
Introduction to Embedded Microcomputer Systems Lecture 5.1

Jonathan W. Valvano

Recap
 9S12 Architecture, registers
 Execution thinking about simplified bus cycles
 Memory map: I/O, RAM, EEPROM
Overview
 Continuation of execution
 Stack
 Subroutines
 Parallel port, direction registers

Start with first question of Worksheet 5
Question 1. What are the six phases of execution?

2.4. Simplified 9S12 Machine Language Execution

Bus

Memory

I/O
ports

Address
Data

R/W

9S12

Registers

Control unit
ALU

Bus
interface

unit

Processor

IR

PC EAR

A

16

8

Figure 2.6. Block diagram of a simplified 9S12 computer.

The bus interface unit (BIU)

• reads data from the bus during a read cycle,
• writes data onto the bus during a write cycle.
• always drives the address bus and the control signals
• effective address register (EAR) contains the data address

The control unit (CU) (EE306, EE360M, EE360N)
• orchestrates the sequence of operations
• issues commands to ALU, BIU
• instruction register (IR) contains the op code

The registers
• high-speed storage devices located in the processor
• do not have addresses like regular memory
• specific functions explicitly defined by the instruction
• Accumulators contain data (A, B, D)
• Index registers contain addresses (X, Y)
• Program counter (PC) points to instruction to execute next
• Stack pointer (SP) points to the top element on the stack

 context switch when calling and returning from a function
 pass parameters
 save temporary information
 implement local variables

• Condition code register (CCR) the status of the previous operation

The arithmetic logic unit (ALU)

• Arithmetic operations
 Addition
 Subtraction
 Multiplication
 Division

Introduction to Embedded Microcomputer Systems Lecture 5.2

Jonathan W. Valvano

• Logic operations
 And
 Or
 Exclusive or
 Shift

The bus
• address where or which module
• data what
• control when and direction

processor

RAM

ROM

data

Bus

input devices

output devices

input
signals

output
signals

CPU Read Cycle

A read cycle copies data from RAM, ROM or input device into the processor.

processor

RAM

ROM

data

Bus

input devices

output devices

input
signals

output
signals

CPU Write Cycle

A write cycle copies data from the processor into RAM, or output device.

Phase Function R/W Address Comment
 1 Op code fetch read PC++ Put op code into IR
 Operand fetch read PC++ Immediate or calculate EA
 2 Decode instruction none Figure out what to do
 3 Evaluation address none Determine EAR
 4 Data read read SP,EAR Data passes through ALU,
 5 Free cycle read PC/SP/$FFFF ALU operations, set CCR
 6 Data store write SP,EAR
Results stored in memory

Question 2. Assume this listing file output
$5000 B60258 ldaa $0258
Part a) What addressing mode is it?
Part b) What happens when it executes?
Part c) Show the simplified bus cycles as it executes

Notgate example similar to Lecture 2 (different ports)
Action: Start TExaS, open NotGate2.uc
 Assemble, tile windows
Observe: See listing file, explain
components
Address Data Instructions
 ;not gate 8/28/2010
9:01:38 PM
$0258 PTP equ $0258 ;Port P I/O
$025A DDRP equ $025A ;Direction
$0242 DDRT equ $0242 ;Direction
$0240 PTT equ $0240 ;Port T I/O
$2000 org $2000

Introduction to Embedded Microcomputer Systems Lecture 5.3

Jonathan W. Valvano

$4000 org $4000
$4000 CF4000 main lds #$4000
$4003 86FF ldaa #$FF
$4005 7A025A staa DDRP
$4008 8600 ldaa #$00
$400A 7A0242 staa DDRT
$400D 10EF cli ;debugger
$400F B60240 loop ldaa PTT ;input
$4012 8880 eora #$80 ;not gate
$4014 7A0258 staa PTP ;output
$4017 20F6 bra loop

$FFFE org $FFFE
$FFFE 4000 fdb main

Draw a matrix showing PC, A, SP, IR, EAR, PTP, PTT
Draw a memory model of this system
Hand execute, showing simplified bus cycles
Action: Single step and compare to table

Do another example of a relative branch
 Assume bra there is at $5000
 Assume there is at $5036
 What is machine code?

Why doesn’t this relative branch work
 Assume bra there is at $6000
 Assume there is at $6096
 What is machine code?
How to fix this?
 lbra there ; uses 16-bit relative addressing
 jmp there ; uses 16-bit extended mode addressing

Classical definition of the stack

• push saves data on the top of the stack,
• pull removes data from the top of the stack
• stack implements last in first out (LIFO) behavior
• stack pointer (SP) points to top element

Many uses of the stack

• temporary calculations
• subroutine (function) return addresses
• subroutine (function) parameters
• local variables

$4000 org $4000
$4000 CF4000 main lds #$4000
$4003 8601 ldaa #1
$4005 36 psha
$4006 8602 ldaa #2
$4008 36 psha
$4009 8603 ldaa #3
$400B 36 psha

Introduction to Embedded Microcomputer Systems Lecture 5.4

Jonathan W. Valvano

push 1

SP
1SP

push 2

1
SP 2

push 3

1

SP
2
3

Figure 2.5. Stack picture as three numbers are pushed.
Draw a matrix showing PC, A, SP, IR, EAR
Draw a memory model of this system
Hand execute up to first psha, showing simplified bus cycles

