
EE319K Fall 2007 Quiz 3 Page 1 of 8

Jonathan W. Valvano November 28, 2007 10:00am-10:50am

First:________________ Last:____________________
 This is a closed book exam. You must put your answers on this piece of paper only. You
have 50 minutes, so allocate your time accordingly. Please read the entire quiz before starting.

(5) Question 1.

(5) Question 2.

(5) Question 3.

(5) Question 4.

(5) Question 5.

(15) Question 6.

PM2

PM3

PM1

PM4

PM0

Vout

(5) Question 7.

(5) Question 8.

(5) Question 9.

(5) Question 10.

EE319K Fall 2007 Quiz 3 Page 2 of 8

Jonathan W. Valvano November 28, 2007 10:00am-10:50am

(5) Question 11.

(5) Question 12.

(30) Question 13.

 org $3800 ; RAM
Second rmb 1 ; increment this every second

 org $4000 ; EEPROM
main lds #$4000 ; initialize stack
; initialize output compare 7

loop bra loop ; main program does nothing

;output compare 7 interrupt service routine
OC7han

; set the output compare interrupt vector

 org $FFFE
 fdb main ; reset vector

EE319K Fall 2007 Quiz 3 Page 3 of 8

Jonathan W. Valvano November 28, 2007 10:00am-10:50am

(5) Question 1. Specify the proper order of events occurring during the context switch from
foreground (main program) to background (interrupt service routine, ISR). Push registers means
Push PC, Y, X, A, B, and CCR on the stack.
A) Finish instruction, push registers, I=1, PC=vector, execute ISR.
B) Finish instruction, push registers, clear trigger flag, I=1, PC=vector, execute ISR.
C) Finish instruction, push registers, I=0, PC=vector, execute ISR.
D) Finish instruction, I=1, push registers, PC=vector, execute ISR.
E) Finish instruction, I=1, push registers, clear trigger flag, PC=vector, execute ISR.
F) Finish instruction, I=0, push registers, PC=vector, execute ISR.
G) None of the above

(5) Question 2. Consider a 12-bit ADC with a range of 0 to +5V. What is the approximate
resolution of this ADC? Give units.

(5) Question 3. There are three decimal fixed-point numbers. The height, H, and the width, W,
have a resolution of 0.01 cm. The area, A, has a fixed-point resolution of 0.01 cm2. Let IH be the
integer part of H, let IW be the integer part of W, and let IA be the integer part of A.. The goal is
to calculate area, A = H*W. Show the mathematical equation needed to calculate IA in terms of
IH, IW and numerical constants. Your answer will look something similar to IA = IH+IW*2

Questions 4 and 5 involve the following assembly program involving one 16-bit parameter
passed on the stack and one 8-bit local variable, also on the stack.
main lds #$4000
 movw #1000,2,-sp ; pass 16-bit in parameter on stack
 jsr sub2
 leas 2,s ; balance stack, discarding the in parameter
here bra here
in set xxx ; binding of 16-bit input parameter
cnt set yyy ; binding of 8-bit local variable
sub2 des ; allocate 8-bit local variable called cnt
 psha ; save register A
 pshx ; save register X
;****body of the subroutine
;other stuff.......
 ldx in,sp ; get a copy of in parameter
 staa cnt,sp ; store into local variable cnt
;other stuff.......
;****end of body
 pulx ; restore register X
 pula ; restore register A
 ins ; deallocate cnt
 rts ; return
(5) Question 4. What value should you use in the xxx position to implement the binding of the
parameter, in?

EE319K Fall 2007 Quiz 3 Page 4 of 8

Jonathan W. Valvano November 28, 2007 10:00am-10:50am

(5) Question 5. What value should you use in the yyy position to implement the binding of the
local variable, cnt?

(15) Question 6. Design a 5-bit DAC converter interfaced to PM4, PM3, PM2, PM1, and PM0.
The range should be 0 to +5V. You may use any resistance value from 1kΩ to 1MΩ, but please
specify the resistor values.

