EE319K Fall 2008 Quiz 3 Page 1 of 8

First: Last:
This is a closed book exam. You have 50 minutes, so allocate your time accordingly.
Please read the entire quiz before starting.

Please read and affirm our honor code:

“The core values of The University of Texas at Austin are learning, discovery, freedom,
leadership, individual opportunity, and responsibility. Each member of the university is
expected to uphold these values through integrity, honesty, trust, fairness, and respect
toward peers and community.”

Signed: November 21, 2008

(5) Question 1. List the three conditions that must be true for an RDRF interrupt to occur?

(5) Question 2. Consider a right-justified unsigned 10-bit ADC with a range of 0 to +10V. What
ADC value would you get if the analog input were 1.00V?

(10) Question 3. Consider a serial port operating with a baud rate of 1000 bits per second. Draw
the waveform occurring at the PS1 output (voltage levels are +5 and 0) when the ASCII 5’
($35) is transmitted on SCI1. The protocol is 1 start, 8 data and 1 stop bit.

PS3

t -1 0 1 2 3 4 5 6 7 8 9 10 11 12 ms

Jonathan W. Valvano November 21,2008 10:00am-10:50am

EE319K Fall 2008 Quiz 3 Page 2 of 8

Questions 4 and 5 involve the following assembly program involving one 8-bit parameter

passed on the stack and one 16-bit local variable, also on the stack.
main lds #$4000

movb #100,1,-sp ; pass 8-bit in parameter on stack

Jjsr sub2

ins ; balance stack, discarding the in parameter
here bra here
in set xxx ; binding of 8-bit input parameter

cnt set yyy ; binding of 16-bit local variable

sub2 leas -2,sp ; allocate 16-bit local variable called cnt
pshx ; save register X

;****pody of the subroutine

3 oo other stuff._._._.__.
Idaa in,sp ; get a copy of in parameter
stx cnt,sp ; store into local variable cnt

D eemeaa other stuff.......

;*¥***end of body

pulx ; restore register X
leas 2,sp ; deallocate cnt
rts ; return

(5) Question 4. What value should you use in the XXX position to implement the binding of the
parameter, in?

(5) Question 5. What value should you use in the yyy position to implement the binding of the
local variable, cnt?

(10) Question 6. Assuming the SCI0 has been previously initialized, write a busy-wait

subroutine that outputs one 8-bit byte. The parameter is passed call by reference using RegX.
;input: RegX points to data, Output: none
SCI1_OutChar

Jonathan W. Valvano November 21,2008 10:00am-10:50am

EE319K Fall 2008 Quiz 3 Page 3 of 8

(15) Question 7. This Fifo queue has 8 allocated locations and can hold up to seven 8-bit data
values. The picture shows it currently holding three values (shaded). The Fifo and its two
pointers are defined in RAM. When the pointers are equal the Fifo is empty.

org $3900
Fifo rmb 8 ;allocates 8 holding up to 7 values Address Contents
GetPt rmb 2 ;points to oldest data $3900 [$00
PutPt rmb 2 ;points to place to put next $3901 [$01
This function initializes the Fifo $3902 | $02
Fifo Init Idx #Fifo $3903
stx GetPt
stx PutPt ;Fifo is empty ggggg <« GetPt
rts

Write an assembly subroutine, Fifo_Get, that implements the Get ggggg ~ $66 |<— PUtPt

operation. A result code is returned in RegA. If RegA=I, then a
byte was successfully removed, and the data is returned in RegB. If RegA=0, no data could be

removed from the fifo because it was previously empty at the time of the call.
;input: none, Output: RegA=success, RegB=data removed
Fifo_Get

Jonathan W. Valvano November 21,2008 10:00am-10:50am

EE319K Fall 2008 Quiz 3 Page 4 of 8

The following 9S12 assembly program implements a one-input four-output finite state machine.
The input is on Port J bit 0 and the outputs are on Port H bits 3,2,1,0 and Port T bits 3,2,1,0.

