
EE319K Fall 2006 Quiz 3A Page 1

Jonathan W. Valvano December 1, 2006 10:00am-10:50am

First:________________ Middle Initial: _____ Last:____________________
 This is a closed book exam. You must put your answers on this piece of paper only. You
have 50 minutes, so allocate your time accordingly. Please read the entire quiz before starting.

(5) Question 1.

(5) Question 2.

(5) Question 3.

(5) Question 4.

(5) Question 5.

(5) Question 6.

(5) Question 7.

(5) Question 8.

(5) Question 9.

(10) Question 10.

Pulse bset PTT,#1 ; send pulse on PT0

 bclr PTT,#1

 rts

EE319K Fall 2006 Quiz 3A Page 2

Jonathan W. Valvano December 1, 2006 10:00am-10:50am

(15) Question 11.

Convert

(5) Question 12.

(15) Question 13.

calc ;short calc(void){

 ;short sum,n;

 ;n = 100;

 ;sum = 0;

 ;do{ sum = sum+n;

 ;} while(--n);

 ;return(sum);}

EE319K Fall 2006 Quiz 3A Page 3

Jonathan W. Valvano December 1, 2006 10:00am-10:50am

This Fifo queue can hold up to eight 8-bit data values, and the
picture shows it currently is holding three values (shaded).
(5) Question 1. What value is returned if we were to call
Fifo_Get at this point?
(5) Question 2. Next, assume we call Fifo_Put. What will be the
new PutPt after we call Fifo_Put?

Questions 3 and 4 involve the following assembly program
involving a stack frame.
main lds #$4000
 ldaa #100
 psha ; pass 8-bit in parameter on stack
 jsr sub2
 leas 1,s ; balance stack
here bra here
data set xxx ; binding of 8-bit local variable
in set yyy ; binding of 8-bit input parameter
sub2 pshx ; save register X
 des ; allocate 8-bit local variable called data
 tsx ; RegX stack frame
;****body of the subroutine
 ldab in,x ; get a copy of in parameter
 stab data,x ; store into local variable data
;****end of body
 ins ; deallocate data
 pulx ; restore register X
 rts ; return
(5) Question 3. What value should you use in the xxx position to implement the binding of the
local variable, data?

(5) Question 4. What value should you use in the yyy position to implement the binding of the
parameter, in?

(5) Question 5. Specify the resistor value for R1, assuming LED current Id is
1 mA, the LED voltage Vd is 2.5 V, and the gate output voltage VOL is 0.5V.

(5) Question 6. Which three events cause an interrupt to occur? Specify
three letters in any order.
A) The software disarms the interrupt (e.g., RTIE=0)
B) The I bit in the CCR is set
C) The I bit in the CCR is clear
D) The software arms the interrupt (e.g., RTIE=1)
E) The software acknowledges the interrupt, clearing the flag (e.g., RTIF=0)
F) The software sets the flag bit (e.g., RTIF=1)
G) The hardware sets the flag bit (e.g., RTIF=1)
H) The hardware acknowledges the interrupt, clearing the flag (e.g., RTIF=0)

$3900
$3901
$3902
$3903
$3904
$3905
$3906
$3907

Address Contents
$00
$01
$02
$12
$56
$78
$34
$66

GetPt

PutPt

EE319K Fall 2006 Quiz 3A Page 4

Jonathan W. Valvano December 1, 2006 10:00am-10:50am

(5) Question 7. Consider a 10-bit ADC with a range of -10 to +10V. What is the approximate
resolution of this ADC? Give units.

(5) Question 8. The 0 to 5V 10-bit ADC on the 9S12C32 uses the successive approximation
conversion technique. This technique involves a series of guesses. Which will be the first guess?

A) 0 V
B) 5V/1024 = 5mV
C) 5V/256 = 20mV
D) 1.25 V
E) 2.5 V
F) 3.75 V
G) 5 V

(5) Question 9. The following ISR has a bug (I know it doesn’t do anything):
;*****called when RTIF is set ********************
RTIhandler
 ldaa PTT
 sei
 rti

 org $FFF0
 fdb RTIhandler
 A) Register A is altered by the ISR, so the main program will be confused.
 B) The sei instruction disables interrupts, so no more interrupts will occur
 C) This ISR did not acknowledge the interrupt (clear RTIF), so it will interrupt over and over
continuously.
 D) This ISR did not acknowledge the interrupt (clear RTIF) so no more interrupts will occur.
 E) The stack is unbalanced, so it will crash.
 F) The ISR didn’t need to set the I bit with the sei, because the rti instruction will
automatically set the I bit when the handler returns.