(5) Question 7. What event triggers the start of an ADC conversion on the 6812?
A) The software writes to the ATDCTL3 register.
B) The software writes to the ATDCTL4 register.
C) The software writes to the ATDCTL5 register.
D) The ADC is automatically started by hardware.
E) Software sets the ADPU bit in the ATDCTL2 register.
F) Software read ATDSTAT0 with SCF set, followed by reading the result register.
G) None of these choices is correct.

The following 6812 assembly program implements a one-input four-output finite state machine.
The input is on Port M bit 0 and the output is on Port T bits 3,2,1,0.
 org $4000 Put in ROM

Stop fcb 7 ;Output
 fdb Stop,Go ;Next
Go fcb 3
 fdb sss,ttt
Brake fcb 5
 fdb Stop,Go
Main lds #$4000
 bset DDRT,#$0F ; PT3-0 outputs
 bclr DDRM,#$01 ; PM0 is input
 ldy #Stop ; RegY is the State pointer
FSM yyy ; RegB is Output value for this state
 stab PTT ; Perform the output
 ldab PTM ; Read input
 andb #$01 ; just interested in bit 0
 lslb ; 2 bytes per 16 bit address
 aby ; add 0,2 depending on input
 zzz ; Next state depending on input
 bra FSM

(5) Question 8. What should you put in the sss,ttt positions?

(5) Question 9. What instruction (op code and operand) goes in the yyy position?

(5) Question 10. What instruction (op code and operand) goes in the zzz position?

Stop

7

Go

3

Brake

5

0

1

1
0

1
0

EE319K Fall 2007 Quiz 3 Page 5 of 8

Jonathan W. Valvano November 28, 2007 10:00am-10:50am

(5) Question 11. Why do we use a Fifo queue in a producer/consumer system to pass data
between the foreground and the background? Choose the best answer.
A) Because the Fifo queue data is stored on the stack, making the system reentrant.
B) Because the Fifo queue has an unlimited amount of storage, allowing both the producer and
consumer to operate at full speed.
C) Because the Fifo queue temporarily stores data, decoupling the execution of the producer and
the consumer. If there is room in the Fifo, the producer can run. If there is data in the Fifo the
consumer can run.
D) All of A, B, and C are correct.
E) None of A, B, and C are correct.

(5) Question 12. Why do we use local variables instead of globals? Choose the best answer.
A) Local variables have a more limited scope than global variables, simplifying the interaction
between modules in a modular design.
B) If storage is only needed temporarily, then local variables allow RAM memory to be reused.
C) When a subroutine is called both by the main program and by an interrupt service routine,
local variables will not create a critical section (i.e., it will be reentrant).
D) All of A, B, and C are correct.
E) None of A, B, and C are correct.

(30) Question 13. Assume the PLL is not active, and the E clock is 4 MHz. Design a system that
increments an 8-bit global variable called Second, every 1 second. Show the main program
(including ritual), the output compare 7 interrupt service routine, and the output compare
interrupt vector. The main program initializes Second=0, activates output compare 7 interrupts,
and then performs a do-nothing loop. The output compare 7 interrupt service routine increments
the variable Second. Additional global variables are allowed, but not needed.

