
EE319K Fall 2008 Quiz 3 Page 1 of 8

Jonathan W. Valvano November 21, 2008 10:00am-10:50am

First:_____________________ Last:_______________________
 This is a closed book exam. You have 50 minutes, so allocate your time accordingly.
Please read the entire quiz before starting.

Please read and affirm our honor code:
 “The core values of The University of Texas at Austin are learning, discovery, freedom,
leadership, individual opportunity, and responsibility. Each member of the university is
expected to uphold these values through integrity, honesty, trust, fairness, and respect
toward peers and community.”

Signed: ____________________________________ November 21, 2008

(5) Question 1. List the three conditions that must be true for an RDRF interrupt to occur?

(5) Question 2. Consider a right-justified unsigned 10-bit ADC with a range of 0 to +10V. What
ADC value would you get if the analog input were 1.00V?

(10) Question 3. Consider a serial port operating with a baud rate of 1000 bits per second. Draw
the waveform occurring at the PS1 output (voltage levels are +5 and 0) when the ASCII ‘5’
($35) is transmitted on SCI1. The protocol is 1 start, 8 data and 1 stop bit.

PS3

t -1 0 1 2 3 4 5 6 7 8 9 10 11 12 ms

EE319K Fall 2008 Quiz 3 Page 2 of 8

Jonathan W. Valvano November 21, 2008 10:00am-10:50am

Questions 4 and 5 involve the following assembly program involving one 8-bit parameter
passed on the stack and one 16-bit local variable, also on the stack.
main lds #$4000
 movb #100,1,-sp ; pass 8-bit in parameter on stack
 jsr sub2
 ins ; balance stack, discarding the in parameter
here bra here
in set xxx ; binding of 8-bit input parameter
cnt set yyy ; binding of 16-bit local variable
sub2 leas -2,sp ; allocate 16-bit local variable called cnt
 pshx ; save register X
;****body of the subroutine
;other stuff.......
 ldaa in,sp ; get a copy of in parameter
 stx cnt,sp ; store into local variable cnt
;other stuff.......
;****end of body
 pulx ; restore register X
 leas 2,sp ; deallocate cnt
 rts ; return
(5) Question 4. What value should you use in the xxx position to implement the binding of the
parameter, in?

(5) Question 5. What value should you use in the yyy position to implement the binding of the
local variable, cnt?

(10) Question 6. Assuming the SCI0 has been previously initialized, write a busy-wait
subroutine that outputs one 8-bit byte. The parameter is passed call by reference using RegX.
;input: RegX points to data, Output: none
SCI_OutChar

EE319K Fall 2008 Quiz 3 Page 3 of 8

Jonathan W. Valvano November 21, 2008 10:00am-10:50am

(15) Question 7. This Fifo queue has 8 allocated locations and can hold up to seven 8-bit data
values. The picture shows it currently holding three values (shaded). The Fifo and its two
pointers are defined in RAM. When the pointers are equal the Fifo is empty.
 org $3900
Fifo rmb 8 ;allocates 8 holding up to 7 values
GetPt rmb 2 ;points to oldest data
PutPt rmb 2 ;points to place to put next
This function initializes the Fifo
Fifo_Init ldx #Fifo
 stx GetPt
 stx PutPt ;Fifo is empty
 rts
Write an assembly subroutine, Fifo_Get, that implements the Get
operation. A result code is returned in RegA. If RegA=1, then a
byte was successfully removed, and the data is returned in RegB. If RegA=0, no data could be
removed from the fifo because it was previously empty at the time of the call.
;input: none, Output: RegA=success, RegB=data removed
Fifo_Get

$3900
$3901
$3902
$3903
$3904
$3905
$3906
$3907

Address Contents
$00
$01
$02
$12
$56
$78
$34
$66

GetPt

PutPt

EE319K Fall 2008 Quiz 3 Page 4 of 8

Jonathan W. Valvano November 21, 2008 10:00am-10:50am

The following 9S12 assembly program implements a one-input four-output finite state machine.
The input is on Port J bit 0 and the outputs are on Port H bits 3,2,1,0 and Port T bits 3,2,1,0.
 org $4000 ;Put in ROM

Stop fcb 1,2 ;Output
 fdb Stop,Go ;Next
Go fcb 3,4
 fdb sss,ttt
Turn fcb 5,6
 fdb Stop,Go
Main lds #$4000
 bset DDRH,#$0F ; PH3-0 first out
 bset DDRT,#$0F ; PT3-0 second out
 bclr DDRJ,#$01 ; PJ0 is input
 ldy #Stop ; RegY is the State pointer
FSM yyy ; RegA,RegB are output values for this state
 staa PTH ; Perform the first output to PTH
 stab PTT ; Perform the second output to PTT
 ldab PTJ ; Read input
 andb #$01 ; just interested in bit 0
 lslb ; 2 bytes per 16 bit address
 aby ; add 0,2 depending on input
 zzz ; Next state depending on input
 bra FSM

(5) Question 8. What should you put in the sss,ttt positions?