org $4000 ;Put In ROM

Stop fcb 1,2 ;Output
fdb Stop,Go ;Next

Go fcb 3,4
fdb sss,ttt

Turn fcb 5,6 1
fdb Stop,Go

Main lds #$4000
bset DDRH,#$0F ; PH3-0 first out
bset DDRT,#$0F ; PT3-0 second out
bclr DDRJ,#$01 ; PJO is input
Idy #Stop ; RegY is the State pointer

FSM yyy ; RegA,RegB are output values for this state
staa PTH ; Perform the first output to PTH
stab PTT ; Perform the second output to PTT
Idab PTJ ; Read input
andb #3$01 ; just interested in bit O
Islb ; 2 bytes per 16 bit address
aby ; add 0,2 depending on input
zzz ; Next state depending on input
bra FSM

(5) Question 8. What should you put in the SSS, ttt positions?

(5) Question 9. What instruction (op code and operand) goes in the yyYy position?

(5) Question 10. What instruction (op code and operand) goes in the zzz position?

(30) Question 11. Assume the PLL is not active, and the E clock is 8 MHz. Write software
using output compare 5 interrupts to produce a 1 kHz squarewave on PHO. PHO is low for 500
psec, then high for 500 psec, repeated over and over. Include ALL software for this system:
main, initialization, output compare 5 interrupt service routine, the output compare 5 interrupt
vector, and reset vector. The main program initializes the stack, initializes PHO, activates output
compare 5 interrupts, and then performs a do-nothing loop. The output compare 5 interrupt
service routine performs the output to PHO. Global variables are allowed, but not needed.

Jonathan W. Valvano

November 21, 2008 10:00am-10:50am

EE319K Fall 2008 Quiz 3 Page 5 of 8

org $4000 ; EEPROM
main Ids #$4000 ; initialize stack
; Initialize PHO, and output compare 5

loop bra loop ; main program does nothing

;output compare 5 interrupt service routine
OC5han

; set the output compare interrupt vector

Jonathan W. Valvano November 21,2008 10:00am-10:50am

EE319K Fall 2008 Quiz 3

aba 8-bitadd RegA=RegA+RegB

abx unsigned add RegX=RegX+RegB
aby unsigned add RegY=RegY+RegB
adca 8-bit add with carry to RegA

adcb 8-bit add with carry to RegB

adda 8-bit add to RegA

addb 8-bit add to RegB

addd 16-bit add to RegD

anda 8-bit logical and to RegA

andb 8-bit logical and to RegB

andcc 8-bit logical and to RegCC
asl/Isl 8-bit left shift Memory
asla/lIsla 8-bit left shift RegA
aslb/Islb 8-bit arith left shift RegB
asld/Isld 16-bit left shift RegD

asr 8-bit arith right shift Memory

asra 8-bit arith right shift to RegA

asrb 8-bit arith right shift to RegB

bcc branch if carry clear

bclr bit clear in memory bclr PTT,#3$01
bcs branch if carry set

beq branch if result is zero (Z=1)

bge branch if signed >

bgnd enter background debug mode

bgt branch if signed >

bhi branch if unsigned >

bhs branch if unsigned >

bita 8-bitand with RegA, sets CCR
bitb 8-bit and with RegB, sets CCR

ble branch if signed <

blo branch if unsigned <

bls branch if unsigned <

blt branch if signed <

bmi branch if result is negative (N=1)
bne branch if result is nonzero (Z=0)
bpl branch if result is positive (N=0)
bra branch always

brclr branch if bits are clear brclr PTT,#$01, loop
brn branch never

brset branch if bits are set brset PTT,#$01, loop
bset bitset clear in memory bset PTT,#3$04
bsr branch to subroutine

