
Introduction to Embedded Microcomputer Systems Lecture 8.1

Jonathan W. Valvano

“Computers in the future may weigh no more than 1.5 tons” Popular Science, 1949

Recap
 Debugging: Monitor, dump
 TExaS
 Real 9S12DG128

Overview
 Addition and subtraction set CCR bits
 Subtraction used for conditional branching

Read sections 3.8, and 5.2 in the book
Watch movies on Example 3.9, 3.10, 3.11, 3.12 on the web

Condition code register (CC or CCR)
 C set after an unsigned add if the answer is wrong
 V set a signed add if the answer is wrong

bit name meaning after add or sub
N negative result is negative
Z zero result is zero
V overflow signed overflow
C carry unsigned overflow

Table 3.16. Condition code bits.

96+64 224+64

0

64

128

192

255

96160

+64

32
224

+64
0

64

128

192

255

Figure 3.20. Unsigned number wheel.

160-64 32-64

-64

-64
0

64

128

192

255

96160

32
224

0

64

128

192

255

Figure 3.22. Unsigned number wheel.

Observation: The carry bit, C, is set after an unsigned addition or subtraction when the result is incorrect.

Introduction to Embedded Microcomputer Systems Lecture 8.2

Jonathan W. Valvano

 -32+64 96+64
-1

+64
0

64

127

-64

-128

32
-32

96-96

-1 0

64

127

-64

-128 +64
Figure 3.23. Signed number wheel.

 32-64 -96-64

-64

-64-1 0

64

127

-64

-128

32
-32

96-96

-1 0

64

127

-64

-128
Figure 3.24. Signed number wheel

Observation: The overflow bit, V, is set after a signed addition or subtraction when the result is incorrect.

Let the result R be the result of the addition A+B.
N bit is set
 if unsigned result is above 127 or
 if signed result is negative.
 N = R7

Z bit is set if result is zero.

 Z = R0&R1&R2&R3&R4&R5&R6&R7

V bit is set after a signed addition if result is incorrect

 V = R7&B7&A7R7&B7&A7 +

C bit is set after an unsigned addition if result is incorrect

 C = R7&B7R7&A7B7&A7 ++

Let the result R be the result of the subtraction A-B.
N bit is set
 if unsigned result is above 127 or
 if signed result is negative.
 N = R7

Z bit is set if result is zero.

Introduction to Embedded Microcomputer Systems Lecture 8.3

Jonathan W. Valvano

 Z = R0&R1&R2&R3&R4&R5&R6&R7

V bit is set after a signed subtraction if result is incorrect

 V = R7&B7&A7R7&B7&A7 +

C bit is set after an unsigned subtraction if result is incorrect

 C = R7&A7R7&B7B7&A7 ++

Question 1a. What will be the value of the overflow (V) bit after executing the following?
 ldaa #-100

adda #50
Question 1b. What will be the value of the carry (C) bit after executing the following?
 ldaa #156

adda #50
Question 2a. What will be the value of the overflow (V) bit after executing the following?
 ldaa # -100

adda #-50
Question 2b. What will be the value of the carry (C) bit after executing the following?
 ldaa # 156

adda #206
Question 3. What will be the value of the carry (C) bit after executing the following?
 ldab #210
 subb #60
Question 4. What will be the value of the overflow (V) bit after executing the following?
 ldaa #-70
 suba #-60

Common Error: Ignoring overflow (signed or unsigned) can result in significant errors.

Observation: Microcomputers have two sets of conditional branch instructions (if statements) that make
program decisions based on either the C or V bit.

Promotion involves increasing the precision of the input numbers, and performing the operation at that higher
precision.
 decimal 8-bit 16-bit
 224 1110,0000 0000,0000,1110,0000
 + 64 +0100,0000 +0000,0000,0100,0000
 288 0010,0000 0000,0001,0010,0000

We can check the 16-bit intermediate result to see if the answer will fit back into the 8-bit result.

unsigned add

R =A +B

R=255

R
R >255R < 255

end

promote A to A
promote B to B

16
16

16 16 16

R=R

1616
16

16

ok overflow

unsigned sub

R =A -B

R=0

R
R < 0R > 0

promote A to A
promote B to B

16
16

16 16 16

R=R

1616
16

16

ok underflow

end
Figure 3.25. Promotion to detect and correct unsigned arithmetic errors.

Introduction to Embedded Microcomputer Systems Lecture 8.4

Jonathan W. Valvano

Write C code to solve one of these

To promote a signed number, we duplicate the sign bit
decimal 8-bit 16-bit
 -96 1010,0000 1111,1111,1010,0000
 - 64 -0100,0000 -0000,0000,0100,0000
 -160 0110,0000 1111,1111,0110,0000

signed add

R =A +B

R=127

R
R >127R < -128

end

promote A to A
promote B to B

16
16

16 16 16

R = -128

1616
16

underflow overflow

signed sub

R =A -B

promote A to A
promote B to B

16
16

16 16 16

R=R16

R=127

R
R >127R < -128

end

R = -128

1616
16

underflow overflow

R=R16

Figure 3.26. Flowcharts showing how to use promotion to detect and correct signed arithmetic errors.

