgnd enter background debug mode
bgt branch if signed >
bhi branch if unsigned >
bhs branch if unsigned =
bita 8-bit and with RegA, sets CCR
bitb 8-bit and with RegB, sets CCR
ble branch if signed =
blo branch if unsigned <
bls branch if unsigned =
blt branch if signed <
bmi branch if result is negative
(N=1)
bne branch if result is nonzero
(Z=0)
bpl branch if result is positive
(N=0)
bra branch always
brclr branch if bits are clear,
brn branch never
brset branch if bits are set
bset set bits in memory
bsr branch to subroutine
bvc branch if overflow clear
bvs branch if overflow set
call subroutine in expanded memory
cba 8-bit compare RegA with RegB
clc clear carry bit, C=0
cli clear I=0, enable interrupts
clr 8-bit Memory clear
clra RegA clear
clrb RegB clear
clv clear overflow bit, V=0
cmpa 8-bit compare RegA with memory
cmpb 8-bit compare RegB with memory
com 8-bit logical complement to
Memory
coma 8-bit logical complement to
RegA

comb 8-bit logical complement to
RegB
cpd 16-bit compare RegD with memory
cpx 16-bit compare RegX with memory
cpy 16-bit compare RegY with memory
daa 8-bit decimal adjust
accumulator
dbeq decrement and branch if
result=0
dbne decrement and branch if
result?0
dec 8-bit decrement memory
deca 8-bit decrement RegA
decb 8-bit decrement RegB
des 16-bit decrement RegSP
dex 16-bit decrement RegX
dey 16-bit decrement RegY
ediv RegY=(Y:D)/RegX, unsigned
divide
edivs RegY=(Y:D)/RegX, signed divide
emacs 16 by 16 signed mult, 32-bit
add
emaxd 16-bit unsigned maximum in RegD
emaxm 16-bit unsigned maximum in
memory
emind 16-bit unsigned minimum in RegD
eminm 16-bit unsigned minimum in
memory
emul RegY:D=RegY*RegD unsigned mult
emuls RegY:D=RegY*RegD signed mult
eora 8-bit logical exclusive or to
RegA
eorb 8-bit logical exclusive or to
RegB
etbl 16-bit look up and
interpolation
exg exchange register contents
fdiv 16-bit unsigned fractional
divide
ibeq increment and branch if
result=0
ibne increment and branch if
result?0
idiv 16-bit unsigned divide, X=D/X
idivs 16-bit signed divide, X=D/X
inc 8-bit increment memory
inca 8-bit increment RegA
incb 8-bit increment RegB
ins 16-bit increment RegSP
inx 16-bit increment RegX
iny 16-bit increment RegY
jmp jump always
jsr jump to subroutine
lbcc long branch if carry clear
lbcs long branch if carry set
lbeq long branch if result is zero
lbge long branch if signed =
lbgt long branch if signed >
lbhi long branch if unsigned >
lbhs long branch if unsigned =
lble long branch if signed =

EE319K Fall 2004 Quiz 3A Page 8

Jonathan W. Valvano November 19, 2004 11:00am-11:50am

lblo long branch if unsigned <
lbls long branch if unsigned =
lblt long branch if signed <
lbmi long branch if result is
negative
lbne long branch if result is
nonzero
lbpl long branch if result is
positive
lbra long branch always
lbrn long branch never
lbvc long branch if overflow clear
lbvs long branch if overflow set
ldaa 8-bit load memory into RegA
ldab 8-bit load memory into RegB
ldd 16-bit load memory into RegD
lds 16-bit load memory into RegSP
ldx 16-bit load memory into RegX
ldy 16-bit load memory into RegY
leas 16-bit load effective addr to
SP
leax 16-bit load effective addr to X
leay 16-bit load effective addr to Y
lsr 8-bit logical right shift
memory
lsra 8-bit logical right shift RegA
lsrb 8-bit logical right shift RegB
lsrd 16-bit logical right shift RegD
maxa 8-bit unsigned maximum in RegA
maxm 8-bit unsigned maximum in
memory
mem determine the membership grade
mina 8-bit unsigned minimum in RegA
minm 8-bit unsigned minimum in
memory
movb 8-bit move memory to memory
movw 16-bit move memory to memory
mul RegD=RegA*RegB
neg 8-bit 2's complement negate
memory
nega 8-bit 2's complement negate
RegA
negb 8-bit 2's complement negate
RegB
oraa 8-bit logical or to RegA
orab 8-bit logical or to RegB
orcc 8-bit logical or to RegCC
psha push 8-bit RegA onto stack
pshb push 8-bit RegB onto stack
pshc push 8-bit RegCC onto stack
pshd push 16-bit RegD onto stack
pshx push 16-bit RegX onto stack
pshy push 16-bit RegY onto stack
pula pop 8 bits off stack into RegA