(5) Question 9. What instruction (op code and operand) goes in the yyy position?

(5) Question 10. What instruction (op code and operand) goes in the zzz position?

 (30) Question 11. Assume the PLL is not active, and the E clock is 8 MHz. Write software
using output compare 5 interrupts to produce a 1 kHz squarewave on PH0. PH0 is low for 500
μsec, then high for 500 μsec, repeated over and over. Include ALL software for this system:
main, initialization, output compare 5 interrupt service routine, the output compare 5 interrupt
vector, and reset vector. The main program initializes the stack, initializes PH0, activates output
compare 5 interrupts, and then performs a do-nothing loop. The output compare 5 interrupt
service routine performs the output to PH0. Global variables are allowed, but not needed.

Stop

1,2

Go

3,4

Turn

5,6

0

1

0
1

1
0

EE319K Fall 2008 Quiz 3 Page 5 of 8

Jonathan W. Valvano November 21, 2008 10:00am-10:50am

 org $4000 ; EEPROM
main lds #$4000 ; initialize stack
; initialize PH0, and output compare 5

loop bra loop ; main program does nothing

;output compare 5 interrupt service routine
OC5han

; set the output compare interrupt vector

EE319K Fall 2008 Quiz 3 Page 6 of 8

Jonathan W. Valvano November 21, 2008 10:00am-10:50am

aba 8-bit add RegA=RegA+RegB
abx unsigned add RegX=RegX+RegB
aby unsigned add RegY=RegY+RegB
adca 8-bit add with carry to RegA
adcb 8-bit add with carry to RegB
adda 8-bit add to RegA
addb 8-bit add to RegB
addd 16-bit add to RegD
anda 8-bit logical and to RegA
andb 8-bit logical and to RegB
andcc 8-bit logical and to RegCC
asl/lsl 8-bit left shift Memory
asla/lsla 8-bit left shift RegA
aslb/lslb 8-bit arith left shift RegB
asld/lsld 16-bit left shift RegD
asr 8-bit arith right shift Memory
asra 8-bit arith right shift to RegA
asrb 8-bit arith right shift to RegB
bcc branch if carry clear
bclr bit clear in memory bclr PTT,#$01
bcs branch if carry set
beq branch if result is zero (Z=1)
bge branch if signed ≥
bgnd enter background debug mode
bgt branch if signed >
bhi branch if unsigned >
bhs branch if unsigned ≥
bita 8-bit and with RegA, sets CCR
bitb 8-bit and with RegB, sets CCR
ble branch if signed ≤
blo branch if unsigned <
bls branch if unsigned ≤
blt branch if signed <
bmi branch if result is negative (N=1)
bne branch if result is nonzero (Z=0)
bpl branch if result is positive (N=0)
bra branch always
brclr branch if bits are clear brclr PTT,#$01,loop
brn branch never
brset branch if bits are set brset PTT,#$01,loop
bset bit set clear in memory bset PTT,#$04
bsr branch to subroutine
bvc branch if overflow clear
bvs branch if overflow set
call subroutine in expanded memory
cba 8-bit compare RegA with RegB
clc clear carry bit, C=0
cli clear I=0, enable interrupts
clr 8-bit memory clear
clra RegA clear
clrb RegB clear
clv clear overflow bit, V=0
cmpa 8-bit compare RegA with memory
cmpb 8-bit compare RegB with memory
com 8-bit logical complement to memory
coma 8-bit logical complement to RegA
comb 8-bit logical complement to RegB
cpd 16-bit compare RegD with memory
cpx 16-bit compare RegX with memory
cpy 16-bit compare RegY with memory
daa 8-bit decimal adjust accumulator
dbeq decrement and branch if result=0 dbeq Y,loop
dbne decrement and branch if result≠0 dbne A,loop
dec 8-bit decrement memory
deca 8-bit decrement RegA
decb 8-bit decrement RegB