Write C code to solve one of these

Common Error: Even though most C compilers automatically promote to a higher precision during the
intermediate calculations, they do not check for overflow when demoting the result back to the original
format.

bcc l1 ;jump to l1 if C=0
bcs l2 ;jump to l2 if C=1
bvc l3 ;jump to l3 if V=0
bvs l4 ;jump to l4 if V=1
bpl l5 ;jump to l5 if N=0
bmi l6 ;jump to l6 if N=1
bne l7 ;jump to l7 if Z=0
beq l8 ;jump to l8 if Z=1

ceiling and floor

unsigned add

R=A+B

R=255

C
C=1

C=0

end

unsigned sub

R=A-B

R=0

C
C=1

C=0

end
Figure 3.27. Flowcharts showing how to use overflow bits to detect and correct unsigned arithmetic errors.

Assume A8 B8 and R8 are three 8-bit (1-byte) global variables defined in RAM.
A8 ds 1 ;Input
B8 ds 1 ;Input
R8 ds 1 ;Output
The following assembly language adds two unsigned 8-bit numbers, using the algorithm presented in Figure 2.33.
 ldaa A8 ;get first input
 adda B8 ;A8+B8

Introduction to Embedded Microcomputer Systems Lecture 8.5

Jonathan W. Valvano

 bcc OK1 ;if C=0, then no error,
 ldaa #255 ;overflow
OK1 staa R8

The following assembly language subtracts two unsigned 8-bit numbers.
 ldaa A8 ;get first parameter
 suba B8 ;A8-B8
 bcc OK2 ;if C=0, then no error,
 ldaa #0 ;underflow
OK2 staa R8

C code assembly code

if(G2 == G1){
 isEqual();
}

 ldaa G2
 cmpa G1
 bne next
 jsr isEqual
next

if(G2 != G1){
 isNotEqual();
}

 ldaa G2
 cmpa G1
 beq next
 jsr isNotEqual
next

if(H2 == H1){
 isEqual();
}

 ldd H2
 cpd H1
 bne next
 jsr isEqual
next

if(H2 != H1){
 isNotEqual();
}

 ldd H2
 cpd H1
 beq next
 jsr isNotEqual
next

Table 5.1. Conditional structures that test for equality.

Signed conditional branch
 bge target ;Branch if signed greater than or equal to,
 ;if (N^V)=0, or (~N•V+N•~V)=0
 bgt target ;Branch if signed greater than,
 ;if (Z+N^V)=0, or (Z+~N•V+N•~V)=0
 ble target ;Branch if signed less than or equal to,
 ;if (Z+N^V)=1, or (Z+~N•V+N•~V)=1
 blt target ;Branch if signed less than,
 ;if (N^V)=1, or (~N•V+N•~V)=1

C code assembly code

if(G2 > G1){
 isGreater();
}

 ldaa G2
 cmpa G1
 ble next
 jsr isGreater
next

if(G2 >= G1){
 isGreaterEq();
}

 ldaa G2
 cmpa G1
 blt next
 jsr isGreaterEq
next

Introduction to Embedded Microcomputer Systems Lecture 8.6

Jonathan W. Valvano

if(G2 < G1){
 isLess();
}

 ldaa G2
 cmpa G1
 bge next
 jsr isLess
next

if(G2 <= G1){
 isLessEq();
}

 ldaa G2
 cmpa G1
 bgt next
 jsr isLessEq
next

Table 5.3. Signed conditional structures.

Unsigned conditional branch
 bhs target ;Branch if unsigned greater than or equal to,
 ;if C=0, same as bcc
 bhi target ;Branch if unsigned greater than,
 ;if C+Z=0
 blo target ;Branch if unsigned less than,
 ;if C=1, same as bcs
 bls target ;Branch if unsigned less than or equal to,
 ;if C+Z=1

C code assembly code

if(G2 > G1){
 isGreater();
}

 ldaa G2
 cmpa G1
 bls next
 jsr isGreater
next

if(G2 >= G1){
 isGreaterEq();
}

 ldaa G2
 cmpa G1
 blo next
 jsr isGreaterEq
next

if(G2 < G1){
 isLess();
}

 ldaa G2
 cmpa G1
 bhs next
 jsr isLess
next

if(G2 <= G1){
 isLessEq();
}

 ldaa G2
 cmpa G1
 bhi next
 jsr isLessEq
next

Table 5.2. Unsigned conditional structures.

The bottom line
 Use C bit, bhi, bhs, blo, bls for unsigned numbers
 Use V bit, bgt, bge, blt, ble for signed numbers
 Zero pad for unsigned 8 to 16 bit conversion
 Sign extend for signed 8 to 16 bit conversion
 Overflow detection using C and V bits
 Overflow correction using promotion or ceiling/floor