EE319K Fall 2007 Quiz 3 Page 6 of 8

Jonathan W. Valvano November 28, 2007 10:00am-10:50am

aba 8-bit add RegA=RegA+RegB
abx unsigned add RegX=RegX+RegB
aby unsigned add RegY=RegY+RegB
adca 8-bit add with carry to RegA
adcb 8-bit add with carry to RegB
adda 8-bit add to RegA
addb 8-bit add to RegB
addd 16-bit add to RegD
anda 8-bit logical and to RegA
andb 8-bit logical and to RegB
andcc 8-bit logical and to RegCC
asl/lsl 8-bit left shift Memory
asla/lsla 8-bit left shift RegA
aslb/lslb 8-bit arith left shift RegB
asld/lsld 16-bit left shift RegD
asr 8-bit arith right shift Memory
asra 8-bit arith right shift to RegA
asrb 8-bit arith right shift to RegB
bcc branch if carry clear
bclr bit clear in memory
 bclr PTT,#$01
bcs branch if carry set
beq branch if result is zero (Z=1)
bge branch if signed ≥
bgnd enter background debug mode
bgt branch if signed >
bhi branch if unsigned >
bhs branch if unsigned ≥
bita 8-bit and with RegA, sets CCR
bitb 8-bit and with RegB, sets CCR
ble branch if signed ≤
blo branch if unsigned <
bls branch if unsigned ≤
blt branch if signed <
bmi branch if result is negative (N=1)
bne branch if result is nonzero (Z=0)
bpl branch if result is positive (N=0)
bra branch always
brclr branch if bits are clear
 brclr PTT,#$01,loop
brn branch never
brset branch if bits are set
 brset PTT,#$01,loop
bset bit set clear in memory
 bset PTT,#$04
bsr branch to subroutine
bvc branch if overflow clear
bvs branch if overflow set
call subroutine in expanded memory
cba 8-bit compare RegA with RegB
clc clear carry bit, C=0
cli clear I=0, enable interrupts
clr 8-bit memory clear
clra RegA clear
clrb RegB clear
clv clear overflow bit, V=0
cmpa 8-bit compare RegA with memory
cmpb 8-bit compare RegB with memory
com 8-bit logical complement to memory
coma 8-bit logical complement to RegA
comb 8-bit logical complement to RegB
cpd 16-bit compare RegD with memory
cpx 16-bit compare RegX with memory
cpy 16-bit compare RegY with memory
daa 8-bit decimal adjust accumulator
dbeq decrement and branch if result=0
 dbeq Y,loop
dbne decrement and branch if result≠0
 dbne A,loop
dec 8-bit decrement memory
deca 8-bit decrement RegA
decb 8-bit decrement RegB
des 16-bit decrement RegSP
dex 16-bit decrement RegX
dey 16-bit decrement RegY

ediv RegY=(Y:D)/RegX, unsigned divide
edivs RegY=(Y:D)/RegX, signed divide
emacs 16 by 16 signed mult, 32-bit add
emaxd 16-bit unsigned maximum in RegD
emaxm 16-bit unsigned maximum in memory
emind 16-bit unsigned minimum in RegD
eminm 16-bit unsigned minimum in memory
emul RegY:D=RegY*RegD unsigned mult
emuls RegY:D=RegY*RegD signed mult
eora 8-bit logical exclusive or to RegA
eorb 8-bit logical exclusive or to RegB
etbl 16-bit look up and interpolation
exg exchange register contents
 exg X,Y
fdiv unsigned fract div, X=(65536*D)/X
ibeq increment and branch if result=0
 ibeq Y,loop
ibne increment and branch if result≠0
 ibne A,loop
idiv 16-bit unsigned div, X=D/X, D=rem
idivs 16-bit signed divide, X=D/X, D=rem
inc 8-bit increment memory
inca 8-bit increment RegA
incb 8-bit increment RegB
ins 16-bit increment RegSP
inx 16-bit increment RegX
iny 16-bit increment RegY
jmp jump always
jsr jump to subroutine
lbcc long branch if carry clear
lbcs long branch if carry set
lbeq long branch if result is zero
lbge long branch if signed ≥
lbgt long branch if signed >
lbhi long branch if unsigned >
lbhs long branch if unsigned ≥
lble long branch if signed ≤
lblo long branch if unsigned <
lbls long branch if unsigned ≤
lblt long branch if signed <
lbmi long branch if result is negative
lbne long branch if result is nonzero
lbpl long branch if result is positive
lbra long branch always
lbrn long branch never
lbvc long branch if overflow clear
lbvs long branch if overflow set
ldaa 8-bit load memory into RegA
ldab 8-bit load memory into RegB
ldd 16-bit load memory into RegD
lds 16-bit load memory into RegSP
ldx 16-bit load memory into RegX
ldy 16-bit load memory into RegY
leas 16-bit load effective addr to SP
leax 16-bit load effective addr to X
leay 16-bit load effective addr to Y
lsr 8-bit logical right shift memory
lsra 8-bit logical right shift RegA
lsrb 8-bit logical right shift RegB
lsrd 16-bit logical right shift RegD
maxa 8-bit unsigned maximum in RegA
maxm 8-bit unsigned maximum in memory
mem determine the membership grade
mina 8-bit unsigned minimum in RegA
minm 8-bit unsigned minimum in memory
movb 8-bit move memory to memory
 movb #100,PTT
movw 16-bit move memory to memory
 movw #13,SCIBD
mul RegD=RegA*RegB
neg 8-bit 2's complement negate memory
nega 8-bit 2's complement negate RegA
negb 8-bit 2's complement negate RegB
oraa 8-bit logical or to RegA
orab 8-bit logical or to RegB