des 16-bit decrement RegSP
dex 16-bit decrement RegX
dey 16-bit decrement RegY
ediv RegY=(Y:D)/RegX, unsigned divide
edivs RegY=(Y:D)/RegX, signed divide
emacs 16 by 16 signed multiply, 32-bit add
emaxd 16-bit unsigned maximum in RegD
emaxm 16-bit unsigned maximum in memory
emind 16-bit unsigned minimum in RegD
eminm 16-bit unsigned minimum in memory
emul RegY:D=RegY*RegD unsigned multiply
emuls RegY:D=RegY*RegD signed multiply
eora 8-bit logical exclusive or to RegA
eorb 8-bit logical exclusive or to RegB
etbl 16-bit look up and interpolation
exg exchange register contents exg X,Y
fdiv unsigned fract div, X=(65536*D)/X
ibeq increment and branch if result=0 ibeq Y,loop
ibne increment and branch if result≠0 ibne A,loop
idiv 16-bit unsigned div, X=D/X, D=remainder
idivs 16-bit signed divide, X=D/X, D= remainder
inc 8-bit increment memory
inca 8-bit increment RegA
incb 8-bit increment RegB
ins 16-bit increment RegSP
inx 16-bit increment RegX
iny 16-bit increment RegY
jmp jump always
jsr jump to subroutine
lbcc long branch if carry clear
lbcs long branch if carry set
lbeq long branch if result is zero
lbge long branch if signed ≥
lbgt long branch if signed >
lbhi long branch if unsigned >
lbhs long branch if unsigned ≥
lble long branch if signed ≤
lblo long branch if unsigned <
lbls long branch if unsigned ≤
lblt long branch if signed <
lbmi long branch if result is negative
lbne long branch if result is nonzero
lbpl long branch if result is positive
lbra long branch always
lbrn long branch never
lbvc long branch if overflow clear
lbvs long branch if overflow set
ldaa 8-bit load memory into RegA
ldab 8-bit load memory into RegB
ldd 16-bit load memory into RegD
lds 16-bit load memory into RegSP
ldx 16-bit load memory into RegX
ldy 16-bit load memory into RegY
leas 16-bit load effective addr to SP leas 2,sp
leax 16-bit load effective addr to X leax 2,x
leay 16-bit load effective addr to Y leay 2,y
lsr 8-bit logical right shift memory
lsra 8-bit logical right shift RegA
lsrb 8-bit logical right shift RegB
lsrd 16-bit logical right shift RegD
maxa 8-bit unsigned maximum in RegA
maxm 8-bit unsigned maximum in memory
mem determine the membership grade
mina 8-bit unsigned minimum in RegA
minm 8-bit unsigned minimum in memory
movb 8-bit move memory to memory movb #100,PTT

EE319K Fall 2008 Quiz 3 Page 7 of 8

Jonathan W. Valvano November 21, 2008 10:00am-10:50am

movw 16-bit move memory to memory movw #13,SCIBD
mul RegD=RegA*RegB
neg 8-bit 2's complement negate memory
nega 8-bit 2's complement negate RegA
negb 8-bit 2's complement negate RegB
oraa 8-bit logical or to RegA
orab 8-bit logical or to RegB
orcc 8-bit logical or to RegCC
psha push 8-bit RegA onto stack
pshb push 8-bit RegB onto stack
pshc push 8-bit RegCC onto stack
pshd push 16-bit RegD onto stack
pshx push 16-bit RegX onto stack
pshy push 16-bit RegY onto stack
pula pop 8 bits off stack into RegA
pulb pop 8 bits off stack into RegB
pulc pop 8 bits off stack into RegCC
puld pop 16 bits off stack into RegD
pulx pop 16 bits off stack into RegX
puly pop 16 bits off stack into RegY
rev Fuzzy logic rule evaluation
revw weighted Fuzzy rule evaluation
rol 8-bit roll shift left Memory
rola 8-bit roll shift left RegA
rolb 8-bit roll shift left RegB
ror 8-bit roll shift right Memory
rora 8-bit roll shift right RegA
rorb 8-bit roll shift right RegB
rtc return sub in expanded memory
rti return from interrupt
rts return from subroutine
sba 8-bit subtract RegA-RegB
sbca 8-bit sub with carry from RegA
sbcb 8-bit sub with carry from RegB
sec set carry bit, C=1
sei set I=1, disable interrupts
sev set overflow bit, V=1
sex sign extend 8-bit to 16-bit reg sex B,D
staa 8-bit store memory from RegA
stab 8-bit store memory from RegB
std 16-bit store memory from RegD
sts 16-bit store memory from SP
stx 16-bit store memory from RegX
sty 16-bit store memory from RegY
suba 8-bit sub from RegA
subb 8-bit sub from RegB
subd 16-bit sub from RegD
swi software interrupt, trap
tab transfer A to B
tap transfer A to CC
tba transfer B to A
tbeq test and branch if result=0 tbeq Y,loop
tbl 8-bit look up and interpolation
tbne test and branch if result≠0 tbne A,loop
tfr transfer register to register tfr X,Y
tpa transfer CC to A
trap illegal instruction interrupt
trap illegal op code, or software trap
tst 8-bit compare memory with zero
tsta 8-bit compare RegA with zero
tstb 8-bit compare RegB with zero
tsx transfer S to X
tsy transfer S to Y
txs transfer X to S
tys transfer Y to S

wai wait for interrupt
wav weighted Fuzzy logic average
xgdx exchange RegD with RegX
xgdy exchange RegD with RegY