(15) Question 10. A complicated software system includes this subroutine
Pulse bset PTT,#1 ; send pulse on PT0
 bclr PTT,#1
 rts
Design a minimally intrusive debugging instrument that will allow you to measure how many
times this subroutine has been called. You may assume that this subroutine is called less than
1000 times. Include global variable definitions, an initialization subroutine and the instrument
added to Pulse that counts. No comments required for this question.

(15) Question 11. Write a subroutine that converts a 10-bit ADC sample into a position. The
input parameter is passed call by reference in Reg Y, meaning Reg Y contains a pointer to the
input 16-bit input data. The output parameter should be returned by value in RegD, meaning Reg
D itself contains the result. The conversion is a linear function (Output = 2.5*Input+100). The
range of input values is 0 to 1023. The output range is 100 to 2556. The following main program
illustrates how data is passed into and out of your subroutine. Comments are required.

EE319K Fall 2006 Quiz 3A Page 5

Jonathan W. Valvano December 1, 2006 10:00am-10:50am

 org $3800 2.5*65536= 163840
Result rmb 2 2.5/65536= 0.00003814697
 org $4000 65536/2.5= 26214
Data fdb 1000 3.5*65536= 229376
main lds #$4000 3.5/65536= 0.00005340576
 ldy #Data ; RegY points to data 65536/3.5= 18725
 jsr Convert ; your subroutine
 std Result ; save result
The following table shows some example data. (don’t worry about rounding the LSB)
Input 2.5*Input Output Meaning
 0 0 100 1.00 cm
 100 250 350 3.50 cm
1000 2500 2600 26.00 cm
1022 2555 2655 26.55 cm
(hint: you can solve this problem one of two ways. First, you could use the fdiv instruction.
Second, you could rewrite the formula as Output= 2*Input+Input/2+100.

(5) Question 12. A serial port will be used to transfer 2000 bytes of information per second. The
protocol is 1 start bit, 8 data bits, and 2 stop bits. What is the slowest baud rate that can handle
this serial transfer?

(20) Question 13. Translate explicitly (line by line) the following C program to assembly. Both
variables (n sum) must be stored on the stack, including symbolic binding. For each line of C,
fetch necessary values off the stack, operate, and store back to the stack as appropriate. For
example, sum = sum+n; should be implemented as read sum from stack, read n from stack,
add, write result back to stack. The output parameter should be returned by value in Reg D. No
additional comments required for this question.
short calc(void){
short sum,n; // two 16-bit signed variables
 n = 100;
 sum = 0;
 do{ sum = sum+n;
 } while(--n); // means decrement and branch back if not zero
 return(sum);} // return a 16-bit result in Reg D