bvc branch if overflow clear

bvs branch if overflow set

call subroutine in expanded memory
cba 8-bit compare RegA with RegB
clc clear carry bit, C=0

cli clear [=0, enable interrupts

clr 8-bit memory clear

clra RegA clear

clrb RegB clear

clv clear overflow bit, V=0

cmpa 8-bit compare RegA with memory
cmpb 8-bit compare RegB with memory
com 8-bit logical complement to memory
coma 8-bit logical complement to RegA
comb 8-bit logical complement to RegB
cpd 16-bit compare RegD with memory
cpx 16-bit compare RegX with memory
cpy 16-bit compare RegY with memory
daa 8-bit decimal adjust accumulator
dbeq decrement and branch if result=0 dbeq Y, loop
dbne decrement and branch if result20 dbne A, loop
dec 8-bit decrement memory

deca 8-bit decrement RegA

decb 8-bit decrement RegB

Jonathan W. Valvano

des
dex
dey
ediv
edivs
emacs
emaxd
emaxm
emind
eminm
emul
emuls
eora
eorb
etbl
exg
fdiv
ibeq
ibne
idiv
idivs
inc
inca
incb
ins
inx
iny
imp
jsr
Ibcc
Ibcs
Ibeq
Ibge
Ibgt
1bhi
Ibhs
Ible
Iblo
Ibls
Iblt
1bmi
Ibne
1bpl
Ibra
Ibrn
Ibvc
Ibvs
ldaa
Idab
1dd
Ids
1dx
1dy
leas
leax
leay
Isr
Isra
Isrb
Isrd
maxa
maxm
mem
mina
minm
movb

Page 6 of 8

16-bit decrement RegSP

16-bit decrement RegX

16-bit decrement RegY

RegY=(Y:D)/RegX, unsigned divide
RegY=(Y:D)/RegX, signed divide

16 by 16 signed multiply, 32-bit add

16-bit unsigned maximum in RegD

16-bit unsigned maximum in memory

16-bit unsigned minimum in RegD

16-bit unsigned minimum in memory
RegY:D=RegY*RegD unsigned multiply
RegY:D=RegY *RegD signed multiply

8-bit logical exclusive or to RegA

8-bit logical exclusive or to RegB

16-bit look up and interpolation

exchange register contents exg X,Y
unsigned fract div, X=(65536*D)/X
increment and branch if result=0 ibeq Y, loop
increment and branch if result#0 ibne A, loop
16-bit unsigned div, X=D/X, D=remainder
16-bit signed divide, X=D/X, D= remainder
8-bit increment memory

8-bit increment RegA

8-bit increment RegB

16-bit increment RegSP

16-bit increment RegX

16-bit increment RegY

jump always

jump to subroutine

long branch if carry clear

long branch if carry set

long branch if result is zero

long branch if signed >

long branch if signed >

long branch if unsigned >

long branch if unsigned >

long branch if signed <

long branch if unsigned <

long branch if unsigned <

long branch if signed <

long branch if result is negative

long branch if result is nonzero

long branch if result is positive

long branch always

long branch never

long branch if overflow clear

long branch if overflow set

8-bit load memory into RegA

8-bit load memory into RegB

16-bit load memory into RegD

16-bit load memory into RegSP

16-bit load memory into RegX

16-bit load memory into RegY

16-bit load effective addrto SP leas 2,sp
16-bit load effective addrto X leax 2,X
16-bit load effectiveaddrtoY leay 2,y
8-bit logical right shift memory