Example Mode Effective Address
ldaa #u immediate No EA
ldaa u direct EA is 8-bit address
ldaa U extended EA is a 16-bit address
ldaa m,r 5-bit index EA=r+m (-16 to 15)
ldaa v,+r pre-incr r=r+v, EA=r (1 to 8)
ldaa v,-r pre-dec r=r-v, EA=r (1 to 8)
ldaa v,r+ post-inc EA=r, r=r+v (1 to 8)
ldaa v,r- post-dec EA=r, r=r-v (1 to 8)
ldaa A,r Reg A offset EA=r+A, zero padded
ldaa B,r Reg B offset EA=r+B, zero padded
ldaa D,r Reg D offset EA=r+D
ldaa q,r 9-bit index EA=r+q
ldaa W,r 16-bit index EA=r+W
ldaa [D,r] D indirect EA={r+D}
ldaa [W,r] indirect EA={r+W}
Freescale 6812 addressing modes r is X, Y, SP, or PC

Pseudo op Meaning
org Where to put subsequent code
= equ set Define a constant symbol
dc.b db fcb .byte Allocate byte(s) with values
fcc Create an ASCII string
dc.w dw fdb .word Allocate word(s) with values
dc.l dl .long Allocate 32-bit with values
ds ds.b rmb .blkb Allocate bytes without init
ds.w .blkw Allocate word(s) without init

Vector Interrupt Source Arm
$FFFE Reset None
$FFF8 Trap None
$FFF6 SWI None
$FFF0 Real time interrupt CRGINT.RTIE
$FFEE Timer channel 0 TIE.C0I
$FFEC Timer channel 1 TIE.C1I
$FFEA Timer channel 2 TIE.C2I
$FFE8 Timer channel 3 TIE.C3I
$FFE6 Timer channel 4 TIE.C4I
$FFE4 Timer channel 5 TIE.C5I
$FFE2 Timer channel 6 TIE.C6I
$FFE0 Timer channel 7 TIE.C7I
$FFDE Timer overflow TSCR2.TOI
$FFD6 SCI0 TDRE, RDRF SCI0CR2.TIE,RIE
$FFD4 SCI1 TDRE, RDRF SCI1CR2.TIE,RIE
$FFCE Key Wakeup J PIEJ.[7,6,1,0]
$FFCC Key Wakeup H PIEH.[7:0]
$FF8E Key Wakeup P PIEP.[7:0]
Interrupt Vectors.

Address Bit 7 6 5 4 3 2 1 Bit 0 Name
$0040 IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0 TIOS