EE319K Fall 2006 Quiz 3A Page 6

Jonathan W. Valvano December 1, 2006 10:00am-10:50am

aba 8-bit add RegA=RegA+RegB
abx unsigned add RegX=RegX+RegB
aby unsigned add RegY=RegY+RegB
adca 8-bit add with carry to RegA
adcb 8-bit add with carry to RegB
adda 8-bit add to RegA
addb 8-bit add to RegB
addd 16-bit add to RegD
anda 8-bit logical and to RegA
andb 8-bit logical and to RegB
andcc 8-bit logical and to RegCC
asl/lsl 8-bit left shift Memory
asla/lsla 8-bit left shift RegA
aslb/lslb 8-bit arith left shift RegB
asld/lsld 16-bit left shift RegD
asr 8-bit arith right shift Memory
asra 8-bit arith right shift to RegA
asrb 8-bit arith right shift to RegB
bcc branch if carry clear
bclr bit clear in memory
 bclr PTT,#$01
bcs branch if carry set
beq branch if result is zero (Z=1)
bge branch if signed ≥
bgnd enter background debug mode
bgt branch if signed >
bhi branch if unsigned >
bhs branch if unsigned ≥
bita 8-bit and with RegA, sets CCR
bitb 8-bit and with RegB, sets CCR
ble branch if signed ≤
blo branch if unsigned <
bls branch if unsigned ≤
blt branch if signed <
bmi branch if result is negative (N=1)
bne branch if result is nonzero (Z=0)
bpl branch if result is positive (N=0)
bra branch always
brclr branch if bits are clear
 brclr PTT,#$01,loop
brn branch never
brset branch if bits are set
 brset PTT,#$01,loop
bset bit set clear in memory
 bset PTT,#$04
bsr branch to subroutine
bvc branch if overflow clear
bvs branch if overflow set
call subroutine in expanded memory
cba 8-bit compare RegA with RegB
clc clear carry bit, C=0
cli clear I=0, enable interrupts
clr 8-bit memory clear
clra RegA clear
clrb RegB clear
clv clear overflow bit, V=0
cmpa 8-bit compare RegA with memory
cmpb 8-bit compare RegB with memory
com 8-bit logical complement to memory
coma 8-bit logical complement to RegA
comb 8-bit logical complement to RegB
cpd 16-bit compare RegD with memory
cpx 16-bit compare RegX with memory
cpy 16-bit compare RegY with memory
daa 8-bit decimal adjust accumulator
dbeq decrement and branch if result=0
 dbeq Y,loop
dbne decrement and branch if result≠0
 dbne A,loop
dec 8-bit decrement memory
deca 8-bit decrement RegA
decb 8-bit decrement RegB
des 16-bit decrement RegSP
dex 16-bit decrement RegX
dey 16-bit decrement RegY

ediv RegY=(Y:D)/RegX, unsigned divide
edivs RegY=(Y:D)/RegX, signed divide
emacs 16 by 16 signed mult, 32-bit add
emaxd 16-bit unsigned maximum in RegD
emaxm 16-bit unsigned maximum in memory
emind 16-bit unsigned minimum in RegD
eminm 16-bit unsigned minimum in memory
emul RegY:D=RegY*RegD unsigned mult
emuls RegY:D=RegY*RegD signed mult
eora 8-bit logical exclusive or to RegA
eorb 8-bit logical exclusive or to RegB
etbl 16-bit look up and interpolation
exg exchange register contents
 exg X,Y
fdiv unsigned fract div, X=(65536*D)/X
ibeq increment and branch if result=0
 ibeq Y,loop
ibne increment and branch if result≠0
 ibne A,loop
idiv 16-bit unsigned div, X=D/X, D=rem
idivs 16-bit signed divide, X=D/X, D=rem
inc 8-bit increment memory
inca 8-bit increment RegA
incb 8-bit increment RegB
ins 16-bit increment RegSP
inx 16-bit increment RegX
iny 16-bit increment RegY
jmp jump always
jsr jump to subroutine
lbcc long branch if carry clear
lbcs long branch if carry set
lbeq long branch if result is zero
lbge long branch if signed ≥
lbgt long branch if signed >
lbhi long branch if unsigned >
lbhs long branch if unsigned ≥
lble long branch if signed ≤
lblo long branch if unsigned <
lbls long branch if unsigned ≤
lblt long branch if signed <
lbmi long branch if result is negative
lbne long branch if result is nonzero
lbpl long branch if result is positive
lbra long branch always
lbrn long branch never
lbvc long branch if overflow clear
lbvs long branch if overflow set
ldaa 8-bit load memory into RegA
ldab 8-bit load memory into RegB
ldd 16-bit load memory into RegD
lds 16-bit load memory into RegSP
ldx 16-bit load memory into RegX
ldy 16-bit load memory into RegY
leas 16-bit load effective addr to SP
leax 16-bit load effective addr to X
leay 16-bit load effective addr to Y
lsr 8-bit logical right shift memory
lsra 8-bit logical right shift RegA
lsrb 8-bit logical right shift RegB
lsrd 16-bit logical right shift RegD
maxa 8-bit unsigned maximum in RegA
maxm 8-bit unsigned maximum in memory
mem determine the membership grade
mina 8-bit unsigned minimum in RegA
minm 8-bit unsigned minimum in memory
movb 8-bit move memory to memory
 movb #100,PTT
movw 16-bit move memory to memory
 movw #13,SCIBD
mul RegD=RegA*RegB
neg 8-bit 2's complement negate memory
nega 8-bit 2's complement negate RegA
negb 8-bit 2's complement negate RegB
oraa 8-bit logical or to RegA
orab 8-bit logical or to RegB