8-bit logical right shift RegA

8-bit logical right shift RegB

16-bit logical right shift RegD

8-bit unsigned maximum in RegA

8-bit unsigned maximum in memory
determine the membership grade

8-bit unsigned minimum in RegA

8-bit unsigned minimum in memory

8-bit move memory to memory ~movb #100,PTT

November 21, 2008 10:00am-10:50am

EE319K Fall 2008 Quiz 3

movw
mul
neg
nega
negb
oraa
orab
orcc
psha
pshb
pshc
pshd
pshx
pshy
pula
pulb
pulc
puld
pulx
puly
rev
revw
rol
rola
rolb
ror
rora
rorb
rtc
rti
rts
sba
sbca
sbcb
sec
sei
sev
sex
staa
stab
std
sts
stx
sty
suba
subb
subd
swi
tab
tap
tha
tbeq
tbl
tbne
tfr
tpa
trap
trap
tst
tsta
tstb
tsx
tsy
txs
tys

Address
$0040

16-bit move memory to memory movw #13,SCIBD wai

RegD=RegA*RegB

8-bit 2's complement negate memory

8-bit 2's complement negate RegA
8-bit 2's complement negate RegB
8-bit logical or to RegA

8-bit logical or to RegB

8-bit logical or to RegCC

push 8-bit RegA onto stack
push 8-bit RegB onto stack
push 8-bit RegCC onto stack
push 16-bit RegD onto stack
push 16-bit RegX onto stack
push 16-bit RegY onto stack
pop 8 bits off stack into RegA
pop 8 bits off stack into RegB
pop 8 bits off stack into RegCC
pop 16 bits off stack into RegD
pop 16 bits off stack into RegX
pop 16 bits off stack into RegY
Fuzzy logic rule evaluation
weighted Fuzzy rule evaluation
8-bit roll shift left Memory
8-bit roll shift left RegA

8-bit roll shift left RegB

8-bit roll shift right Memory
8-bit roll shift right RegA

8-bit roll shift right RegB
return sub in expanded memory
return from interrupt

return from subroutine

8-bit subtract RegA-RegB

8-bit sub with carry from RegA
8-bit sub with carry from RegB
set carry bit, C=1

set I=1, disable interrupts

set overflow bit, V=1

sign extend 8-bit to 16-bit reg

Page 7 of 8

wait for interrupt

wav weighted Fuzzy logic average

Xgdx exchange RegD with RegX

xgdy exchange RegD with RegY

Example Mode Effective Address
ldaa #u immediate | No EA

Idaa u direct EA is 8-bit address
ldaa U extended EA is a 16-bit address
Idaa m,r 5-bitindex | EA=r+m (-16 to 15)
Idaa v,+r | pre-incr r=r+v, EA=r (1 to 8)
ldaa v,-r | pre-dec r=r-v, EA=r (1 to 8)
ldaa v,r+ | post-inc EA=r, r=r+v (1 to 8)
ldaa v,r- | post-dec EA=r, r=r-v (1 to 8)
Idaa A,r Reg A offset | EA=r+A, zero padded
Idaa B,r Reg B offset | EA=r+B, zero padded
Idaa D,r | Reg D offset | EA=r+D

Idaa g,r | 9-bitindex [EA=r+q

Idaa W,r 16-bit index | EA=r+W

Idaa [D,r] | D indirect EA={r+D}

Idaa [W,r] | indirect EA={r+W}

Freescale 6812 addressing modes r is X, Y, SP, or PC

sex B,D

Pseudo op

org

= equ set

dc.b db fcb .byte
fcc

dc.w dw fdb .word
dc.1 dlI _long

ds ds.b rmb .blkb

Meaning

Where to put subsequent code
Define a constant symbol
Allocate byte(s) with values
Create an ASCII string
Allocate word(s) with values
Allocate 32-bit with values
Allocate bytes without init