EE319K Fall 2008 Quiz 3 Page 8 of 8

Jonathan W. Valvano November 21, 2008 10:00am-10:50am

$0044-5 Bit 15 14 13 12 11 10 Bit 0 TCNT
$0046 TEN TSWAI TSFRZ TFFCA 0 0 0 0 TSCR1
$004C C7I C6I C5I C4I C3I C2I C1I C0I TIE
$004D TOI 0 PUPT RDPT TCRE PR2 PR1 PR0 TSCR2
$004E C7F C6F C5F C4F C3F C2F C1F C0F TFLG1
$004F TOF 0 0 0 0 0 0 0 TFLG2
$0050-1 Bit 15 14 13 12 11 10 Bit 0 TC0
$0052-3 Bit 15 14 13 12 11 10 Bit 0 TC1
$0054-5 Bit 15 14 13 12 11 10 Bit 0 TC2
$0056-7 Bit 15 14 13 12 11 10 Bit 0 TC3
$0058-9 Bit 15 14 13 12 11 10 Bit 0 TC4
$005A-B Bit 15 14 13 12 11 10 Bit 0 TC5
$005C-D Bit 15 14 13 12 11 10 Bit 0 TC6
$005E-F Bit 15 14 13 12 11 10 Bit 0 TC7
$0082 ADPU AFFC ASWAI ETRIGLE ETRIGP ETRIG ASCIE ASCIF ATD0CTL2
$0083 0 S8C S4C S2C S1C FIFO FRZ1 FRZ0 ATD0CTL3
$0084 SRES8 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0 ATD0CTL4
$0085 DJM DSGN SCAN MULT 0 CC CB CA ATD0CTL5
$0086 SCF 0 ETORF FIFOR 0 CC2 CC1 CC0 ATD0STAT0
$008B CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0 ATD0STAT1
$008D Bit 7 6 5 4 3 2 1 Bit 0 ATD0DIEN
$008F PAD07 PAD06 PAD05 PAD04 PAD03 PAD02 PAD01 PAD00 PORTAD0
$0090-1 Bit 15 14 13 12 11 10 Bit 0 ATD0DR0
$0092-3 Bit 15 14 13 12 11 10 Bit 0 ATD0DR1
$0094-5 Bit 15 14 13 12 11 10 Bit 0 ATD0DR2
$0096-7 Bit 15 14 13 12 11 10 Bit 0 ATD0DR3
$0098-9 Bit 15 14 13 12 11 10 Bit 0 ATD0DR4
$009A-B Bit 15 14 13 12 11 10 Bit 0 ATD0DR5
$009C-D Bit 15 14 13 12 11 10 Bit 0 ATD0DR6
$009E-F Bit 15 14 13 12 11 10 Bit 0 ATD0DR7
$00C9 0 0 0 SBR12 SBR11 SBR10 SBR0 SCI0BD
$00CA LOOPS SCISWAI RSRC M WAKE ILT PE PT SCI0CR1
$00CB TIE TCIE RIE ILIE TE RE RWU SBK SCI0CR2
$00CC TDRE TC RDRF IDLE OR NF FE PF SCI0SR1
$00CD 0 0 0 0 0 BRK13 TXDIR RAF SCI0SR2
$00CF R7/T7 R6/T6 R5/T5 R4/T4 R3/T3 R2/T2 R1/T1 R0/T0 SCI0DRL
$00D0-1 0 0 0 SBR12 SBR11 SBR10 SBR0 SCI1BD
$00D2 LOOPS SCISWAI RSRC M WAKE ILT PE PT SCI1CR1
$00D3 TIE TCIE RIE ILIE TE RE RWU SBK SCI1CR2
$00D4 TDRE TC RDRF IDLE OR NF FE PF SCI1SR1
$00D5 0 0 0 0 0 BRK13 TXDIR RAF SCI1SR2
$00D7 R7/T7 R6/T6 R5/T5 R4/T4 R3/T3 R2/T2 R1/T1 R0/T0 SCI1DRL
$0240 PT7 PT6 PT5 PT4 PT3 PT2 PT1 PT0 PTT
$0242 DDRT7 DDRT6 DDRT5 DDRT4 DDRT3 DDRT2 DDRT1 DDRT0 DDRT
$0248 PS7 PS6 PS5 PS4 PS3 PS2 PS1 PS0 PTS
$024A DDRS7 DDRS6 DDRS5 DDRS4 DDRS3 DDRS2 DDRS1 DDRS0 DDRS
$0250 PM7 PM6 PM5 PM4 PM3 PM2 PM1 PM0 PTM
$0252 DDRM7 DDRM6 DDRM5 DDRM4 DDRM3 DDRM2 DDRM1 DDRM0 DDRM
$0258 PP7 PP6 PP5 PP4 PP3 PP2 PP1 PP0 PTP
$025A DDRP7 DDRP6 DDRP5 DDRP4 DDRP3 DDRP2 DDRP1 DDRP0 DDRP
$0260 PH7 PH6 PH5 PH4 PH3 PH2 PH1 PH0 PTH
$0262 DDRH7 DDRH6 DDRH5 DDRH4 DDRH3 DDRH2 DDRH1 DDRH0 DDRH
$0268 PJ7 PJ6 0 0 0 0 PJ1 PJ0 PTJ
$026A DDRJ7 DDRJ6 0 0 0 0 DDRJ1 DDRJ0 DDRJ
TSCR1 is the first 8-bit timer control register
 bit 7 TEN, 1 allows the timer to function normally, 0 means disable timer including TCNT
TSCR2 is the second 8-bit timer control register
 bits 2,1,0 are PR2, PR1, PR0, which select the rate, let n be the 3-bit number formed by PR2, PR1, PR0
 without PLL TCNT is 8MHz/2n, with PLL TCNT is 24MHz/2n, n ranges from 0 to 7
TIOS is the 8-bit output compare select register, one bit for each channel (1 = output compare, 0 = input capture)
TIE is the 8-bit output compare arm register, one bit for each channel (1 = armed, 0 = disarmed)