EE319K Fall 2006 Quiz 3A Page 7

Jonathan W. Valvano December 1, 2006 10:00am-10:50am

orcc 8-bit logical or to RegCC
psha push 8-bit RegA onto stack
pshb push 8-bit RegB onto stack
pshc push 8-bit RegCC onto stack
pshd push 16-bit RegD onto stack
pshx push 16-bit RegX onto stack
pshy push 16-bit RegY onto stack
pula pop 8 bits off stack into RegA
pulb pop 8 bits off stack into RegB
pulc pop 8 bits off stack into RegCC
puld pop 16 bits off stack into RegD
pulx pop 16 bits off stack into RegX
puly pop 16 bits off stack into RegY
rev Fuzzy logic rule evaluation
revw weighted Fuzzy rule evaluation
rol 8-bit roll shift left Memory
rola 8-bit roll shift left RegA
rolb 8-bit roll shift left RegB
ror 8-bit roll shift right Memory
rora 8-bit roll shift right RegA
rorb 8-bit roll shift right RegB
rtc return sub in expanded memory
rti return from interrupt
rts return from subroutine
sba 8-bit subtract RegA-RegB
sbca 8-bit sub with carry from RegA
sbcb 8-bit sub with carry from RegB
sec set carry bit, C=1
sei set I=1, disable interrupts
sev set overflow bit, V=1
sex sign extend 8-bit to 16-bit reg
 sex B,D
staa 8-bit store memory from RegA

stab 8-bit store memory from RegB
std 16-bit store memory from RegD
sts 16-bit store memory from SP
stx 16-bit store memory from RegX
sty 16-bit store memory from RegY
suba 8-bit sub from RegA
subb 8-bit sub from RegB
subd 16-bit sub from RegD
swi software interrupt, trap
tab transfer A to B
tap transfer A to CC
tba transfer B to A
tbeq test and branch if result=0
 tbeq Y,loop
tbl 8-bit look up and interpolation
tbne test and branch if result≠0
 tbne A,loop
tfr transfer register to register
 tfr X,Y
tpa transfer CC to A
trap illegal instruction interrupt
trap illegal op code, or software trap
tst 8-bit compare memory with zero
tsta 8-bit compare RegA with zero
tstb 8-bit compare RegB with zero
tsx transfer S to X
tsy transfer S to Y
txs transfer X to S
tys transfer Y to S
wai wait for interrupt
wav weighted Fuzzy logic average
xgdx exchange RegD with RegX
xgdy exchange RegD with RegY

example addressing mode Effective Address
ldaa #u immediate none
ldaa u direct EA is 8-bit address (0 to 255)
ldaa U extended EA is a 16-bit address
ldaa m,r 5-bit index EA=r+m (-16 to 15)
ldaa v,+r pre-increment r=r+v, EA=r (1 to 8)
ldaa v,-r pre-decrement r=r-v, EA=r (1 to 8)
ldaa v,r+ post-increment EA=r, r=r+v (1 to 8)
ldaa v,r- post-decrement EA=r, r=r-v (1 to 8)
ldaa A,r Reg A offset EA=r+A, zero padded
ldaa B,r Reg B offset EA=r+B, zero padded
ldaa D,r Reg D offset EA=r+D
ldaa q,r 9-bit index EA=r+q (-256 to 255)
ldaa W,r 16-bit index EA=r+W (-32768 to 65535)
ldaa [D,r] D indirect EA={r+D}
ldaa [W,r] indirect EA={r+W} (-32768 to 65535)

Freescale 6812 addressing modes
Pseudo op meaning

 org Specific absolute address to put subsequent object code
 = equ Define a constant symbol
 set Define or redefine a constant symbol
 dc.b db fcb .byte Allocate byte(s) of storage with initialized values
 fcc Create an ASCII string (no termination character)
 dc.w dw fdb .word Allocate word(s) of storage with initialized values
 dc.l dl .long Allocate 32-bit long word(s) of storage with initialized values
 ds ds.b rmb .blkb Allocate bytes of storage without initialization
 ds.w .blkw Allocate bytes of storage without initialization
 ds.l .blkl Allocate 32-bit words of storage without initialization

EE319K Fall 2006 Quiz 3A Page 8

Jonathan W. Valvano December 1, 2006 10:00am-10:50am