8-bit store memory from RegA ds.w .blkw Allocate word(s) without init
8-bit store memory from RegB
16-bit store memory from RegD
16-bit store memory from SP Vector Interrupt Source Arm
16-bit store memory from RegX $FFFE Reset None
16-bit store memory from RegY $FFF8 Trap None
8-bit sub from RegA SFFF6 SWI None
8-bit sub from RegB . .
16-bit sub from RegD $FFFO R_eal time interrupt CRGINT.RTIE
software interrupt, trap $FFEE Timer channel 0 TIE.COI
transfer A to B $FFEC Timer channel 1 TIE.C11
?mm?rg:ogc $FFEA Timer channel 2 TIE.C2I
ransfer B to .
test and branch if result=0 tbeq Y, loop SFFE8 T!mer channel 3 TIE.C3I
8-bit look up and interpolation $FFE6 Timer channel 4 TIE.C41
test and branch if result£0 tbne A, loop $FFE4 Timer channel 5 TIE.C51
transfer register to register tfr X,Y $FFE2 Timer channel 6 TIE.C61
gi;ﬁ;gg;;ﬁnmmnum $FFEO Timer channel 7 TIE.C71
illegal op code, or software trap $SFFDE Timer overflow TSCR2.TOI
8-bit compare memory with zero $FFD6 SCI0 TDRE, RDRF SCIOCR2.TIE,RIE
8-bit compare RegA with zero SFFD4 SCI1 TDRE, RDRF SCIICR2.TIE,RIE
8-bit compare RegB with zero $FFCE Key Wakeup J PIEJ.[7.6,1,0]
ansier S0 % SFFCC Key Wakeup H PIEH.[7:0]
transfer X to S $FFSE Key Wakeup P PIEP.[7:0]
transfer Y to S Interrupt Vectors.
Bit 7 6 4 3 2 1 Bit 0 Name
[1087 | 1086 | | 1084 | 1083 | 1082 [10S1 | 10S0 | T1I0S

Jonathan W. Valvano

November 21, 2008

10:00am-10:50am

EE319K Fall 2008 Quiz 3 Page 8 of 8
$0044-5 Bit 15 14 13 12 11 10 Bit 0
$0046 TEN TSWAI TSFRZ TFFCA 0 0 0 0
$004C C7l Cél Csl C4l C3l C2l Cll Col
$004D TOI 0 PUPT RDPT TCRE PR2 PR1 PRO
$004E C7F C6F CS5F C4F C3F C2F CIF COF
$004F TOF 0 0 0 0 0 0 0
$0050-1 Bit 15 14 13 12 11 10 Bit 0
$0052-3 Bit 15 14 13 12 11 10 Bit 0
$0054-5 Bit 15 14 13 12 11 10 Bit 0
$0056-7 Bit 15 14 13 12 11 10 Bit 0
$0058-9 Bit 15 14 13 12 11 10 Bit 0
$005A-B Bit 15 14 13 12 11 10 Bit 0
$005C-D Bit 15 14 13 12 11 10 Bit 0
$005E-F Bit 15 14 13 12 11 10 Bit 0
$0082 ADPU AFFC ASWAI ETRIGLE ETRIGP ETRIG ASCIE ASCIF
$0083 0 S&C S4C S2C S1C FIFO FRZ1 FRZ0
$0084 SRESS8 SMP1 SMPO PRS4 PRS3 PRS2 PRS1 PRSO
$0085 DIM DSGN SCAN MULT 0 CC CB CA
$0086 SCF 0 ETORF FIFOR 0 CC2 CCl CCO
$008B CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCFO
$008D Bit7 6 5 4 3 2 1 Bit0
$00SF PADO7 PADO6 PADO5 PADO4 PADO3 PADO2 PADO1 PADOO
$0090-1 Bit 15 14 13 12 11 10 Bit 0
$0092-3 Bit 15 14 13 12 11 10 Bit 0
$0094-5 Bit 15 14 13 12 11 10 Bit 0
$0096-7 Bit 15 14 13 12 11 10 Bit 0
$0098-9 Bit 15 14 13 12 11 10 Bit 0
$009A-B Bit 15 14 13 12 11 10 Bit 0
$009C-D Bit 15 14 13 12 11 10 Bit 0
$009E-F Bit 15 14 13 12 11 10 Bit 0
$00C9 0 0 0 SBR12 SBR11 SBR10 SBRO
$00CA LOOPS SCISWAI RSRC M WAKE ILT PE PT
$00CB TIE TCIE RIE ILIE TE RE RWU SBK
$00CC TDRE TC RDRF IDLE OR NF FE PF
$00CD 0 0 0 0 0 BRK13 TXDIR RAF
$O0CF R7/T7 R6/T6 R5/T5 R4/T4 R3/T3 R2/T2 R1/T1 RO/TO
$00DO0-1 0 0 0 SBR12 SBR11 SBR10 SBRO
$00D2 LOOPS | SCISWAI RSRC M WAKE ILT PE PT
$00D3 TIE TCIE RIE ILIE TE RE RWU SBK
$00D4 TDRE TC RDRF IDLE OR NF FE PF
$00D5 0 0 0 0 0 BRK13 TXDIR RAF
$00D7 R7/T7 R6/T6 R5/T5 R4/T4 R3/T3 R2/T2 RI/TI RO/TO
$0240 PT7 PT6 PT5S PT4 PT3 PT2 PT1 PTO
$0242 DDRT7 DDRT6 DDRTS5S DDRT4 DDRT3 DDRT2 DDRT1 DDRTO
$0248 PS7 PS6 PS5 PS4 PS3 PS2 PS1 PSO
$024A DDRS7 DDRS6 DDRS5 DDRS4 DDRS3 DDRS2 DDRS1 DDRS0
$0250 PM7 PM6 PM5 PM4 PM3 PM2 PM1 PMO
$0252 DDRM7 DDRM6 DDRMS5 DDRM4 DDRM3 DDRM?2 DDRM1 DDRMO
$0258 PP7 PP6 PP5 PP4 PP3 PP2 PP1 PPO
$025A DDRP7 DDRP6 DDRP5 DDRP4 DDRP3 DDRP2 DDRP1 DDRPO
$0260 PH7 PH6 PHS5 PH4 PH3 PH2 PH1 PHO
$0262 DDRH7 DDRH6 DDRHS5 DDRH4 DDRH3 DDRH2 DDRHI1 DDRHO
$0268 PI7 Pl6 0 0 0 0 Pl PJO
$026A DDRJ7 DDRJ6 0 0 0 0 DDRJ1 DDRIO