2.8. Subroutines
functions, which return values,
procedures, which do not

We use the term subroutine all subprograms
• whether or not they return a value
• develop modular software
• called by either bsr or jsr
• subroutine returns using rts

unsigned char Flag;
unsigned short Data;
void Set(void){
 Data = 1000;
 Flag = 1;
}

void main(void){
 Set();
 while(1){};
}

$2000 org $2000
$2000 Flag rmb 1
$2001 Data rmb 2
$4000 org $4000
 ;*****Set**************
 ; Set Data=1000, and Flag=1
 ; Input: None
 ; Output: None
$4000 180303E82001 Set movw #1000,Data ;3
$4006 180B012000 movb #1,Flag ;4
$400B 3D rts ;5
$400C CF4000 main lds #$4000 ;1
$400F 07EF bsr Set ;2
$4011 20FE loop bra loop ;6
$FFFE org $fffe
$FFFE 400C fdb main
Program 2.1. Listing file showing how to use the bsr and rts instructions to implement a subroutine.
Draw a matrix showing PC, SP, IR, EAR
Draw a memory model of this system
Hand execute up to first psha, showing simplified bus cycles

Opcode fetch R 0x400F 0x07 from ROM Phase 1
Operand fetch R 0x4010 0xEF from ROM Phase 1
Stack store lsbW 0x3FFF 0x11 to RAM Phase 6
Stack store msbW 0x3FFE 0x40 to RAM Phase 6

Introduction to Embedded Microcomputer Systems Lecture 5.5

Jonathan W. Valvano

PC

Set movw #1000,Data ;3
 movb #1,Flag ;4
 rts ;5
main lds #$4000 ;1
 bsr Set ;2
loop bra loop ;6

Stack

SP
PC

Set movw #1000,Data ;3
 movb #1,Flag ;4
 rts ;5
main lds #$4000 ;1
 bsr Set ;2
loop bra loop ;6

Stack

SP $40
$11

Before bsr After bsrmain

Set

1

2

6

Data = 1000

Set

return

3

5

Flag = 0 4

PC
PC

Figure 2.12. The stack before and after execution of the bsr instruction.

Opcode fetch R 0x4009 0x3D from ROM Phase 1
Stack read msb R 0x3FFE 0x40 from RAM Phase 4
Stack read lsb R 0x3FFF 0x06 from RAM Phase 4

PC

Set movw #1000,Data ;3
 movb #1,Flag ;4
 rts ;5
main lds #$4000 ;1
 bsr Set ;2
loop bra loop ;6

Stack

SP $40
$11

Before rts

PC

Set movw #1000,Data ;3
 movb #1,Flag ;4
 rts ;5
main lds #$4000 ;1
 bsr Set ;2
loop bra loop ;

Stack

SP

After rts
main

Set
1

2

6

Data = 1000

Set

return

3

5

Flag = 0 4 PC
PC

Figure 2.13. The stack before and after execution of the rts instruction.

2.9. Input/Output
9S12DP512/9S12DG128

A microcontroller is a complete microcomputer in a single chip. In the single chip
operating mode, the 9S12DP512/9S12DG128 is a microcontroller, where all its I/O
ports are available. Look at Ports A and B.
I/O ports

9S12 PT7
PT6
PT5
PT4
PT3
PT2
PT1
PT0

DDRT=$00

9S12 PT7
PT6
PT5
PT4
PT3
PT2
PT1
PT0

DDRT=$0F

9S12 PT7
PT6
PT5
PT4
PT3
PT2
PT1
PT0

DDRT=$FF
Figure 2.14. The input/output direction of a bidirectional port is specified by its direction register.

DDRH, DDRP, DDRJ, DDRT, specify if corresponding pin
 0 means input
 1 means output
Where to find addresses for PTH DDRH?
 Book, Chapter 4, Program 4.3 (should have been in the index)
 9S12DP512 data sheet
 Port12.rtf file as part of TExaS install

My favorite is the TExaS help system
Question 3. Write code to make Port H bits 7,5,3,1 output, bits 6,4,2,0 input

Lab 1. Logic Function
The specific function you will implement is H & P T =
This means the LED will be on if and only if the P switch and the H switch are both not pressed, as shown in Figure
1.1.

Introduction to Embedded Microcomputer Systems Lecture 5.6

Jonathan W. Valvano

Figure 1.1. TExaS IO window showing the door is unlocked.

1. System specification, plan for test
2. Data flow
3. Flowchart
4. Pseudocode
5. Assembly
6. Simulation, testing
7. Build real system, testing (not required for Lab 1)

Approach -> start with template

;****************** Lab1.RTF ***************
; Program written by: Your Name
; Date Created: 1/4/2012 6:06:11 PM
; Last Modified: 1/4/2012 6:06:18 PM
; Section 1-2pm TA: Nachiket Kharalkar
; Lab number: 1
; Brief description of the program
; The overall objective of this system is a digital lock
; Hardware connections
; PH2 is switch input H
; PP2 is switch input P
; PT2 is LED output T (on means unlocked)
; The specific operation of this system
; unlock if P is not pressed and H is not pressed
;I/O port definitions on the 9S12DG128
PTH equ $0260 ; Port H I/O Register
DDRH equ $0262 ; Port H Data Direction Register
PTP equ $0258 ; Port P I/O Register
DDRP equ $025A ; Port P Data Direction Register
PTT equ $0240 ; Port T I/O Register
DDRT equ $0242 ; Port T Data Direction Register
 org $2000 ; 8 kibibytes of RAM
 ; Global variables (none required)
 org $4000 ; flash EEPROM
main
;Software performed once at the beginning
loop
;Software repeated over and over
 bra loop
 org $FFFE
 fdb main ;Starting address
Program 1.2. Assembly language template.
 *****start TExaS show Lab1.rtf****

The bottom line
 Computer executes one instruction at a time
 Stack is used for temporary data, return address
 Subroutines allow for modular programming
 I/O ports allow data to flow into/out of computer
 Usually, we set DDR once at the beginning

