
Introduction to Embedded Microcomputer Systems Lecture 10.1

Jonathan W. Valvano

Recap
 Switch, LED interface
 Real board debugging
 if-then statements

Overview
 Successive refinement
 Modular programming
 Subroutines, parameter passing
 Debugging dump

When we solve problems on the computer, we need to answer these questions:

• What does being in a state mean? List state parameters
• What is the starting state of the system? Define the initial state
• What information do we need to collect? List the input data
• What information do we need to generate? List the output data
• How do we move from one state to another? Actions we could do
• What is the desired ending state? Define the ultimate goal

Successive refinement, stepwise refinement, and systematic decomposition
• Start with a task and decompose the task into a set of simpler subtasks
• Subtasks are decomposed into even simpler sub-subtasks.
• Each subtask is simpler than the task itself.
• Make design decisions
• Subtask is so simple, it can be converted to software code.

Subtask 1

Sequential Conditional Iterative

Subtask 2
Subtask 1 Subtask 2 Subtask

Task

Subtask

Interrupt

Condition
True False

Condition
True

False

We need to recognize these phrases that translate to four basic building blocks:
• “do A then do B” → sequential
• “do A and B in either order” → sequential (parallel)
• “if A, then do B” → conditional
• “for each A, do B” → iterative
• “do A until B” → iterative
• “repeat A over & over forever” → iterative (condition always true)
• “on external event do B” → interrupt
• “every t msec do B” → interrupt

Introduction to Embedded Microcomputer Systems Lecture 10.2

Jonathan W. Valvano

no

Initialize

Output
digits

done?

yes

Create
next
digit

Initialize

Output
digits

Create
digits

Cnt = 0

N

=0

!=0

N = N/10
R = remainder

Push R
Cnt++

Cnt

=0

!=0

Pull R
ch = R+$30

Cnt--

OutChar(ch)

Figure 5.6. Successive refinement method for the iterative approach.

G1<=G2

isLessEq isGreater

G1>G2

Figure 5.3. Flowchart of an if-then-else structure.

 ldaa G1
 cmpa G2
 bhi high ; branch if G1>G2
low jsr isLessEq ; G1<=G2
 bra next

high jsr isGreater ; G1>G2
next

if(G1>G2){

 isGreater();
}
else{
 isLessEq();
}

Program 5.1. An unsigned if-then-else structure.

 ldaa G1
 cmpa G2
 bls low ; branch if G1≤G2
high jsr isGreater ; G1>G2
 bra next

low jsr isLessEq ; G1<=G2
next

if(G1>G2){

 isGreater();
}
else{
 isLessEq();
}

Alternative unsigned if-then-else structure.

while(G2 > G1){Body();}

G2<=G1
Body

G2>G1

Figure 5.4. Flowchart of a while structure.
The program begins with a test of G2>G1. If G2<=G1 then the body of the while loop is skipped.
loop ldaa G2
 cmpa G1
 bls next ;stop if G2≤G1
 jsr Body ;body of loop
 bra loop
next

while(G2 > G1){
 Body();
}

Program 5.2. A while loop structure.

Introduction to Embedded Microcomputer Systems Lecture 10.3

Jonathan W. Valvano

Question 1. Assume PT0 is an input. Draw a flowchart describing software that waits until PT0 is a 1 (loops back
over and over if PT0 is a 0). Next, write it in C. Finally, write it in assembly.

5.2.5. For loops

i >= 100 Process

i < 100

i = 0

i

i = i+1

for(i=0; i<100; i++){
 Process();
}

i == 0 Process

i != 0

i = 100

i

i = i-1

for(i=100; i!=0; i--){
 Process();
}

Figure 5.5. Two flowcharts of a for-loop structure.