EE319K Fall 2007 Quiz 3 Page 7 of 8

Jonathan W. Valvano November 28, 2007 10:00am-10:50am

orcc 8-bit logical or to RegCC
psha push 8-bit RegA onto stack
pshb push 8-bit RegB onto stack
pshc push 8-bit RegCC onto stack
pshd push 16-bit RegD onto stack
pshx push 16-bit RegX onto stack
pshy push 16-bit RegY onto stack
pula pop 8 bits off stack into RegA
pulb pop 8 bits off stack into RegB
pulc pop 8 bits off stack into RegCC
puld pop 16 bits off stack into RegD
pulx pop 16 bits off stack into RegX
puly pop 16 bits off stack into RegY
rev Fuzzy logic rule evaluation
revw weighted Fuzzy rule evaluation
rol 8-bit roll shift left Memory
rola 8-bit roll shift left RegA
rolb 8-bit roll shift left RegB
ror 8-bit roll shift right Memory
rora 8-bit roll shift right RegA
rorb 8-bit roll shift right RegB
rtc return sub in expanded memory
rti return from interrupt
rts return from subroutine
sba 8-bit subtract RegA-RegB
sbca 8-bit sub with carry from RegA
sbcb 8-bit sub with carry from RegB
sec set carry bit, C=1
sei set I=1, disable interrupts
sev set overflow bit, V=1
sex sign extend 8-bit to 16-bit reg
 sex B,D
staa 8-bit store memory from RegA

stab 8-bit store memory from RegB
std 16-bit store memory from RegD
sts 16-bit store memory from SP
stx 16-bit store memory from RegX
sty 16-bit store memory from RegY
suba 8-bit sub from RegA
subb 8-bit sub from RegB
subd 16-bit sub from RegD
swi software interrupt, trap
tab transfer A to B
tap transfer A to CC
tba transfer B to A
tbeq test and branch if result=0
 tbeq Y,loop
tbl 8-bit look up and interpolation
tbne test and branch if result≠0
 tbne A,loop
tfr transfer register to register
 tfr X,Y
tpa transfer CC to A
trap illegal instruction interrupt
trap illegal op code, or software trap
tst 8-bit compare memory with zero
tsta 8-bit compare RegA with zero
tstb 8-bit compare RegB with zero
tsx transfer S to X
tsy transfer S to Y
txs transfer X to S
tys transfer Y to S
wai wait for interrupt
wav weighted Fuzzy logic average
xgdx exchange RegD with RegX
xgdy exchange RegD with RegY

example addressing mode Effective Address
ldaa #u immediate none
ldaa u direct EA is 8-bit address (0 to 255)
ldaa U extended EA is a 16-bit address
ldaa m,r 5-bit index EA=r+m (-16 to 15)
ldaa v,+r pre-increment r=r+v, EA=r (1 to 8)
ldaa v,-r pre-decrement r=r-v, EA=r (1 to 8)
ldaa v,r+ post-increment EA=r, r=r+v (1 to 8)
ldaa v,r- post-decrement EA=r, r=r-v (1 to 8)
ldaa A,r Reg A offset EA=r+A, zero padded
ldaa B,r Reg B offset EA=r+B, zero padded
ldaa D,r Reg D offset EA=r+D
ldaa q,r 9-bit index EA=r+q (-256 to 255)
ldaa W,r 16-bit index EA=r+W (-32768 to 65535)
ldaa [D,r] D indirect EA={r+D}
ldaa [W,r] indirect EA={r+W} (-32768 to 65535)