pulb pop 8 bits off stack into RegB
pulc pop 8 bits off stack into RegCC
puld pop 16 bits off stack into RegD
pulx pop 16 bits off stack into RegX
puly pop 16 bits off stack into RegY
rev Fuzzy logic rule evaluation
revw weighted Fuzzy rule evaluation
rol 8-bit roll shift left Memory
rola 8-bit roll shift left RegA
rolb 8-bit roll shift left RegB
ror 8-bit roll shift right Memory
rora 8-bit roll shift right RegA
rorb 8-bit roll shift right RegB
rtc return sub in expanded memory
rti return from interrupt
rts return from subroutine
sba 8-bit subtract RegA=RegA-RegB
sbca 8-bit sub with carry from RegA
sbcb 8-bit sub with carry from RegB
sec set carry bit, C=1
sei set I=1, disable interrupts
sev set overflow bit, V=1
sex sign extend 8-bit to 16-bit reg
staa 8-bit store memory from RegA
stab 8-bit store memory from RegB
std 16-bit store memory from RegD
sts 16-bit store memory from SP
stx 16-bit store memory from RegX
sty 16-bit store memory from RegY
suba 8-bit sub from RegA
subb 8-bit sub from RegB
subd 16-bit sub from RegD
swi software interrupt, trap
tab transfer A to B
tap transfer A to CC
tba transfer B to A
tbeq test and branch if result=0
tbl 8-bit look up and interpolation
tbne test and branch if result?0
tfr transfer register to register
tpa transfer CC to A
trap illegal op code, or software
trap
tst 8-bit compare memory with zero
tsta 8-bit compare RegA with zero
tstb 8-bit compare RegB with zero
tsx transfer S+1 to X
tsy transfer S+1 to Y
txs transfer X-1 to S
tys transfer Y-1 to S
wai wait for interrupt
wav weighted Fuzzy logic average
xgdx exchange RegD with RegX
xgdy exchange RegD with RegY

example addressing mode Effective Address
ldaa #u immediate none
ldaa u direct EA is 8-bit address (0 to 255)

EE319K Fall 2004 Quiz 3A Page 9

Jonathan W. Valvano November 19, 2004 11:00am-11:50am

ldaa U extended EA is a 16-bit address
ldaa m,r 5-bit index EA=r+m (-16 to 15)
ldaa v,+r pre-increment r=r+v, EA=r (1 to 8)
ldaa v,-r pre-decrement r=r-v, EA=r (1 to 8)
ldaa v,r+ post-increment EA=r, r=r+v (1 to 8)
ldaa v,r- post-decrement EA=r, r=r-v (1 to 8)
ldaa A,r Reg A offset EA=r+A, zero padded
ldaa B,r Reg B offset EA=r+B, zero padded
ldaa D,r Reg D offset EA=r+D
ldaa q,r 9-bit index EA=r+q (-256 to 255)
ldaa W,r 16-bit index EA=r+W (-32768 to 65535)
ldaa [D,r] D indirect EA={r+D}
ldaa [W,r] indirect EA={r+W} (-32768 to 65535)

Motorola 6812 addressing modes

Pseudo op meaning
 org org Specific absolute address to put subsequent object code
 = equ Define a constant symbol
 set Define or redefine a constant symbol
 dc.b db fcb byte Allocate byte(s) of storage with initialized values
 fcc Create an ASCII string (no termination character)
 dc.w dw fdb .word Allocate word(s) of storage with initialized values
 dc.l dl .long Allocate 32-bit long word(s) of storage with initialized values
 ds ds.b rmb .blkb Allocate bytes of storage without initialization
 ds.w .blkw Allocate bytes of storage without initialization
 ds.l .blkl Allocate 32-bit words of storage without initialization