The first implementation places the loop counter in the Register B, as shown in Program 5.3.
 ldab #0 ; Reg B is i,
i=0
loop cmpb #100
 bhs done
 jsr Process
 incb ; i=i+1
 bra loop
done

for(i=0; i<100; i++){
 Process();
}

Program 5.3. A simple for-loop.

 ldab #100 ; i=100
L1 jsr Process
 dbne B,L1 ; i=i-1

for(i=100; i!=0; i--){
 Process();
}

Program 5.4. The dbne instruction optimizes this for-loop implementation.
Question 2. Assume PT0 is an output. Draw a flowchart describing software that toggles PT0 1000 times (set
PT0=1, then PT0=0 500 times). Next, write it in C. Finally, write it in assembly.

5.1. Modular design
Goal

Clarity
Create a complex system from simple parts

Definition of modularity
Maximize number of modules
Minimize bandwidth between them

Entry point (where to start)
 The label of the first instruction of the subroutine
Exit point (where to end)
 The rts instruction
 Good practice, one rts as the last line
Public (shared, called by other modules)
 Add underline in the name, module name before
Private (not shared, called only within this module)
 No underline in the name
 Helper functions
Coupling (amount of interaction between modules)
 Data passed from one to another (bandwidth)
 Synchronization between modules

Introduction to Embedded Microcomputer Systems Lecture 10.4

Jonathan W. Valvano

3.3.5. Subroutines and the stack
 classical definition of the stack

• push saves data on the top of the stack,
• pull removes data from the top of the stack
• stack implements last in first out (LIFO) behavior
• stack pointer (SP) points to top element

many uses of the stack

• temporary calculations
• subroutine (function) return addresses
• subroutine (function) parameters
• local variables

The push and pull instructions
 psha ;push Register A on the stack
 pshb ;push Register B on the stack
 pshx ;push Register X on the stack
 pshy ;push Register Y on the stack
 des ;S =S-1 (reserve space)

 pula ;pull from stack into A
 pulb ;pull from stack into B
 pulx ;pull from stack into X
 puly ;pull from stack into Y
 ins ;S=S+1 (discard top of stack)
For simple subroutines we use registers to pass parameters

CallingProgram
 ...
 ldaa #4
 jsr ADC_Input
 std Result

;Subroutine
;Samples 10-bit ADC
;In: RegA has channel Number
;Out: RegD has 10-bit ADC result
ADC_In
 ...For details see Program 11.1...
 rts

RegAInput Parameter

RegDOutput Parameter
High level program
1) Sets Registers to contain inputs
2) Calls subroutine

6) Registers contain outputs

Subroutine

3) Sees the inputs in registers
4) Performs the action of the subroutine
5) Places the outputs in registers

Linear approach

main
 Step1
 Step2
loop
 Step3
 Step4
 Step5
 Step6
 Step7
 Step8
 Step9
 Step4
 Step5
 Step6
 Step10
 bra loop

Modular approach

main
 jsr ADC_Init
 jsr SCI_Init
loop
 jsr ADC_In
 jsr Math_Calc
 jsr SCI_Out
 bra loop

Math_Calc
 jsr Sort
 jsr Average
 Step9
 jsr Sort
 rts

ADC_Init
 Step1
 rts

ADC_In
 Step3
 rts

Sort
 Step4
 Step5
 Step6
 rts

Average
 Step7
 Step8
 rts

SCI_Init
 Step2
 rts

SCI_Out
 Step10
 rts

Introduction to Embedded Microcomputer Systems Lecture 10.5

Jonathan W. Valvano

Introduction to pointers

Pt

Not pointing to anything Pointing to Object1

Pt Object1

Object2

Object1

Object2

Pointing to Object2

Pt Object1

Object2

Figure 6.1. Pointers are addresses pointing to objects. The objects may be data, functions, or other pointers.

 If Register X or Y contains an address, we say it points into memory

;read 8-bit contents pointed to by X

X data
pointer

A

ldaa 0,x

;read 16-bit contents pointed to by Y

Y
pointer

ldd 0,y

A Bdata

The bottom line
 Stack is used for return address, temporary storage
 Subroutines provide a means for modular code
 For now, we pass parameters in registers
 Pointers are addresses
 Set a pointer to point to data
 Read the data at that pointer
 Write data through the pointer
 Change the pointer to next element
 8-bit or 16-bit data?
 Signed or unsigned numbers?