Freescale 6812 addressing modes
Pseudo op meaning

 org Specific absolute address to put subsequent object code
 = equ Define a constant symbol
 set Define or redefine a constant symbol
 dc.b db fcb .byte Allocate byte(s) of storage with initialized values
 fcc Create an ASCII string (no termination character)
 dc.w dw fdb .word Allocate word(s) of storage with initialized values
 dc.l dl .long Allocate 32-bit long word(s) of storage with initialized values
 ds ds.b rmb .blkb Allocate bytes of storage without initialization
 ds.w .blkw Allocate bytes of storage without initialization
 ds.l .blkl Allocate 32-bit words of storage without initialization

EE319K Fall 2007 Quiz 3 Page 8 of 8

Jonathan W. Valvano November 28, 2007 10:00am-10:50am

Address Bit 7 6 5 4 3 2 1 Bit 0 Name
$0082 ADPU AFFC AWAI ETRIGLE ETRIGP ETRIG ASCIE ASCIF ATDCTL2
$0083 0 S8C S4C S2C S1C FIFO FRZ1 FRZ0 ATDCTL3
$0084 SRES8 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0 ATDCTL4
$0085 DJM DSGN SCAN MULT 0 CC CB CA ATDCTL5
$0086 SCF 0 ETORF FIFOR 0 CC2 CC1 CC0 ATDSTAT0
$008B CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0 ATDSTAT1
$008D Bit 7 6 5 4 3 2 1 Bit 0 ATDDIEN
$0270 PTAD7 PTAD6 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTAD0 PTAD
$0272 DDRAD7 DDRAD6 DDRAD5 DDRAD4 DDRAD3 DDRAD2 DDRAD1 DDRAD0 DDRAD
address msb lsb Name
$0090 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR0
$0092 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR1
$0094 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR2
$0096 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR3
$0098 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR4
$009A 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR5
$009C 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR6
$009E 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR7

address msb lsb Name
$0044 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TCNT
$0050 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC0
$0052 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC1
$0054 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC2
$0056 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC3
$0058 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC4
$005A 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC5
$005C 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC6
$005E 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC7

Address Bit 7 6 5 4 3 2 1 Bit 0 Name
$0046 TEN TSWAI TSBCK TFFCA 0 0 0 0 TSCR1
$004D TOI 0 0 0 TCRE PR2 PR1 PR0 TSCR2
$0040 IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0 TIOS
$004C C7I C6I C5I C4I C3I C2I C1I C0I TIE
$004E C7F C6F C5F C4F C3F C2F C1F C0F TFLG1
$004F TOF 0 0 0 0 0 0 0 TFLG2
TSCR1 is the first 8-bit timer control register
 bit 7 TEN, 1 allows the timer to function normally, 0 means disable timer including TCNT
TSCR2 is the second 8-bit timer control register
 bits 2,1,0 are PR2, PR1, PR0, which select the rate, let n be the 3-bit number formed by PR2, PR1, PR0
 without PLL TCNT is 4MHz/2n, with PLL TCNT is 24MHz/2n, n ranges from 0 to 7
TIOS is the 8-bit output compare select register, one bit for each channel (1 = output compare, 0 = input capture)
TIE is the 8-bit output compare arm register, one bit for each channel (1 = armed, 0 = disarmed)

Vector
Address

Interrupt Source or
Trigger flag

Enable

Local
Arm

$FFFE Reset none none
$FFEE Timer Channel 0, C0F I bit TIE.C0I
$FFEC Timer Channel 1, C1F I bit TIE.C1I
$FFEA Timer Channel 2, C2F I bit TIE.C2I
$FFE8 Timer Channel 3, C3F I bit TIE.C3I
$FFE6 Timer Channel 4, C4F I bit TIE.C4I
$FFE4 Timer Channel 5, C5F I bit TIE.C5I
$FFE2 Timer Channel 6, C6F I bit TIE.C6I
$FFE0 Timer Channel 7, C7F I bit TIE.C7I