TSCRL1 is the first 8-bit timer control register
bit 7 TEN, 1 allows the timer to function normally, 0 means disable timer including TCNT

TSCR2 is the second 8-bit timer control register

TCNT
TSCR1

TIE

TSCR2
TFLG1
TFLG2
TCO

TCl

TC2

TC3

TC4

TCS

TC6

TC7
ATDOCTL2
ATDOCTL3
ATDOCTL4
ATDOCTLS5
ATDOSTATO
ATDOSTAT1
ATDODIEN
PORTADO
ATDODRO
ATDODR1
ATDODR2
ATDODR3
ATDODR4
ATDODRS
ATDODR6
ATDODR7
SCIOBD
SCIOCR1
SCIOCR2
SCIOSR1
SCIOSR2
SCIODRL
SCI1BD
SCIICR1
SCI1CR2
SCIISR1
SCI1SR2
SCIIDRL
PTT

DDRT

PTS

DDRS

PTM
DDRM

PTP

DDRP

PTH
DDRH

PTJ

DDRJ

bits 2,1,0 are PR2, PR1, PRO, which select the rate, let n be the 3-bit number formed by PR2, PR1, PRO
without PLL TCNT is 8MHZ/2n, with PLL TCNT is 24MHZ/2n, n ranges from 0 to 7

TI10S is the 8-bit output compare select register, one bit for each channel (1 = output compare, 0 = input capture)
TIE is the 8-bit output compare arm register, one bit for each channel (1 = armed, 0 = disarmed)

Jonathan W. Valvano

November 21, 2008

10:00am-10:50am

